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bonmin

Solver for Mixed Integer Nonlinear Programming:

(MINLP )


min f(x)
s.t.

g(x) ≤ 0,

x ∈ X, xi ∈ Z∀i ∈ I.

• X bounded polyhedral set,

• f : X → R,

• g : X → Rm,

• f , g continuously differentiable,

Convex MINLP
f and g convex:
Continuous relaxation ”easily” solvable, three exact algorithms :

1 NLP based branch-and-bound (Ravindran and Gupta 1985),

2 Outer Approximation decomposition (Duran and Grossmann 1986),

3 Hybrid LP/NLP based branch-and-cut (Quesada and Grossmann 1992).

Non-convex MINLP
f or g non-convex:
Only compute local optima of continuous relaxations.
Uses NLP based branch-and-bound as an heuristic for searching good solutions.
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Outer Approximation

min f(x)
s.t.

g(x) ≤ 0,

x ∈ X, xi ∈ Z ∀i ∈ I.

(assume linear objective)

Outer Approximation

min z (linear objective)

s.t. f(x, y) ≤ z

c(x, y) ≤ 0
x ∈ {0, 1}n, y ∈ Rp, z ∈ R

Idea: approximate by MILP (hyperplanes)

min z

s.t. ∇f(xk, yk)T

(
x − xk

y − yk

)
+ f(xk, yk) ≤ z

∇c(xk, yk)T

(
x − xk

y − yk

)
+ c(xk, yk) ≤ 0

for all (xk, yk) ∈ T
x ∈ {0, 1}n, y ∈ Rp, z ∈ R

T contains linearization points
(augmented during algorithm)

Copper Mountain 04/06 – p. 7

Idea: linearize constraints at different points and build an equivalent MILP:

(OA)


min f(x)

Jg(xk)T
(
x− xk

)
+ g(xk) ≤ 0
∀(xk) ∈ T

x ∈ X, xi ∈ Z ∀i ∈ I.

T contains suitably chosen linearization points.



Outer approximation constraints

Let F := {x : x ∈ X : gi(x) ≤ 0}
(gi : Rn → R convex. )
Outer approximation constraint in x̄:

∇gj(x̄)T (x− x̄) + gj(x̄) ≤ gj(x) ≤ 0.

(valid for F by convexity of gj and definition of F .)

• If g(x̄) = 0 tangent to feasible region.

• If g(x̄) < 0 non-tight constraint.

• If g(x̄) > 0 non-tight constraint cutting off x̄.

F
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OA decomposition algorithm

• Solve the continuous relaxation of (MINLP ) :
min f(x)
g(x) ≤ 0,

x ∈ X,

• Construct MILP with linearization in x̄0 (T = {x̄0})
• From the solution x̂1 build an NLP with integer variables

fixed: 
min f(x)
g(x) ≤ 0,

x ∈ X, xi = x̂1
i ∀i ∈ I

• If feasible the solution x̄1 gives upper bound .
• Otherwise, x̄1 minimizes constraints infeasibility,

linearization cuts off {x ∈ X : x = x̂1
i }

• Add x̄1 to T

and iterate

.

• Until either MILP is infeasible or the lower bound is equal
to the upper bound .

x11 2

g(x) ≤ 0

x2

0

x
0

[Duran, Grossmann, 86]
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OA decomposition

OA decomposition properties

If constraints qualification holds at every optimum of NLP solved:

• Solve to optimality problems defined by convex constraints.

• Finite termination if x bounded.

Has to solve a sequence of MINLP’s ( > 95% of computing time in our experiments).

Alternative approach [Quesada, Grossmann, 92]

• Perform a single branch-and-cut.

• Alternate between solving NLPs and LPs.

• NLP solved to find feasible solutions and improve outer approximation

• Use LP to obtain lower bounds and solutions to branch on



LP/NLP branch-and-cut

• start by solving continuous relaxation to get initial outer approximation.

• At each node of the tree search

• solve linear outer approximation at current node

:

(OA)F (T )


min f(x, y)

Jg(x̄)T (x− x̄) + g(x̄) ≤ 0 ∀x̄ ∈ T
x ∈ X ∩ F.

(F is the modified feasibility set at current node)
• if (OA)F (T ) is integer feasible solve NLP: 

min f(x)
g(x) ≤ 0,

x ∈ X, xi = x̂i ∀i ∈ I

• add its solution x̄ to T , and repeat while solution to (OA)F (T ) is integer feasible.

