An Hybrid branch-and-cut for solving MINLPs

P. Bonami

Tepper School of Business - Carnegie Mellon University

June 6, 2006

CMU-IBM Collaboration

Goals

e Develop algorithms for MINLP.
e Implement and release as open source software (COIN-OR).

o Release publicly available MINLP test sets.

Goals

e Develop algorithms for MINLP.

e Implement and release as open source software (COIN-OR).

o Release publicly available MINLP test sets.

Participants

Carnegie Mellon

e Larry Biegler

e Pierre Bonami

Gerard Cornuéjols

Ignacio E. Grossmann
Carl D. Laird
e Francois Margot

Nick Sawaya

CMU-IBM Collaboration

|

'
|
@

e Andrew R. Conn
e Laszlo Ladanyi

e Jon Lee

Andrea Lodi

e Andreas Waechter

BONMIN

Solver for Mixed Integer Nonlinear Programming:

min f(z) e X bounded polyhedral set,
.t. .
(MINLP){ ° o fi X =R
g(x) <0, eg: X — R™,

veX, v eViel e f, g continuously differentiable,

BONMIN

Solver for Mixed Integer Nonlinear Programming:

min f(z) e X bounded polyhedral set,
.t. .
(MINLP){ ° o fi X =R
g(x) <0, eg: X — R™,

veX, v eViel e f, g continuously differentiable,

Convex MINLP
f and g convex:
Continuous relaxation "easily” solvable, three exact algorithms :

® NLP based branch-and-bound (Ravindran and Gupta 1985),
@® Outer Approximation decomposition (Duran and Grossmann 1986),
©® Hybrid LP/NLP based branch-and-cut (Quesada and Grossmann 1992).

BONMIN

Solver for Mixed Integer Nonlinear Programming:

min f(z) e X bounded polyhedral set,
.t. .
(MINLP){ ° o fi X =R
g(x) <0, eg: X — R™,

veX, v eViel e f, g continuously differentiable,

Convex MINLP
f and g convex:
Continuous relaxation "easily” solvable, three exact algorithms :
® NLP based branch-and-bound (Ravindran and Gupta 1985),
@® Outer Approximation decomposition (Duran and Grossmann 1986),
©® Hybrid LP/NLP based branch-and-cut (Quesada and Grossmann 1992).

Non-convex MINLP

f or g non-convex:

Only compute local optima of continuous relaxations.

Uses NLP based branch-and-bound as an heuristic for searching good solutions.

Outer Approximation

min f(x)

S.t.

g(x) <0,

reX, v, €ZVieTl.

(assume linear objective)

Idea: linearize constraints at different points and build an equivalent MILP:
min f(x)

Jg(,l‘/")T (.77 — ,1'/") +g(") <0
V(,l‘/") eT

reX, x, € ZVieT.

(OA4) 7 contains suitably chosen linearization points.

Outer approximation constraints

Let F:={x:2 € X :g;(x) <0}
(9i : R™ — R convex.)
Outer approximation constraint in 7:
Vg (1) (& =) + g;(1) < g;(2) <0.

(valid for F' by convexity of g; and definition of F.)

Outer approximation constraints

Let F:={x:2 € X :g;(x) <0}
(9i : R™ — R convex.)
Outer approximation constraint in 7:
Vg ()T (& =) + g;(2) < g;(2) 0.

(valid for F' by convexity of g; and definition of F.)

Outer approximation constraints

Let F:={x:2 € X :g;(x) <0}
(9i : R™ — R convex.)
Outer approximation constraint in 7:
Vg ()T (& =) + g;(1) < gj(2) < 0.

(valid for F' by convexity of g; and definition of F.)

Let F:={x:z€ X :g(x) <0}
(9i : R™ — R convex.)
Outer approximation constraint in

V()T (x — 1) 4 gj (1) < gj(z) <O0.

(valid for F' by convexity of g; and definition of F.)

e If g(z) = 0 tangent to feasible region.
e If g(Z) < 0 non-tight constraint.

e If g(Z) > 0 non-tight constraint cutting off Z.

Outer approximation constraints

pd

Let F:={x:z€ X :g(x) <0}
(9i : R™ — R convex.)
Outer approximation constraint in

V()T (x — 1) 4 gj (1) < gj(z) <O0.

(valid for F' by convexity of g; and definition of F.)

e If g(Z) = 0 tangent to feasible region.
e If g(Z) < 0 non-tight constraint.

e If g(Z) > 0 non-tight constraint cutting off Z.

Outer approximation constraints

Let F:={x:z€ X :g(x) <0}
(9i : R™ — R convex.)
Outer approximation constraint in

V()T (x — 1) 4 gj (1) < gj(z) <O0.

(valid for F' by convexity of g; and definition of F.)

e If g(Z) = 0 tangent to feasible region.
e If g(Z) < 0 non-tight constraint.

e If g(Z) > 0 non-tight constraint cutting off Z.

