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Non-convex MINLP

f or g non-convex:

Only compute local optima of continuous relaxations.

Uses NLP based branch-and-bound as an heuristic for searching good solutions.



Outer Approximation

min f(x)

S.t.

g(x) <0,

reX, v, €ZVieTl.

(assume linear objective)

Idea: linearize constraints at different points and build an equivalent MILP:
min f(x)

Jg(,l‘/")T (.77 — ,1'/") +g(") <0
V(,l‘/") eT

reX, x, € ZVieT.

(OA4) 7 contains suitably chosen linearization points.
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Solve the continuous relaxation of (MINLP) :

min f(x)
g9(x) <0,
e X,

Construct MILP with linearization in 7" (7 = {2"}):

min f(z)
Jo(2") (= 2") +g(2") <0
reX, x, €ZVieTL.

Solution 7! gives a lower bound on (MINLP).

From the solution &' build an NLP with integer variables

fixed:
min f(x)

g9(z) <0,
reX, y=ilViel

o If feasible the solution ' gives upper bound .
o Otherwise, ©' minimizes constraints infeasibility,
linearization cuts off {r € X : 2 = ]}

Add ' to 7 and iterate.

Until either MILP is infeasible or the lower bound is equal
to the upper bound .

OA decomposition algorithm

Y

€1

[Duran, Grossmann, 86]



OA decomposition

OA decomposition properties

If constraints qualification holds at every optimum of NLP solved:
o Solve to optimality problems defined by convex constraints.
o Finite termination if z bounded.

Has to solve a sequence of MINLP's ( > 95% of computing time in our experiments).
Alternative approach [Quesada, Grossmann, 92]

o Perform a single branch-and-cut.
o Alternate between solving NLPs and LPs.
o NLP solved to find feasible solutions and improve outer approximation

e Use LP to obtain lower bounds and solutions to branch on
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Improvements to LP/NLP branch-and-bound

Disadvantages of LP/NLP branch-and-bound

o At the top of the tree outer approximation only based on continuous relaxation.
e Approximation not improved until first integer feasible solution is found.

e At that point tree may already have a large number of nodes.

Improvements
Solve more NLP's
e Initialize algorithm with a few iterations of OA decomposition.

e Helps in finding feasible solution early.
e Sometimes sufficient to solve problem.

e Solve NLP relaxation every [ nodes:
o LP relaxation at node is then equal to NLP relaxation.
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The Hybrid algorithm

e start by performing ¢ sec. of outer approximation decomposition.
e At each node of the tree search
e Every [ nodes solve NLP relaxation:

min f(z)
g9(z) <0,
re XNF.
e solve linear outer approximation at current node:
min f(z,y)
(OA)p(T)S Jy() T (x—2)+g(1) <0 VoreT
reXNF.

(F is the modified feasibility set at current node)
e Strengthen outer approximation with MILP cutting planes methods
o if (OA)p(T) is integer feasible solve NLP:

min f(x)
9(x) <0,
reX, x,=5,Viel
e add its solution = to 7, and repeat while solution to (OA)r(7) is integer feasible.

e Fathom nodes on bounds and infeasibility only.
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Building blocks
Components from COIN-OR (www.coin-or.org):

e branch-and-bound, branch-and-cut framework: CBC,

NLP solver IPOPT,

MILP solver CBC (alternatively Cplex),

LP solver CLP,

Availability
To be released soon under Common Public License.

Cutting plane generation CGL (generators for OA constraints).

Computer implementation
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I-BB (NLP only based branch-and-bound)

e branch-and-bound framework based on Cbc,

e nodes solved by Ipopt with enhanced warm-starting capabilities.

e Special features for non-convex problems :

e Solve each nodes with several randomly chosen starting points,
e change fathoming policies (don't trust "bounds”).

I-OA
Standard OA decomposition
e Implemented as a cut generator to be used in other algorithms.

e Uses either Cbc or Cplex for solving the MILPs.

I-QG

Quessada-Grossmann branch-and-cut.

