Computing Forecast Horizons: An Integer Programming Approach

Milind Dawande
University of Texas at Dallas

Joint work with Srinagesh Gavirneni (Cornell), Sanjeewa Naranpanawe (SAS Institute), Suresh Sethi (UT Dallas)

Agenda

- Introduction to forecast horizons.
- Concept of a discrete forecast horizon.
- Using integer programming to compute forecast horizons.
- Analysis of discrete forecast horizons.
- Future potential.

Forecast Horizons

- Consider a multi-period decision-making problem.
- The number of periods, t, for which a decision has to made in the current period is called a decision horizon.
- An integer, T, is referred to as a forecast horizon corresponding to the decision horizon t if the data beyond period T do not influence the optimum decision for the first t periods for any problem with terminal time longer than T.

Forecast Horizons

- In other words: For any N-period problem, N ≥ T + 1, there exists at least one optimum solution with the same decision in the first period.
- If T is a forecast horizon, then so is every $N \ge T$.
- Interesting question: What is the minimal forecast horizon?
- Notation: forecast horizon: FH⁰, minimal forecast horizon: FH⁰_{min}.

The Dynamic Lot-Size Problem (DLSP)

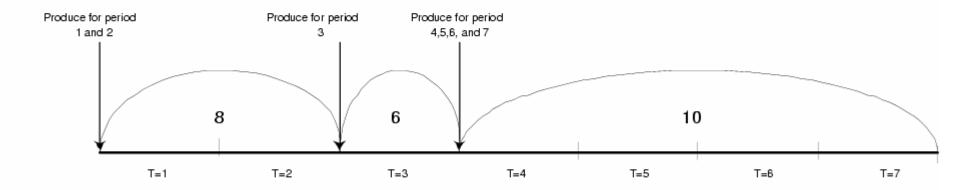
- We use the DLSP to illustrate concepts.
- Dynamic Version of the Economic Lot Size Model.
 - T-period production problem with known demand, holding and setup costs.
 - Objective is to find a production plan such that all demands are met at a minimum cost.

DLSP - an example:

Period: 1 2 3 4 5 6 7

Demand: 5 3 6 2 4 3 1

set up cost = 2; holding cost = 1;



Cost of the three setups: $3 \times 2 = 6$

Holding cost: $(3 \times 1) + (4 \times 1) + (3 \times 2) + (1 \times 1)$

3) = 16; total cost = 22.

Definitions and decision variables

```
T = \text{ the problem horizon, i.e., the number of periods.}
k = \text{ setup cost for production.}
h = \text{ holding cost per unit per period.}
d_j = \text{ demand in period } j, j = 1, 2, ..., T.
Q_j = \text{ quantity produced in period } j.
X_j = \begin{cases} 1 & \text{if a setup is required in period } j; \\ 0 & \text{ otherwise;} \end{cases}
I_i = \text{ inventory at the end of period } j.
```

A Formulation for DLSP

Minimize
$$\sum_{j=1}^{T} [kX_j + hI_j]$$

subject to:

$$Q_{j} \leq \left(\sum_{r=j}^{t} d_{r}\right) X_{j} \qquad 1 \leq j \leq T$$

$$I_{j} = I_{j-1} + Q_{j} - d_{j} \qquad 1 \leq j \leq T$$

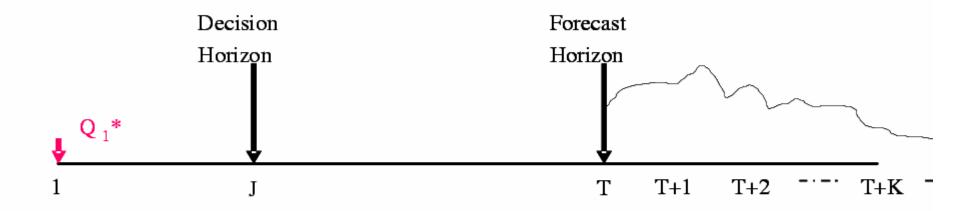
$$I_{0} = 0$$

$$I_{T} = 0$$

$$I_{j}, Q_{j} \geq 0$$

$$X_{j} \in \{0, 1\}$$

Forecast and decision horizon



• T is a forecast horizon iff at least one optimum solution to every (T+F)-period problem $(F \ge 0)$ has the same first period production Q_1^* .