Outer approximation constraints

e Solve the continuous relaxation of (MINLP) :

min f(z)
g(x) <0,
r e X,

OA decomposition algorithm

€1

[Duran, Grossmann, 86]

e Solve the continuous relaxation of (MINLP) :

min f(x)
g9(x) <0,
e X,

e Construct MILP with linearization in 7" (7 = {.

min f(z)
Jo(1") (= 2") +g(z") <0
reX, x, €ZVieTL.

OA decomposition algorithm

€1

[Duran, Grossmann, 86]

e Solve the continuous relaxation of (MINLP) :

min f(x)
g9(x) <0,
e X,

e Construct MILP with linearization in 7" (7 = {&

min f(z)
Jo(1") (= 2") +g(z") <0
reX, x, €ZVieTL.

Solution 7! gives a lower bound on (MINLP).

OA decomposition algorithm

€1

[Duran, Grossmann, 86]

e Solve the continuous relaxation of (MINLP) :
min f(x)

g(z) <0,
e X,

e Construct MILP with linearization in 2" (7 = {2"}):

min f(z)
Jo(2) (z=2") +g(z") <0
reX, x, €ZVieTL.

Solution 7! gives a lower bound on (MINLP).

e From the solution 7' build an NLP with integer variables
fixed:
min f(x)
g(x) <0,
reX, y=ilViel

OA decomposition algorithm

€1

[Duran, Grossmann, 86]

e Solve the continuous relaxation of (MINLP) :

min f(x)
g9(x) <0,
e X,

e Construct MILP with linearization in 2" (7 = {2"}):

min f(z)
Jo(2") (= 2") +g(2") <0
reX, x, €ZVieTL.

Solution 7! gives a lower bound on (MINLP).

e From the solution 7' build an NLP with integer variables

fixed:
min f(x)
g9(x) <0,
reX, y=ilViel
o If feasible the solution ' gives upper bound .

o Otherwise, ©' minimizes constraints infeasibility,
linearization cuts off {r € X : 2 =]}

OA decomposition algorithm

€1

[Duran, Grossmann, 86]

e Solve the continuous relaxation of (MINLP) :

min f(x)
g9(x) <0,
e X,

e Construct MILP with linearization in 2" (7 = {2"}):

min f(z)
Jo(2") (= 2") +g(2") <0
reX, x, €ZVieTL.

Solution 7! gives a lower bound on (MINLP).

e From the solution 7' build an NLP with integer variables

fixed:
min f(x)
g9(x) <0,
reX, y=ilViel
o If feasible the solution ' gives upper bound .

o Otherwise, ©' minimizes constraints infeasibility,
linearization cuts off {r € X : 2 =]}

e Add 7' to 7

OA decomposition algorithm

€1

[Duran, Grossmann, 86]

e Solve the continuous relaxation of (MINLP) :

min f(x)
g9(x) <0,
e X,

e Construct MILP with linearization in 2" (7 = {2"}):

min f(z)
Jo(2") (= 2") +g(2") <0
reX, x, €ZVieTL.

Solution 7! gives a lower bound on (MINLP).

e From the solution 7' build an NLP with integer variables

fixed:
min f(x)
g9(x) <0,
reX, y=ilViel
o If feasible the solution ' gives upper bound .

o Otherwise, ©' minimizes constraints infeasibility,
linearization cuts off {r € X : 2 =]}

e Add ' to 7 and iterate.

OA decomposition algorithm

€1

[Duran, Grossmann, 86]

e Solve the continuous relaxation of (MINLP) :

min f(x)
g9(x) <0,
e X,

e Construct MILP with linearization in 2" (7 = {2"}):

min f(z)
Jo(2") (= 2") +g(2") <0
reX, x, €ZVieTL.

Solution 7! gives a lower bound on (MINLP).

e From the solution 7' build an NLP with integer variables

fixed:
min f(x)
g9(x) <0,
reX, y=ilViel
o If feasible the solution ' gives upper bound .

o Otherwise, ©' minimizes constraints infeasibility,
linearization cuts off {r € X : 2 =]}

e Add ' to 7 and iterate.

OA decomposition algorithm

Y

€1

[Duran, Grossmann, 86]

e Solve the continuous relaxation of (MINLP) :

min f(x)
g9(x) <0,
e X,

e Construct MILP with linearization in 2" (7 = {2"}):

min f(z)
Jo(2") (= 2") +g(2") <0
reX, x, €ZVieTL.

Solution 7! gives a lower bound on (MINLP).

e From the solution 7' build an NLP with integer variables

fixed:
min f(x)
g9(x) <0,
reX, y=ilViel
o If feasible the solution ' gives upper bound .

o Otherwise, ©' minimizes constraints infeasibility,
linearization cuts off {r € X : 2 =]}

e Add ' to 7 and iterate.

OA decomposition algorithm

Y

€1

[Duran, Grossmann, 86]

Solve the continuous relaxation of (MINLP) :

min f(x)
g9(x) <0,
e X,

Construct MILP with linearization in 7" (7 = {2"}):

min f(z)
Jo(2") (= 2") +g(2") <0
reX, x, €ZVieTL.