• Fathom nodes on bounds and infeasibility only.

[Quesada, Grossmann, 92]
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Improvements to LP/NLP branch-and-bound

Disadvantages of LP/NLP branch-and-bound

• At the top of the tree outer approximation only based on continuous relaxation.

• Approximation not improved until first integer feasible solution is found.

• At that point tree may already have a large number of nodes.

Improvements

Solve more NLP’s

• Initialize algorithm with a few iterations of OA decomposition.
• Helps in finding feasible solution early.
• Sometimes sufficient to solve problem.

• Solve NLP relaxation every l nodes:
• LP relaxation at node is then equal to NLP relaxation.



The Hybrid algorithm

• start by solving continuous relaxation to get initial outer approximation.

• At each node of the tree search

• Every l nodes solve NLP relaxation:
min f(x)
g(x) ≤ 0,

x ∈ X ∩ F.

• solve linear outer approximation at current node

:

(OA)F (T )
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min f(x, y)

Jg(x̄)T (x− x̄) + g(x̄) ≤ 0 ∀x̄ ∈ T
x ∈ X ∩ F.

(F is the modified feasibility set at current node)
• Strengthen outer approximation with MILP cutting planes methods
• if (OA)F (T ) is integer feasible solve NLP: 
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Computer implementation

• Written in C++.

• Can be used from AMPL, or using C++ library.

Building blocks

Components from COIN-OR (www.coin-or.org):

• branch-and-bound, branch-and-cut framework: Cbc,

• NLP solver Ipopt,

• MILP solver Cbc (alternatively Cplex),

• LP solver Clp,

• Cutting plane generation Cgl (generators for OA constraints).

Availability

To be released soon under Common Public License.
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Features of bonmin algorithm

I-BB (NLP only based branch-and-bound)

• branch-and-bound framework based on Cbc,

• nodes solved by Ipopt with enhanced warm-starting capabilities.

• Special features for non-convex problems :
• Solve each nodes with several randomly chosen starting points,
• change fathoming policies (don’t trust ”bounds”).

I-OA
Standard OA decomposition

• Implemented as a cut generator to be used in other algorithms.

• Uses either Cbc or Cplex for solving the MILPs.

I-QG
Quessada-Grossmann branch-and-cut.

I-Hyb (Hybrid)

Quesada-Grossmann improved with:

• Initialization with a short time of I −OA.

• Solve NLP’s every l nodes.

• Incorporation of MILP techniques:
• Cgl cut generators,
• Strong branching, Reliability branching
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Test problems and computational testing

A Library of convex MINLPs

About 150 MINLP’s from different sources

• Existing problems from the literature : layout and trimloss problems (T. Westerlund et al. )

• Water network problems (C.D. Laird)

• Disjunctive problems formulated both with big-M and convex-hull formulation (N. Sawaya)

available in GAMS .gms and AMPL .nl formats at:
http://egon.cheme.cmu.edu/ibm/page.htm

Computational experiments

Comparisons on 38 problems from the library:

1 Comparison of I-BB, I-OA, I-QG and I-Hyb,

2 Comparison of I-BB I-OA and I-Hyb with two commercial solvers:
• SBB: Nonlinear branch-and-bound based on CONOPT.
• DICOPT: OA decomposition based on CONOPT/CPLEX.

Settings for I-Hyb

• Perform 30 seconds of I-OA at the root node.

• Solve NLP relaxation every 10 nodes.

• Strong branching on LP relaxation and pseudo-costs.

• Uses MIG, MIR and Covers.



Comparison of I-BB, I-OA, I-QG, I-Hyb
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Runs on an Optetron cluster.
Time limit of 3 hours.

Performance plot

For each value of p and algorithm A
gives the proportion of problem solved
by A in

p× Tmin seconds.

(Where Tmin is the running time of
the best algorithm.)

• For p = 1: proportion of
problems where A is the fastest
algorithm

• For p = ∞: proportion of
problems solved by A in time
limit.



bonmin’s I-BB, I-OA, I-Hyb, Dicopt and Sbb
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• Dicopt solves 20 of the 38
problems the fastest (≤ 3
minutes)

• I-Hyb solves the most problem
when given 45 more seconds of
computing time than Dicopt

Comparison of our
branch-and-bound and Sbb

• I-BB is slightly slower but
compares well with Sbb (on
average 760 sec. vs 615 sec. on
problems solved optimally by
both)

• Number of nodes are comparable

• I-BB is slightly faster per node
on our test set.