Advantages of forecast horizons

- Forecasting farther into the future is expensive and is error-prone.
- Reducing the computational burden of solving a larger horizon problems.

Applications

Forecast horizons have been investigated for many real-world dynamic decision problems:

- Production planning -Aronson et al. (1984)
- Cash management -Chand and Morton (1982)
- Inventory management Federgruen and Tzur (1996)
- Machine replacement Chand and Sethi (1982)
- Plant location Daskin et al. (1992)
- Sequencing and scheduling -Rempala (1989)

Algorithms to detect forecast horizons

- Dynamic Programming and Optimal Control are the most frequently used methods to detect forecast horizons.
- IP has largely been ignored as an approach for computing forecast horizons.

Algorithms to detect forecast horizons

- Forward Algorithm.
 (H.M. Wagner and T.M. Whitin, MS 1958)
 - An efficient procedure for solving longer horizon problems.
 - This was the first attempt at computing forecast horizons.
- Necessary conditions.
 (R.A. Lundin E. Morton, OR 1975)
- Necessary and Sufficient conditions.
 (S. Chand and E. Morton, MS 1982)

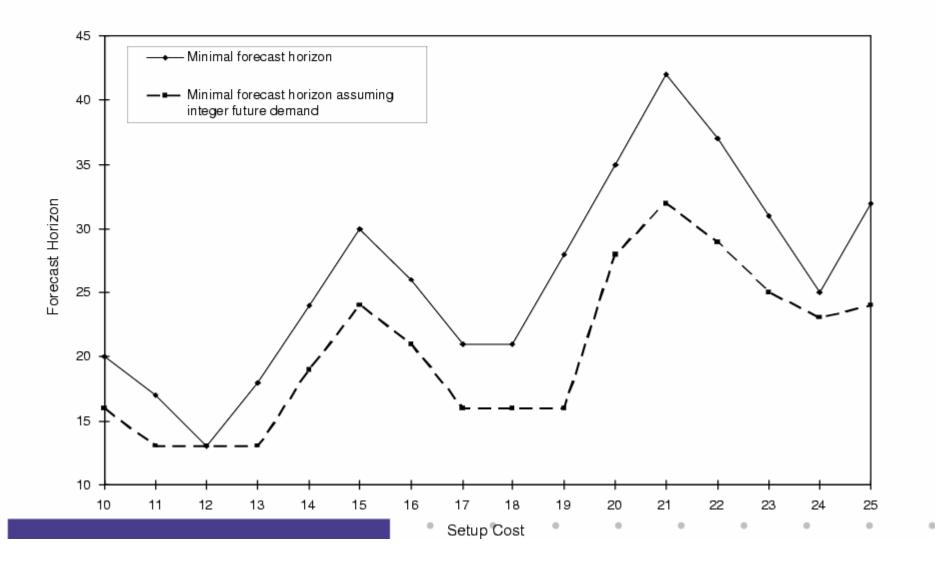
Introduction to discrete forecast horizons

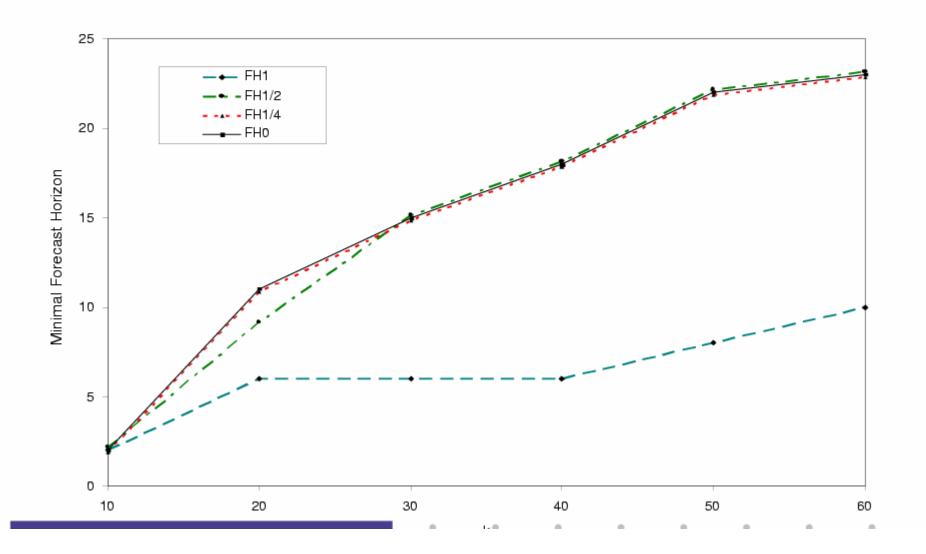
- The classical notion of a forecast horizon places no restrictions on the future data.
- The DLS model of Wagner and Whitin accommodates the possibility that a future demand could take any non-negative value.
- In practice, the context of the problem being investigated often allows us to specify additional characteristics of future demands.

