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Introduction:

I The problem:
Given:

I PI = min{cx : Ax = b;Cx ≤ d ; l ≤ x ≤ u; xi ∈ Z for i ∈ I}
I x∗: an optimal solution to the LP relaxation of PI

I A set Π = {π1, . . . , πK} cuts valid for PI and violated by x∗.

Choose a small “good” subset of cuts to add to the LP
relaxation.

I Objective of this work:
I Formalize what a “good” subset of cuts means and what are

the issues involved.
I Extend the rules used in practice.
I Quantify how good/bad are the rules.



Literature review:
I Padberg and Rinaldi (1991) give a motivation for the problem:

"In our estimation, finding a reasonable quality measure (for a cut)

is one of the central issues in the area of polyhedral cutting-plane

algorithms that is - as of today - not yet investigated satisfactorily."

I Padberg and Rinaldi (1991): Cuts for the TSP should be
evaluated in the affine subspace of degree constraints.

I Juenger, Reinelt and Thienel (1994) mention the problem but
do not attempt to study it.

I Balas, Ceria and Cornuejols (1996):

I The objective function is not necessarily the “ideal” that we
should aim for when evaluating a cut:
Zero gap problems or infeasible problems.

I Steepness is good for full dimensional polytopes, but are also a
reliable guide even when not full-dimensional.

I Scaling problem with violation can be resolved by normalizing.

I Andreello, Caprara and Fischetti (2003):

I Variations of steepness (unspecified) were unsuccesful.
I Consider angles to make cuts more diverse



Issues

I Need a criteria for evaluating cut selection rules

I Which set of cuts improves most the objective function?
I Which set of cuts reduces most the solution time?

We choose the first since it is less tied to a specific solver and
parameter setting.
We evaluate cuts only in a first round of cut addition to avoid
the “curse of the tableau”.

I Need to estimate how the set of cuts will perform after being
added.
Choices:

I Compute an estimate V1(πi ) for each i . Choose k cuts with
best V1(πi )

I Choose the set {π1, . . . , πk} that maximizes an estimate
Vk(π1, . . . , πk)

We focus on the first for simplicity.



How can we estimate performance?

Let:
Pi := current LP relaxation

Pi+1 = Pi ∩ Hπ = Pi ∩ {x : πx ≤ πo}
Let x∗

i
be the optimal solution to min{cx : x ∈ Pi}.

I Idea: Compute or approximate:
I vol(Pi \ Pi+1)
I |cx∗

i+1 − cx∗
i
|

I dist(x∗
i
,Pi+1)

I Common rules:
I Violation: V1(π) = πx∗ − πo

NOT INVARIANT UNDER SCALING
I Steepness (distance from x∗ to Hπ = {x : πx ≤ πo}):

V1(π) =
πx∗ − πo

||π||
NOT INVARIANT UNDER ADDITION OF EQUALITIES



Rotated steepness

If we wish to take into account a system of equalities (Padberg
and Rinaldi (1991)), we would need to calculate:

dist(x∗,Hπ ∩ {x : Ax = b})

For this, “rotate” π, obtaining π̂ such that:

Aπ̂ = 0 and π̂ = (π + A
Tλ)

Note that:

A(π + A
Tλ) = 0⇒ λ = −(AA

T )−1
Aπ

Measuring the steepess of π̂ we obtain:

πx∗ − πo

||π − AT (AAT )−1Aπ||



TSP case:

I Matrix A defined by degree constraints

(AA
t)−1 =
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I Then, for e, f ∈ E , let k = |e ∩ f |. We have:

(At(AA
t)−1

A)ef = kα(n) + (4− k)β(n)

I The main point: Fast and easy to compute rotated steepness

I Probably also happens in other problems with known structure



Other alternative to steepness

Steepness = dist(x∗,Hπ)
Alternative = dist(x∗,Hπ ∩ {x : l ≤ x ≤ u})
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Steepness with bounds: A simple Algorithm

Define P = {x ∈ R
n : πx ≤ πo}:

1. Let x̂ be the minimizer of ||x − x∗|| over P.

2. If l ≤ x̂ ≤ u, then STOP.

3. If x̂i > ui , then P ← P ∩ {xi = ui}.
4. If x̂i < li , then P ← P ∩ {xi = li}.
5. GOTO step 1.

I Provably correct

I Worst case n iterations (there exists an example that achieves
it)

I In practice we didn’t observe more than 1 iteration



What is the best we can hope for?

I If we are looking at the distance from x∗
i
to Pi+1, the

benchmark we should test against is:

V1(π) = dist(x∗i ,Pi+1 = Pi ∩ Hπ)

which we computed using CPLEX.

I If we are looking at costs, the best we can hope for when
looking at costs for single rows is:

V1(π) = min{cx : x ∈ Pi+1}

I We can approximate this by only allowing few pivots (for our
tests, we used 10 pivots).



Results - Benchmarked against adding 100% of the cuts
Average over TSPLIB problems. Cuts used were MOD-2 cuts.

Cuts Cut selection rule (results in % of total possible improvement )
(%) viol steep steepwb rsteep distpoly primal primalpivot
10 7.29 37.28 37.02 37.77 36.03 67.39 67.22
20 11.61 60.77 60.94 61.75 60.18 80.4 80.28
30 18.75 75.89 75.49 76.42 75.86 87.07 86.72
40 24.87 82.97 83.1 83.62 83.81 90.73 90.51
50 29.95 88.36 88.37 88.83 93.19 92.98 92.83
60 39.41 92.62 92.76 92.82 95.85 95.69 95.57
70 53.05 95.32 95.41 95.21 97.76 97.44 97.5
80 67.25 97.77 97.83 97.65 98.63 98.96 98.95
90 84.55 99.01 98.98 99.01 99.28 99.4 99.39

Average over MIPLIB problems. Cuts used were t-MIR cuts. (*) is incomplete
Cuts Cut selection rule (results in % of total possible improvement )
(%) viol steep steepwb rsteep(*) distpoly primal primalpivot
10 23.3 58.44 59.3 51.5 64.67 80.78 80.53
20 37.26 77.2 76.08 77.73 78.45 89.2 88.1
30 50.64 88.52 88.69 88.49 85.87 93.72 91.14
40 58.04 91.97 91.76 91.85 90.07 96.43 94.15
50 73.09 93.87 93.17 94.75 92.2 97.18 95.65
60 82.52 95.01 95.49 96.91 94.43 97.85 97.73
70 88.47 97.54 96.0 98.91 97.35 98.82 98.72
80 93.19 99.36 99.52 99.4 99.78 99.44 99.5
90 99.56 99.73 99.95 100.0 99.95 99.84 99.79

Note: On average 8.4% of cuts are “good” (i.e. have nonzero dual

variables when adding all cuts). Any rule above needs at least 87% of the

cuts to cover all the “good” cuts.



Final Remarks:
What we did:

I Review of the problem through different perspectives

I What important points should we be aware of?

I Extensions of common rules

Conclusions:

I The rules based on distance seem to have a similar
performance.

I Rules based on cost do better.

Next questions:

I Study rules for evaluating sets of cuts

I Do tests for other classes of cuts besides MIR and Mod-2?

I Effectiveness of rules to evaluate cuts from one class against
cuts from a different one (e.g.: Combs vs. MIR’s)?

I Try to efficiently approximate cost improvement.

I Consider volume as a performance estimate
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