Comparison of I-OA with Dicopt

• I-OA is significantly slower than
Dicopt.

• Takes less iterations but MILPs
are much slower to solve (uses
Cbc vs. Cplex).



A Feasibility Pump for MINLP

Goal: Obtaining (good) feasible solutions quickly
How: Do an OA decomposition oriented towards integer feasibility.

Feasibility Pump for MILP [Fischetti, Glover, Lodi 2004]{
Ax ≤ b

x ∈ Zn

Construct two sequences of points:

• x̄1, . . . , x̄k satisfying Ax ≤ b, by solving LPs.

• x̂1, . . . , x̂k satisfying x ∈ Zn by rounding.

Feasibility Pump for MINLP [with Cornuéjols, Lodi, Margot]{
g(x, y) ≤ 0,

(x, y) ∈ X, x ∈ Z.

Construct two sequences of points:

• (x̄1, ȳ1), . . . , (x̄k, ȳk) satisfying Ax ≤ b, by solving LPs.

• (x̂1, ŷ1), . . . , (x̂k, ŷk) satisfying x ∈ Zn by solving an MILP.

• Build an outer approximation of feasibility region.
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MINLP Feasibility Pump

(x0, y0)

0 1 2 x

y

g(x, y) ≤ b

• Start with any solution of continuous relaxation (x̄0, ȳ0).

• T = (x̄0, ȳ0).
• Repeat:

• i:= i+1

• Find point minimizing ||x− x̄0||1 in current outer
approximation:

min ||x− x̄0||

g(xk, yk) + Jg(xk, yk)+)T

((
x
y

)
−

(
xk

yk

) )
≤ 0

k = 0 . . . , i− 1

x ∈ Zn1 , y ∈ Rn2

• If FOA1 is infeasible or solution (x̂1, ŷ1) satisfies
g(x̂1, ŷ1) ≤ 0 stop.

• Otherwise, find NLP feasible point minimizing ||x− x̂1||2:

(FP −NLP )1


min ||x− x̄1||2
g(x, y) ≤ 0,

(x, y) ∈ X.

• Update outer approximation of the problem with (x̄1, ȳ1)
and iterate.
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• Start with any solution of continuous relaxation (x̄0, ȳ0).
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(x1, y1)

(x2, y2)

• Start with any solution of continuous relaxation (x̄0, ȳ0).
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and iterate.



Properties of MINLP Feasibility Pump

Termination
FP can not cycle (if x is bounded: finite termination):

• If all functions gi are convex and constraint qualification holds at every NLP optimum.

• If constraint qualification does not hold at every NLP add cut:

(x̄i − x̂i)T (x− x̄i) ≥ 0

• If functions gi are not convex but the region {g(x, y) ≤ 0} is add only binding OA constraints at x̄i.

• MILPs don’t have to be solved to optimality.

Iterated feasibility pump (IFP)

After a feasible solution of cost α = f(x̄, ȳ) has been found.
Add the constraint

f(x, y) ≤ α− ε

to problem formulation and relaunch FP.



Computational testing of FP

Implementation

• Implemented as a stand-alone heuristic.

• Ipopt3.0 for solving the NLPs.

• Cplex9.0 for solving MILPs.

Test problems

65 convex MINLPs

• 12 from literature

• 43 from our library

Comparison with classical OA

• First feasible solution obtained by FP and OA.

• Best feasible solution obtained by IFP and OA after 1 minute.



Computational results

First feasible solution
Time limit 2 hours.

• Quality of solution obtained by OA better than the one obtained by FP.

• FP much faster than OA (4 problems take more than 10 sec. with FP, 21 with OA)

• FP finds a feasible solution to all 65 problems, OA does not for 5 problems.

• trimloss6-7-12 no feasible solution known before.

1 minute of IFP vs. OA

• IFP finds solution for 63 problems, OA for 50.

• Quality of solutions very comparable.

• IFP proves optimality of 30 problems, OA of 38.



Enhanced Outer Approximation Algorithm

Combination of OA and FP.

Principle

• Start by performing one minute of IFP to get a good feasible solution (and OA constraints).

• Launch a classical OA decomposition but every time the NLP is infeasible launch an FP to try to obtain a feasible solution.