Solution 7! gives a lower bound on (MINLP).

From the solution &' build an NLP with integer variables

fixed:
min f(x)

g9(z) <0,
reX, y=ilViel

o If feasible the solution ' gives upper bound .
o Otherwise, ©' minimizes constraints infeasibility,
linearization cuts off {r € X : 2 =]}

Add ' to 7 and iterate.

Until either MILP is infeasible or the lower bound is equal
to the upper bound .

OA decomposition algorithm

Y

€1

[Duran, Grossmann, 86]

OA decomposition

OA decomposition properties

If constraints qualification holds at every optimum of NLP solved:
o Solve to optimality problems defined by convex constraints.
o Finite termination if z bounded.

Has to solve a sequence of MINLP's (> 95% of computing time in our experiments).
Alternative approach [Quesada, Grossmann, 92]

o Perform a single branch-and-cut.
o Alternate between solving NLPs and LPs.
o NLP solved to find feasible solutions and improve outer approximation

e Use LP to obtain lower bounds and solutions to branch on

LP/NLP branch-and-cut

e start by solving continuous relaxation to get initial outer approximation.

[Quesada, Grossmann, 92]

LP/NLP branch-and-cut

e start by solving continuous relaxation to get initial outer approximation.
e At each node of the tree search

[Quesada, Grossmann, 92]

LP/NLP branch-and-cut

e start by solving continuous relaxation to get initial outer approximation.
e At each node of the tree search
e solve linear outer approximation at current node:

min f(z, y)
(OA)R(T)§ Jo(1)T (x— 1) +9(1) <0 Vie
ze XNF.

(F is the modified feasibility set at current node)

[Quesada, Grossmann, 92]

LP/NLP branch-and-cut

e start by solving continuous relaxation to get initial outer approximation.
e At each node of the tree search
e solve linear outer approximation at current node:

min f(z, y)
(OA)R(T) { Jo(1) (z— 1) +g(1) <O Vie
re XNF.
(F is the modified feasibility set at current node)
o if (OA)p(T) is integer feasible solve NLP:
min f(z)
g(z) <0,

IGX, IZ:i‘ZVZEI

[Quesada, Grossmann, 92]

LP/NLP branch-and-cut

e start by solving continuous relaxation to get initial outer approximation.
e At each node of the tree search
e solve linear outer approximation at current node:

min f(z, y)
(OA)R(T) { Jo(1) (z— 1) +g(1) <O Vie
re XNF.
(F is the modified feasibility set at current node)
o if (OA)p(T) is integer feasible solve NLP:
min f(z)
g(z) <0,

IGX, IZ:i‘ZVZEI

e add its solution 7 to 7, and repeat while solution to (OA)r(T) is integer feasible.

[Quesada, Grossmann, 92]

LP/NLP branch-and-cut

e start by solving continuous relaxation to get initial outer approximation.
e At each node of the tree search
e solve linear outer approximation at current node:

min f(z, y)
(OA)R(T) { Jo(1) (z— 1) +g(1) <O Vie
re XNF.
(F is the modified feasibility set at current node)
o if (OA)p(T) is integer feasible solve NLP:
min f(z)
g(z) <0,

IGX, IZ:i‘ZVZEI
e add its solution 7 to 7, and repeat while solution to (OA)r(T) is integer feasible.

e Fathom nodes on bounds and infeasibility only.

[Quesada, Grossmann, 92]

Improvements to LP/NLP branch-and-bound

Disadvantages of LP/NLP branch-and-bound

o At the top of the tree outer approximation only based on continuous relaxation.
e Approximation not improved until first integer feasible solution is found.

e At that point tree may already have a large number of nodes.

Improvements
Solve more NLP's
e Initialize algorithm with a few iterations of OA decomposition.

e Helps in finding feasible solution early.
e Sometimes sufficient to solve problem.

e Solve NLP relaxation every [nodes:
o LP relaxation at node is then equal to NLP relaxation.

The Hybrid algorithm

e start by solving continuous relaxation to get initial outer approximation.

The Hybrid algorithm

e start by solving continuous relaxation to get initial outer approximation.
e At each node of the tree search

The Hybrid algorithm

e start by solving continuous relaxation to get initial outer approximation.
e At each node of the tree search

e solve linear outer approximation at current node:

min f(z,y)
(OA)F(T) § Jo(1)" (w— 1) +g(1) <0 Vie
rze XNF.

(F is the modified feasibility set at current node)

The Hybrid algorithm

e start by solving continuous relaxation to get initial outer approximation.
e At each node of the tree search

e solve linear outer approximation at current node:

min f(z, y)
(OA)F(T) § Jy(1)" (@ = 1) +9(1) <0 Vi€
re XNF.
(F is the modified feasibility set at current node)
o if (OA)p(T) is integer feasible solve NLP:
min f(x)
g(x) <0,

zeX, v, =2, VieT

The Hybrid algorithm

e start by solving continuous relaxation to get initial outer approximation.
e At each node of the tree search

e solve linear outer approximation at current node:

min f(z, y)
(OA)F(T) § Jy(1)" (@ = 1) +9(1) <0 Vi€
re XNF.
(F is the modified feasibility set at current node)
o if (OA)p(T) is integer feasible solve NLP:
min f(x)
g(x) <0,

zeX, v, =2, VieT
e add its solution = to 7, and repeat while solution to (OA)r(T) is integer feasible.

e Fathom nodes on bounds and infeasibility only.