Introduction to discrete forecast horizons

- Typically, demand realizations obey a well-defined granularity.
 - A car manufacturer that needs to consider only integer valued demands.
 - An oil refinery quantifies demand in the thousands of gallons.
- In these cases, the business is not interested in considering demands that fall in between these discrete values.
- FH q : a forecast horizon assuming future demands are multiples of $q \in \Re_+$.

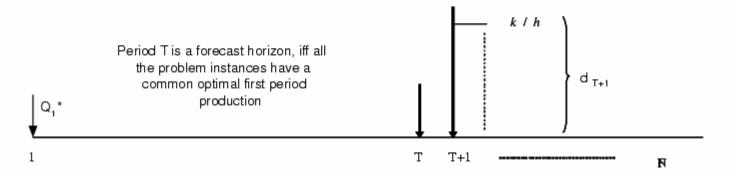
Reduction in the length of the minimal horizon





A characterization for a period T to be a \mathbf{FH}^0

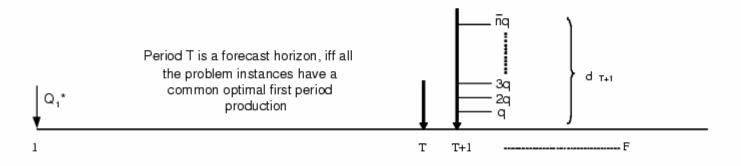
• Every optimum production plan in the first T periods of an N-period problem, $N \geq T+1$, can be found by solving the (T+1)-period problem with demands $d_i, i=1,...,T$, in the first T periods and some appropriately selected demand α in period T+1. (Chand and Morton, 1982).



$$d_{T+1} \in \{[0, \frac{k}{h}] : \Re^1\}$$

Characterization for FH^q

T is a forecast horizon assuming that future demands are integer multiples of q (i.e., T is an FH q) if, and only if, $\bigcap_{\alpha \in \{0,q,2q,...,\overline{n}q\}} \mathcal{Q}_1(\alpha) \neq \emptyset$, where \overline{n} is the smallest integer such that $\overline{n}q \geq \frac{k}{h}$.



$$d_{T+1} \in \{0, q, 2q, ...\bar{n}q\}$$

Definitions and decision variables

 $M_{T+1}(\alpha)$: Optimal cost for a (T+1)-period problem when the demand in period T+1 is α . Note that $\alpha=0$ is essentially the T-period problem.

: the set of demands for period T+1, indexed by $\alpha,\,\Lambda_q\in\{n\times q;n=0,1,2,....\overline{n}\}.$

 $X_j^\alpha \qquad \qquad : \quad \left\{ \begin{array}{ll} 1 & \text{if a setup is required in period } j \text{ in} \\ & \text{the problem with period } T+1 \text{ demand } \alpha; \\ 0 & \text{otherwise.} \end{array} \right.$

 Q_j^{α} : the quantity produced in period j in the problem with period T+1 demand α .

 I_j^{α} : the inventory carried over from period j to j+1 in the problem with period T+1 demand α .