I-Hyb (Hybrid)

Quesada-Grossmann improved with:
e Initialization with a short time of I — OA.
e Solve NLP's every [ nodes.

e Incorporation of MILP techniques:

e Cgl cut generators,
e Strong branching, Reliability branching

Features of BONMIN algorithm



Test problems and computational testing

A Library of convex MINLPs

About 150 MINLP's from different sources
e Existing problems from the literature : layout and trimloss problems (T. Westerlund et al. )
e Water network problems (C.D. Laird)
e Disjunctive problems formulated both with big-M and convex-hull formulation (N. Sawaya)

available in GAMS .gms and AMPL .nl formats at:
http://egon.cheme.cmu.edu/ibm/page.htm

Computational experiments
Comparisons on 38 problems from the library:
@ Comparison of I-BB, I-OA, I-QG and I-Hyb,
® Comparison of I-BB I-OA and I-Hyb with two commercial solvers:

e SBB: Nonlinear branch-and-bound based on CONOPT.
e DICOPT: OA decomposition based on CONOPT /CPLEX.

Settings for I-Hyb

e Perform 30 seconds of I-OA at the root node.

e Solve NLP relaxation every 10 nodes.

e Strong branching on LP relaxation and pseudo-costs.
e Uses MIG, MIR and Covers.



Proportion of problem solved

0.9

0.8

0.7

Comparison of I-BB, I-OA, I-QG, I-Hyb

I-Hyp ——

-BB ——
I-OA ——

10 100
not more than p times worst than best solver

1000

Runs on an Optetron cluster.
Time limit of 3 hours.

Performance plot

For each value of p and algorithm A
gives the proportion of problem solved
by A in

p X Tmin seconds.

(Where Tiin is the running time of
the best algorithm.)

e For p = 1: proportion of
problems where A is the fastest
algorithm

e For p = oco: proportion of
problems solved by A in time
limit.



Proportion of problems solved

0.9

0.8

BONMIN's I-BB, I-0A, I-Hyb, Dicopt and Sbb

e Dicopt solves 20 of the 38
problems the fastest (< 3

minutes)
v v T T e |-Hyb solves the most problem
Dicopt when given 45 more seconds of
s88 —— 1 computing time than Dicopt

Comparison of our
7 ’_’_%—: ] branch-and-bound and Sbb
I . .
e I-BB is slightly slower but
compares well with Sbb (on
average 760 sec. vs 615 sec. on

l problems solved optimally by
. both)

e Number of nodes are comparable

e I-BB is slightly faster per node
- on our test set.

Comparison of I-OA with Dicopt

10 100 1000 10000 e |-OA is significantly slower than
Tau (log scaled) Dicopt.

e Takes less iterations but MILPs

are much slower to solve (uses
Cbc vs. Cplex).
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A Feasibility Pump for MINLP

Goal: Obtaining (good) feasible solutions quickly
How: Do an OA decomposition oriented towards integer feasibility.

FEAsIBILITY PuMP FOR MILP [FISCHETTI, GLOVER, LODI 2004]

Ax <b
xeZ"
Construct two sequences of points:
e 1, ..., 1" satisfying Az < b, by solving LPs.
e i, ..., ¥ satisfying x € Z™ by rounding.

FEASIBILITY PUMP FOR MINLP [wiTH CORNUEJOLS, LODI, MARGOT]

g(x,y) <0,
(x,y) € X, x € Z.
Construct two sequences of points:

o e satisfying Ax < b, by solving LPs.
o (21, 9Y),..., (2", ¢") satisfying € Z™ by solving an MILP.

e Build an outer approximation of feasibility region.
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Start with any solution of continuous relaxation (", 7).
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and iterate.



Properties of MINLP Feasibility Pump

Termination
FP can not cycle (if z is bounded: finite termination):

e If all functions g; are convex and constraint qualification holds at every NLP optimum.

e If constraint qualification does not hold at every NLP add cut:
(7' — i)z -z >0

e If functions g; are not convex but the region {g(x,y) < 0} is add only binding OA constraints at z°.
e MILPs don't have to be solved to optimality.

lterated feasibility pump (IFP)
After a feasible solution of cost & = f(Z,y) has been found.
Add the constraint
flz,y) <a—e

to problem formulation and relaunch FP.



Computational testing of FP

Implementation

e Implemented as a stand-alone heuristic.
e |popt3.0 for solving the NLPs.
e Cplex9.0 for solving MILPs.

Test problems
65 convex MINLPs

e 12 from literature

e 43 from our library

Comparison with classical OA

e First feasible solution obtained by FP and OA.
e Best feasible solution obtained by IFP and OA after 1 minute.



Computational results

First feasible solution
Time limit 2 hours.

e Quality of solution obtained by OA better than the one obtained by FP.
e FP much faster than OA (4 problems take more than 10 sec. with FP, 21 with OA)
e FP finds a feasible solution to all 65 problems, OA does not for 5 problems.

e trimloss6-7-12 no feasible solution known before.