The Hybrid algorithm

e start by performing ¢ sec. of outer approximation decomposition.
e At each node of the tree search
e Every [nodes solve NLP relaxation:

min f(z)
g9(z) <0,
re XNF.
e solve linear outer approximation at current node:
min f(z,y)
(OA)p(T)S Jy() T (x—2)+g(1) <0 VoreT
reXNF.

(F is the modified feasibility set at current node)
e Strengthen outer approximation with MILP cutting planes methods
o if (OA)p(T) is integer feasible solve NLP:

min f(x)
9(x) <0,
reX, x,=5,Viel
e add its solution = to 7, and repeat while solution to (OA)r(7) is integer feasible.

e Fathom nodes on bounds and infeasibility only.

Computer implementation

e Written in C++.
e Can be used from AMPL, or using C++ library.

e Written in C++.
e Can be used from AMPL, or using C++ library.

Building blocks
Components from COIN-OR (www.coin-or.org):

e branch-and-bound, branch-and-cut framework: CBC,

NLP solver IPOPT,

MILP solver CBC (alternatively Cplex),

LP solver CLP,

Cutting plane generation CGL (generators for OA constraints).

Computer implementation

e Written in C++.
e Can be used from AMPL, or using C++ library.

Building blocks
Components from COIN-OR (www.coin-or.org):

e branch-and-bound, branch-and-cut framework: CBC,

NLP solver IPOPT,

MILP solver CBC (alternatively Cplex),

LP solver CLP,

Availability
To be released soon under Common Public License.

Cutting plane generation CGL (generators for OA constraints).

Computer implementation

Features of BONMIN algorithm

I-BB (NLP only based branch-and-bound)

e branch-and-bound framework based on Cbc,
e nodes solved by Ipopt with enhanced warm-starting capabilities.

e Special features for non-convex problems :

e Solve each nodes with several randomly chosen starting points,
e change fathoming policies (don't trust "bounds”).

Features of BONMIN algorithm

I-BB (NLP only based branch-and-bound)

e branch-and-bound framework based on Cbc,

e nodes solved by Ipopt with enhanced warm-starting capabilities.
e Special features for non-convex problems :

e Solve each nodes with several randomly chosen starting points,
e change fathoming policies (don't trust "bounds”).

I-OA
Standard OA decomposition
e Implemented as a cut generator to be used in other algorithms.

e Uses either Cbc or Cplex for solving the MILPs.

I-BB (NLP only based branch-and-bound)

e branch-and-bound framework based on Cbc,

e nodes solved by Ipopt with enhanced warm-starting capabilities.

e Special features for non-convex problems :

e Solve each nodes with several randomly chosen starting points,
e change fathoming policies (don't trust "bounds”).

I-OA
Standard OA decomposition
e Implemented as a cut generator to be used in other algorithms.

e Uses either Cbc or Cplex for solving the MILPs.

I-QG

Quessada-Grossmann branch-and-cut.

Features of BONMIN algorithm

I-BB (NLP only based branch-and-bound)

e branch-and-bound framework based on Cbc,

e nodes solved by Ipopt with enhanced warm-starting capabilities.

e Special features for non-convex problems :

e Solve each nodes with several randomly chosen starting points,
e change fathoming policies (don't trust "bounds”).

I-OA
Standard OA decomposition
e Implemented as a cut generator to be used in other algorithms.

e Uses either Cbc or Cplex for solving the MILPs.

I-QG

Quessada-Grossmann branch-and-cut.

I-Hyb (Hybrid)

Quesada-Grossmann improved with:
e Initialization with a short time of I — OA.
e Solve NLP's every [nodes.

e Incorporation of MILP techniques:

e Cgl cut generators,
e Strong branching, Reliability branching

Features of BONMIN algorithm

Test problems and computational testing

A Library of convex MINLPs

About 150 MINLP's from different sources
e Existing problems from the literature : layout and trimloss problems (T. Westerlund et al.)
e Water network problems (C.D. Laird)
e Disjunctive problems formulated both with big-M and convex-hull formulation (N. Sawaya)

available in GAMS .gms and AMPL .nl formats at:
http://egon.cheme.cmu.edu/ibm/page.htm

Computational experiments
Comparisons on 38 problems from the library:
@ Comparison of I-BB, I-OA, I-QG and I-Hyb,
® Comparison of I-BB I-OA and I-Hyb with two commercial solvers:

e SBB: Nonlinear branch-and-bound based on CONOPT.
e DICOPT: OA decomposition based on CONOPT /CPLEX.