Checking if T is an FH^q

Find a feasible solution to the following set of constraints:

$$\begin{split} \sum_{j=1}^{T+1} k X_j^\alpha + \sum_{j=1}^{T+1} h I_j^\alpha &= M_{T+1}(\alpha) \qquad \alpha \in \Lambda_q \\ & (\sum_{r=j}^{T+1} d_r) X_j^\alpha \geq Q_j^\alpha \qquad 1 \leq j \leq T+1, \ \alpha \in \Lambda_q \\ & I_{j-1}^\alpha + Q_j^\alpha - d_j - I_j^\alpha = 0 \qquad 1 \leq j \leq T, \ \alpha \in \Lambda_q \\ & I_{j-1}^\alpha + Q_j^\alpha - \alpha - I_j^\alpha = 0 \qquad j = T+1, \ \alpha \in \Lambda_q \\ & Q_1^\alpha - Q_1^{\alpha'} = 0 \qquad \alpha \neq \alpha'; \alpha, \alpha' \in \Lambda_q \\ & I_0^\alpha, I_{T+1}^\alpha = 0 \qquad \alpha \in \Lambda_q \\ & I_j^\alpha, Q_j^\alpha \geq 0 \qquad 1 \leq j \leq T+1, \ \alpha \in \Lambda_q \\ & X_j^\alpha \in \{0,1\} \qquad 1 \leq j \leq T+1, \ \alpha \in \Lambda_q \end{split}$$

Advantages of the discreteness assumption

- Discretization of future demands allows us to better exploit a characterization for forecast horizons.
- Checking whether a period T is a forecast horizon can be posed as a feasibility question in a system of linear inequalities with 0-1 variables.
- This approach does not depend explicitly on the structural properties of the problem being studied.
 Consequently, it becomes relatively easy to extend the approach to investigate a wider class of forecast horizons.

The relationship between FH^q and FH^0

- Trivially, $FH_{min}^q \leq FH_{min}^0$.
- Interesting question: Conditions under which $FH_{min}^q = FH_{min}^0$.
- There are two considerations that enable us to derive such conditions:
 - The behavior of the optimal cost with respect to the granularity q of a discrete forecast horizon.
 - The sensitivity of the last production period to perturbations in future data.

Relationship between FH^q and FH^0 : sample results

• Let T be an FH^q . Let $\mathsf{P}(\alpha)$ denote the T+1-period problem with demand α in Period T+1. For all $\alpha \in \Lambda_q$, if restricting the first-period production for Problem $\mathsf{P}(\alpha)$ to a quantity other than an optimal quantity makes its cost at least as large as that of $\mathsf{P}(\alpha+q)$, then T is an FH^0 .

Relationship between FH^q and FH^0 : sample results

• Let T be an FH^q. If Problems P($\alpha + \delta$), $0 < \delta < q$ have an optimal solution with the same last regeneration period as that of Problem P(α), then we can ignore these problems when checking for a continuous horizon. If this holds for all $\alpha \in \Lambda_q$, then T is an FH⁰.

Concept of $(1 + \epsilon)$ -FH⁰

- <u>Definition</u>: Period T is an $(1+\epsilon)$ -FH 0 if for every N-period problem, $N \geq T+1$ and all vectors of demands $\bar{d}_{T+1}^N \in \Re_+^{N-T}$, there exists at least one solution with $(Q_1)^*$ as the first period production quantity, and with cost at most $(1+\epsilon)$ times the optimal cost.
- If T is an FH q , then T is an $(1 + \epsilon)$ -FH 0 , where, in general, ϵ depends on q.

Continuous forecast horizons (FH⁰)

- Sufficient condition: T is a forecast horizon if an optimum solution with first-period production, say Q_1^T , to the T-period problem with last production in period L satisfies the following condition: every S-period problem with $L-1 \leq S \leq T$ has an optimum solution with first-period production Q_1^T .
- L: last production period; L-1: last regeneration period.
- Regeneration set: periods from L-1 to T.

Continuous forecast horizons (FH⁰)

- The actual regeneration set could be much smaller: minimal regeneration set.
- Necessary and Sufficient conditions (Chand and Morton, 86):
 - Identify a minimal regeneration set.
 - Test whether all the planning horizons in it have a common optimum production quantity.
- Efficiently solvable IP formulations.

Extensions of discrete horizons

- Forecast horizons for a capacity-constrained dynamic lot-sizing problem.
- A two-product problem with individual and joint setup costs.
- Development of necessary and sufficient conditions and corresponding IP formulations.
- Satisfactory performance of IP solvers on a wide variety of problems.

Interesting research issues

- Existence of forecast horizons.
- Characterization of demand vectors for which a forecast horizon exists.
- Proving bounds on the magnitude of reduction offered by discrete horizons.
- Exploiting the constraint-based nature of integer programming to compute forecast horizons for a wider range of dynamic decision-making problems.