1 minute of IFP vs. OA

e |FP finds solution for 63 problems, OA for 50.
e Quality of solutions very comparable.
e |FP proves optimality of 30 problems, OA of 38.



Enhanced Outer Approximation Algorithm

Combination of OA and FP.
Principle

e Start by performing one minute of IFP to get a good feasible solution (and OA constraints).

e Launch a classical OA decomposition but every time the NLP is infeasible launch an FP to try to obtain a feasible solution.



Enhanced Outer Approximation Algorithm

e Solve the continuous relaxation of (MINLP) :

min f(x)
g(x) <0,
x e X,
e Construct MILP with linearization in " ( ) :
min f(x)

Jo(1") (@ = 2") +9(27) <0
reX, x, € ZViel.

Solution 7' gives a lower bound on (MINLP).

e From the solution 7' build an NLP with integer variables fixed:

min f(x)
g9(z) <0,
reX, p;=2VieT

o |If feasible the solution =" gives .
e Otherwise, ' minimizes constraints infeasibility. Linearization cuts off {x € X : z =7/}

e Add to 7 and iterate.

e Until either MILP is infeasible or the lower bound is equal to the



Enhanced Outer Approximation Algorithm

Solve the continuous relaxation of (MINLP) :
min f(x)
g(x) <0,
x e X,
Perform 1 minute of IFP add all the NLP feasible points found to 7°
Construct MILP with linearization for all T € 7

min f(z)
Jg(2)(x—2)+g(r) <0 VzeT
reX, € ZViel.

Solution & gives a lower bound on (MINLP).

From the solution Z build an NLP with integer variables fixed:

min f(x)

g(x) <0,

reX, x, =3, VieT
o |f feasible the solution 7 gives upper bound .

e Otherwise, Launch an FP for at most 2 minutes and 5 iterations add all NLP feasible solution to 7

e Add 7 to 7 and iterate.
e Until either MILP is infeasible or the lower bound is equal to the upper bound .



Computational experiment with enhanced OA

On a subset of 15 hardest problems with OA from previous experiment:

OA enhanced by FP OA

time to time to time to time to
Name ub  find ub Ib  find Ib ub  find ub Ib  find Ib
CLay0304M | 40262.4 79 * 82 | 40262.4 12 * 14
ClLay0305H 8092.5 4 * 32 | 8092.5 24 * 24
CLay0305M | 8092.5 4 * 24 | 8092.5 75 * 75
fo7.2 17.74 4 * 103 17.74 20 * 128
fo7 20.72 260 * 260 20.72 24 * 197
fo8 22.38 573 * 835 22.38 727 * 906
fo9 23.46 1160 * 2613 23.46 5235 * 6024
o722 116.94 189 * 2312 | 118.86 5651 114.08 7200
o7 131.64 5 * 6055 none — 122.79 7200
SLayl0M 129580 1778 * 3421 | 129580 336 128531 7200
trimloss2 5.3 0.17 * 0.22 5.3 0.21 * 0.21
trimloss4 8.3 10 * 423 8.3 785 * 785
trimlossb 10.7 485 3.31 7200 none — 59 7200
trimloss6 16.5 2040 35 7200 none — 6.5 7200
trimloss? 27.5 387 2.6 7200 none — 3.3 7200
trimloss12 none — b.47 7200 none — 9.58 7200
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Parallel Implementation [L. Ladanyi]

e Using BCP as branch-and-cut framework,

e Prototypes of simplified I-Hyb and |-BB

Non-convex MINLPs
Trying to find heuristics to obtain good solutions in |-BB.

Stochastic programming (with M. Lejeune Tepper SoB)

Problems formulated as convex MINLPs
e Probabilistically constrained problems enforcing system /network reliability level

e Reservoir management,
e supply chain management,
e financial applications (cash-matching)

¢ Robust/Probabilistic with random technology matrix problems integer constrained
e integer constrained portfolio optimization problems.

Ongoing and future work



Links

IBM-CMU MINLP web site
http://egon.cheme.cmu.edu/ibm/page.htm

e Research reports :

e An Algorithmic Framework for convex Mixed Integer Nonlinear Programs (with IBM-CMU group),
o A Feasibility Pump for MINLP (with G. Cornujols, A. Lodi, F. Margot).

e Library of convex test problems available in Gams and Ampl .nl formats.
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