Settings for I-Hyb

e Perform 30 seconds of I-OA at the root node.

e Solve NLP relaxation every 10 nodes.

e Strong branching on LP relaxation and pseudo-costs.
e Uses MIG, MIR and Covers.

Proportion of problem solved

0.9

0.8

0.7

Comparison of I-BB, I-OA, I-QG, I-Hyb

I-Hyp ——

-BB ——
I-OA ——

10 100
not more than p times worst than best solver

1000

Runs on an Optetron cluster.
Time limit of 3 hours.

Performance plot

For each value of p and algorithm A
gives the proportion of problem solved
by A in

p X Tmin seconds.

(Where Tiin is the running time of
the best algorithm.)

e For p = 1: proportion of
problems where A is the fastest
algorithm

e For p = oco: proportion of
problems solved by A in time
limit.

Proportion of problems solved

0.9

0.8

BONMIN's I-BB, I-0A, I-Hyb, Dicopt and Sbb

e Dicopt solves 20 of the 38
problems the fastest (< 3

minutes)
v v T T e |-Hyb solves the most problem
Dicopt when given 45 more seconds of
s88 —— 1 computing time than Dicopt

Comparison of our
7 ’_’_%—:] branch-and-bound and Sbb
I . .
e I-BB is slightly slower but
compares well with Sbb (on
average 760 sec. vs 615 sec. on

l problems solved optimally by
. both)

e Number of nodes are comparable

e I-BB is slightly faster per node
- on our test set.

Comparison of I-OA with Dicopt

10 100 1000 10000 e |-OA is significantly slower than
Tau (log scaled) Dicopt.

e Takes less iterations but MILPs

are much slower to solve (uses
Cbc vs. Cplex).

A Feasibility Pump for MINLP

Goal: Obtaining (good) feasible solutions quickly
How: Do an OA decomposition oriented towards integer feasibility.

A Feasibility Pump for MINLP

Goal: Obtaining (good) feasible solutions quickly
How: Do an OA decomposition oriented towards integer feasibility.

FEAsIBILITY PuMP FOR MILP [FISCHETTI, GLOVER, LODI 2004]
Ax <b
e

Construct two sequences of points:

e 1, ..., 1" satisfying Az < b, by solving LPs.

e i, ..., ¥ satisfying x € Z™ by rounding.

A Feasibility Pump for MINLP

Goal: Obtaining (good) feasible solutions quickly
How: Do an OA decomposition oriented towards integer feasibility.

FEAsIBILITY PuMP FOR MILP [FISCHETTI, GLOVER, LODI 2004]

Ax <b
xeZ"
Construct two sequences of points:
o 1l ..., 1" satisfying Az < b, by solving LPs.
o i ..., 2" satisfying 2 € Z" by rounding.

FEASIBILITY PUMP FOR MINLP [wiTH CORNUEJOLS, LODI, MARGOT]

g(x,y) <0,
(x,y) € X, x € Z.
Construct two sequences of points:

/‘,

o (' yh), ..., (2" ") satisfying Az < b, by solving LPs.

o (21, 9Y),..., (2", ¢") satisfying € Z™ by solving an MILP.

A Feasibility Pump for MINLP

Goal: Obtaining (good) feasible solutions quickly
How: Do an OA decomposition oriented towards integer feasibility.

FEAsIBILITY PuMP FOR MILP [FISCHETTI, GLOVER, LODI 2004]

Ax <b
xeZ"
Construct two sequences of points:
e 1, ..., 1" satisfying Az < b, by solving LPs.
e i, ..., ¥ satisfying x € Z™ by rounding.

FEASIBILITY PUMP FOR MINLP [wiTH CORNUEJOLS, LODI, MARGOT]

g(x,y) <0,
(x,y) € X, x € Z.
Construct two sequences of points:

o e satisfying Ax < b, by solving LPs.
o (21, 9Y),..., (2", ¢") satisfying € Z™ by solving an MILP.

e Build an outer approximation of feasibility region.

MINLP Feasibility Pump

e Start with any solution of continuous relaxation (", /).

Y

MINLP Feasibility Pump

e Start with any solution of continuous relaxation (", 7/").
o T=(",7).

e Find point minimizing ||z — 2"||1 in current outer
approximation:

min ||z — 2]

(FoAyd 90T I)T <(§> - (;/f)) <0

xeZ, yeR™

MINLP Feasibility Pump

e Start with any solution of continuous relaxation (", 7/").
o T=(",7).

e Find point minimizing ||z — 2"||1 in current outer
approximation:

min ||z — 2]

(FoAyd 90T I)T <(§> - (;/f)) <0

xeZ, yeR™

e If FOA! s infeasible or solution (#',7') satisfies
g(2', ") <0 stop.

e Otherwise, find NLP feasible point minimizing ||z — jcle:

min ||z — Z'||2
(FP— NLP)'{ g(a,y) <0,
(x,y) € X.