Enhanced Outer Approximation Algorithm

• Solve the continuous relaxation of (MINLP ) : 
min f(x)
g(x) ≤ 0,

x ∈ X,

• Perform 1 minute of IFP add all the NLP feasible points found to T

• Construct MILP with linearization in x̄0 (T = {x̄0}) :

min f(x)

Jg(x̄0)
(
x− x̄0

)
+ g(x̄0) ≤ 0

x ∈ X, xi ∈ Z ∀i ∈ I.

Solution x̂1 gives a lower bound on (MINLP ).
• From the solution x̂1 build an NLP with integer variables fixed:

min f(x)
g(x) ≤ 0,

x ∈ X, xi = x̂1
i ∀i ∈ I

• If feasible the solution x̄1 gives upper bound .
• Otherwise, x̄1 minimizes constraints infeasibility. Linearization cuts off {x ∈ X : x = x̂1

i }

• Add x̄1 to T and iterate.

• Until either MILP is infeasible or the lower bound is equal to the upper bound .



Enhanced Outer Approximation Algorithm

• Solve the continuous relaxation of (MINLP ) : 
min f(x)
g(x) ≤ 0,

x ∈ X,

• Perform 1 minute of IFP add all the NLP feasible points found to T
• Construct MILP with linearization for all x ∈ T :

min f(x)
Jg(x̄) (x− x̄) + g(x̄) ≤ 0 ∀x̄ ∈ T
x ∈ X, xi ∈ Z ∀i ∈ I.

Solution x̂ gives a lower bound on (MINLP ).
• From the solution x̂ build an NLP with integer variables fixed:

min f(x)
g(x) ≤ 0,

x ∈ X, xi = x̂i ∀i ∈ I

• If feasible the solution x̄ gives upper bound .
• Otherwise, Launch an FP for at most 2 minutes and 5 iterations add all NLP feasible solution to T

• Add x̄ to T and iterate.

• Until either MILP is infeasible or the lower bound is equal to the upper bound .



Computational experiment with enhanced OA

On a subset of 15 hardest problems with OA from previous experiment:
OA enhanced by FP OA

time to time to time to time to
Name ub find ub lb find lb ub find ub lb find lb

CLay0304M 40262.4 79 * 82 40262.4 12 * 14
CLay0305H 8092.5 4 * 32 8092.5 24 * 24
CLay0305M 8092.5 4 * 24 8092.5 75 * 75
fo7 2 17.74 4 * 103 17.74 20 * 128
fo7 20.72 260 * 260 20.72 24 * 197
fo8 22.38 573 * 835 22.38 727 * 906
fo9 23.46 1160 * 2613 23.46 5235 * 6024
o7 2 116.94 189 * 2312 118.86 5651 114.08 7200
o7 131.64 5 * 6055 none — 122.79 7200
SLay10M 129580 1778 * 3421 129580 336 128531 7200
trimloss2 5.3 0.17 * 0.22 5.3 0.21 * 0.21
trimloss4 8.3 10 * 423 8.3 785 * 785
trimloss5 10.7 485 3.31 7200 none — 5.9 7200
trimloss6 16.5 2040 3.5 7200 none — 6.5 7200
trimloss7 27.5 387 2.6 7200 none — 3.3 7200
trimloss12 none — 5.47 7200 none — 9.58 7200
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Ongoing and future work

Parallel Implementation [L. Ladanyi]

• Using BCP as branch-and-cut framework,

• Prototypes of simplified I-Hyb and I-BB

Non-convex MINLPs
Trying to find heuristics to obtain good solutions in I-BB.

Stochastic programming (with M. Lejeune Tepper SoB)

Problems formulated as convex MINLPs

• Probabilistically constrained problems enforcing system/network reliability level
• Reservoir management,
• supply chain management,
• financial applications (cash-matching)

• Robust/Probabilistic with random technology matrix problems integer constrained
• integer constrained portfolio optimization problems.



Links

IBM-CMU MINLP web site
http://egon.cheme.cmu.edu/ibm/page.htm

• Research reports :
• An Algorithmic Framework for convex Mixed Integer Nonlinear Programs (with IBM-CMU group),
• A Feasibility Pump for MINLP (with G. Cornujols, A. Lodi, F. Margot).

• Library of convex test problems available in Gams and Ampl .nl formats.
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