MINLP Feasibility Pump

Start with any solution of continuous relaxation (7", 7").
T =("9").

Find point minimizing ||x — 2"||; in current outer
approximation:

min ||z — 2]

(FoAyd 90T I)T <(§> - (;/f)) <0

xeZ, yeR™

If FOA! is infeasible or solution (!, 7') satisfies
g(&', ") <0 stop.
Otherwise, find NLP feasible point minimizing ||z — jcle:

min ||z — Z'||2
(FP—NLP)!{ g(z,y) <0,
(x,y) € X.

Update outer approximation of the problem with (7', /')
and iterate.

MINLP Feasibility Pump

Start with any solution of continuous relaxation (", 7).

T ="9").
Repeat:
ii=i+1

Find point minimizing ||z — 2'!||1 in current outer
approximation:

min ||z — 2|

—k
] —k —k —k —k\ \T ry (T
k=0...,i—1
x €Z™, yeR™

If FOA" is infeasible or solution (i’,7") satisfies
g9(#",9") < 0 stop.
Otherwise, find NLP feasible point minimizing ||z — &*||2:

min ||z — 7| |2
(FP—NLP)'q g(z,y) <0,
(z,y) € X.

Update outer approximation of the problem with (%, ")
and iterate.

MINLP Feasibility Pump

Start with any solution of continuous relaxation (", 7).

T ="9").
Repeat:
ii=i+1

Find point minimizing ||z — 2'!||1 in current outer
approximation:

min ||z — 2|

—k
] —k —k —k —k\ \T ry (T
k=0...,i—1
x €Z™, yeR™

If FOA" is infeasible or solution (i’,7") satisfies
g9(#",9") < 0 stop.
Otherwise, find NLP feasible point minimizing ||z — &*||2:

min ||z — 7| |2
(FP—NLP)'q g(z,y) <0,
(z,y) € X.

Update outer approximation of the problem with (%, ")
and iterate.

MINLP Feasibility Pump

Start with any solution of continuous relaxation (", 7).

T =0,
Repeat:
ii=i+1

Find point minimizing ||z — 2'!||1 in current outer
approximation:

min ||z — 2|

—k
] —k —k —k —k\ \T ry (T
k=0...,i—1
x €Z™, yeR™

If FOA" is infeasible or solution (i’,7") satisfies
g9(#",9") < 0 stop.
Otherwise, find NLP feasible point minimizing ||z — &*||2:

min ||z — 7| |2
(FP—NLP)'q g(z,y) <0,
(z,y) € X.

Update outer approximation of the problem with (%, ")
and iterate.

Properties of MINLP Feasibility Pump

Termination
FP can not cycle (if z is bounded: finite termination):

e If all functions g; are convex and constraint qualification holds at every NLP optimum.

e If constraint qualification does not hold at every NLP add cut:
(7' — i)z -z >0

e If functions g; are not convex but the region {g(x,y) < 0} is add only binding OA constraints at z°.
e MILPs don't have to be solved to optimality.

lterated feasibility pump (IFP)
After a feasible solution of cost & = f(Z,y) has been found.
Add the constraint
flz,y) <a—e

to problem formulation and relaunch FP.

Computational testing of FP

Implementation

e Implemented as a stand-alone heuristic.
e |popt3.0 for solving the NLPs.
e Cplex9.0 for solving MILPs.

Test problems
65 convex MINLPs

e 12 from literature

e 43 from our library

Comparison with classical OA

e First feasible solution obtained by FP and OA.
e Best feasible solution obtained by IFP and OA after 1 minute.

Computational results

First feasible solution
Time limit 2 hours.

e Quality of solution obtained by OA better than the one obtained by FP.
e FP much faster than OA (4 problems take more than 10 sec. with FP, 21 with OA)
e FP finds a feasible solution to all 65 problems, OA does not for 5 problems.

e trimloss6-7-12 no feasible solution known before.

1 minute of IFP vs. OA

e |FP finds solution for 63 problems, OA for 50.
e Quality of solutions very comparable.
e |FP proves optimality of 30 problems, OA of 38.

Enhanced Outer Approximation Algorithm

Combination of OA and FP.
Principle

e Start by performing one minute of IFP to get a good feasible solution (and OA constraints).

e Launch a classical OA decomposition but every time the NLP is infeasible launch an FP to try to obtain a feasible solution.

Enhanced Outer Approximation Algorithm

e Solve the continuous relaxation of (MINLP) :

min f(x)
g(x) <0,
x e X,
e Construct MILP with linearization in " () :
min f(x)

Jo(1") (@ = 2") +9(27) <0
reX, x, € ZViel.

Solution 7' gives a lower bound on (MINLP).

e From the solution 7' build an NLP with integer variables fixed:

min f(x)
g9(z) <0,
reX, p;=2VieT

o |If feasible the solution =" gives .
e Otherwise, ' minimizes constraints infeasibility. Linearization cuts off {x € X : z =7/}

e Add to 7 and iterate.

e Until either MILP is infeasible or the lower bound is equal to the

Enhanced Outer Approximation Algorithm

Solve the continuous relaxation of (MINLP) :
min f(x)
g(x) <0,
x e X,
Perform 1 minute of IFP add all the NLP feasible points found to 7°
Construct MILP with linearization for all T € 7

min f(z)
Jg(2)(x—2)+g(r) <0 VzeT
reX, € ZViel.

Solution & gives a lower bound on (MINLP).

From the solution Z build an NLP with integer variables fixed:

min f(x)

g(x) <0,

reX, x, =3, VieT
o |f feasible the solution 7 gives upper bound .

e Otherwise, Launch an FP for at most 2 minutes and 5 iterations add all NLP feasible solution to 7

e Add 7 to 7 and iterate.
e Until either MILP is infeasible or the lower bound is equal to the upper bound .

Computational experiment with enhanced OA

On a subset of 15 hardest problems with OA from previous experiment:

OA enhanced by FP OA

time to time to time to time to
Name ub find ub Ib find Ib ub find ub Ib find Ib
CLay0304M | 40262.4 79 * 82 | 40262.4 12 * 14
ClLay0305H 8092.5 4 * 32 | 8092.5 24 * 24
CLay0305M | 8092.5 4 * 24 | 8092.5 75 * 75
fo7.2 17.74 4 * 103 17.74 20 * 128
fo7 20.72 260 * 260 20.72 24 * 197
fo8 22.38 573 * 835 22.38 727 * 906
fo9 23.46 1160 * 2613 23.46 5235 * 6024
o722 116.94 189 * 2312 | 118.86 5651 114.08 7200
o7 131.64 5 * 6055 none — 122.79 7200
SLayl0M 129580 1778 * 3421 | 129580 336 128531 7200
trimloss2 5.3 0.17 * 0.22 5.3 0.21 * 0.21
trimloss4 8.3 10 * 423 8.3 785 * 785
trimlossb 10.7 485 3.31 7200 none — 59 7200
trimloss6 16.5 2040 35 7200 none — 6.5 7200
trimloss? 27.5 387 2.6 7200 none — 3.3 7200
trimloss12 none — b.47 7200 none — 9.58 7200

Computational experiment with enhanced OA

On a subset of 15 hardest problems with OA from previous experiment:

OA enhanced by FP OA

time to time to time to time to
Name ub find ub Ib find Ib ub find ub Ib find Ib
CLay0304M | 40262.4 79 * 82 | 40262.4 12 * 14
ClLay0305H 8092.5 4 * 32 | 8092.5 24 * 24
CLay0305M | 8092.5 4 * 24 | 8092.5 75 * 75
fo7.2 17.74 4 * 103 17.74 20 * 128
fo7 20.72 260 * 260 20.72 24 * 197
fo8 22.38 573 * 835 22.38 727 * 906
fo9 23.46 1160 * 2613 23.46 5235 * 6024
072 116.94 189 * 2312 | 118.86 5651 114.08 7200
o7 131.64 5 * 6055 none — 122.79 7200
SLayl0M 129580 1778 * 3421 | 129580 336 128531 7200
trimloss2 5.3 0.17 * 0.22 5.3 0.21 * 0.21
trimloss4 8.3 10 * 423 8.3 785 * 785
trimlossb 10.7 485 3.31 7200 none — 59 7200
trimloss6 16.5 2040 35 7200 none — 6.5 7200
trimloss? 27.5 387 2.6 7200 none — 3.3 7200
trimloss12 none — b.47 7200 none — 9.58 7200

Computational experiment with enhanced OA

On a subset of 15 hardest problems with OA from previous experiment:

OA enhanced by FP OA

time to time to time to time to
Name ub find ub Ib find Ib ub find ub Ib find Ib
CLay0304M | 40262.4 79 * 82 | 40262.4 12 * 14
ClLay0305H 8092.5 4 * 32 | 8092.5 24 * 24
CLay0305M | 8092.5 4 * 24 | 8092.5 75 * 75
fo7.2 17.74 4 * 103 17.74 20 * 128
fo7 20.72 260 * 260 20.72 24 * 197
fo8 22.38 573 * 835 22.38 727 * 906
fo9 23.46 1160 * 2613 23.46 5235 * 6024
072 116.94 189 * 2312 | 118.86 5651 114.08 7200
o7 131.64 5 * 6055 none — 122.79 7200
SLayl0M 129580 1778 * 3421 | 129580 336 128531 7200
trimloss2 5.3 0.17 * 0.22 5.3 0.21 * 0.21
trimloss4 8.3 10 * 423 8.3 785 * 785
trimlossb 10.7 485 3.31 7200 none — 59 7200
trimloss6 16.5 2040 35 7200 none — 6.5 7200
trimloss? 27.5 387 2.6 7200 none — 3.3 7200
trimloss12 none — b.47 7200 none — 9.58 7200

Computational experiment with enhanced OA

On a subset of 15 hardest problems with OA from previous experiment:

OA enhanced by FP OA

time to time to time to time to
Name ub find ub Ib find Ib ub find ub Ib find Ib
CLay0304M | 40262.4 79 * 82 | 40262.4 12 * 14
ClLay0305H 8092.5 4 * 32 | 8092.5 24 * 24
CLay0305M | 8092.5 4 * 24 | 8092.5 75 * 75
fo7.2 17.74 4 * 103 17.74 20 * 128
fo7 20.72 260 * 260 20.72 24 * 197
fo8 22.38 573 * 835 22.38 727 * 906
fo9 23.46 1160 * 2613 23.46 5235 * 6024
o722 116.94 189 * 2312 | 118.86 5651 114.08 7200
o7 131.64 5 * 6055 none — 122.79 7200
SLayl0M 129580 1778 * 3421 | 129580 336 128531 7200
trimloss2 5.3 0.17 * 0.22 5.3 0.21 * 0.21
trimloss4 8.3 10 * 423 8.3 785 * 785
trimlossb 10.7 485 3.31 7200 none — 59 7200
trimloss6 16.5 2040 35 7200 none — 6.5 7200
trimloss? 27.5 387 2.6 7200 none — 3.3 7200
trimloss12 none — b.47 7200 none — 9.58 7200

Computational experiment with enhanced OA

On a subset of 15 hardest problems with OA from previous experiment:

OA enhanced by FP OA

time to time to time to time to
Name ub find ub Ib find Ib ub find ub Ib find Ib
CLay0304M | 40262.4 79 * 82 | 40262.4 12 * 14
ClLay0305H 8092.5 4 * 32 | 8092.5 24 * 24
CLay0305M | 8092.5 4 * 24 | 8092.5 75 * 75
fo7.2 17.74 4 * 103 17.74 20 * 128
fo7 20.72 260 * 260 20.72 24 * 197
fo8 22.38 573 * 835 22.38 727 * 906
fo9 23.46 1160 * 2613 23.46 5235 * 6024
o722 116.94 189 * 2312 | 118.86 5651 114.08 7200
o7 131.64 5 * 6055 none — 122.79 7200
SLayl0M 129580 1778 * 3421 | 129580 336 128531 7200
trimloss2 5.3 0.17 * 0.22 5.3 0.21 * 0.21
trimloss4 8.3 10 * 423 8.3 785 * 785
trimlossb 10.7 485 3.31 7200 none — 59 7200
trimloss6 16.5 2040 35 7200 none — 6.5 7200
trimloss? 27.5 387 2.6 7200 none — 3.3 7200
trimloss12 none — 5.47 7200 none — 9.58 7200

Computational experiment with enhanced OA

On a subset of 15 hardest problems with OA from previous experiment:

OA enhanced by FP OA

time to time to time to time to
Name ub find ub Ib find Ib ub find ub Ib find Ib
CLay0304M | 40262.4 79 * 82 | 40262.4 12 * 14
ClLay0305H 8092.5 4 * 32 | 8092.5 24 * 24
CLay0305M | 8092.5 4 * 24 | 8092.5 75 * 75
fo7.2 17.74 4 * 103 17.74 20 * 128
fo7 20.72 260 * 260 20.72 24 * 197
fo8 22.38 573 * 835 22.38 727 * 906
fo9 23.46 1160 * 2613 23.46 5235 * 6024
o722 116.94 189 * 2312 | 118.86 5651 114.08 7200
o7 131.64 5 * 6055 none — 122.79 7200
SLayl0M 129580 1778 * 3421 | 129580 336 128531 7200
trimloss2 5.3 0.17 * 0.22 5.3 0.21 * 0.21
trimloss4 8.3 10 * 423 8.3 785 * 785
trimlossb 10.7 485 3.31 7200 none — 59 7200
trimloss6 16.5 2040 35 7200 none — 6.5 7200
trimloss? 27.5 387 2.6 7200 none — 3.3 7200
trimloss12 none — 5.47 7200 none — 9.58 7200

Parallel Implementation [L. Ladanyi]

e Using BCP as branch-and-cut framework,

e Prototypes of simplified I-Hyb and |-BB

Non-convex MINLPs
Trying to find heuristics to obtain good solutions in |-BB.

Stochastic programming (with M. Lejeune Tepper SoB)

Problems formulated as convex MINLPs
e Probabilistically constrained problems enforcing system /network reliability level

e Reservoir management,
e supply chain management,
e financial applications (cash-matching)

¢ Robust/Probabilistic with random technology matrix problems integer constrained
e integer constrained portfolio optimization problems.

Ongoing and future work

Links

IBM-CMU MINLP web site
http://egon.cheme.cmu.edu/ibm/page.htm

e Research reports :

e An Algorithmic Framework for convex Mixed Integer Nonlinear Programs (with IBM-CMU group),
o A Feasibility Pump for MINLP (with G. Cornujols, A. Lodi, F. Margot).

e Library of convex test problems available in Gams and Ampl .nl formats.

	
	CMU-IBM Collaboration
	Outer approximation based algorithms
	Conclusions

