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OUTLINE OF THE PRESENTATION
À Basis reduction
Á Column Basis Reduction (CBR)

• CBR in Range Space
• CBR in Null Space
• CBR with rhs reduction

Â Branching on a constraint
Ã Decomposible knapsack problems
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WHAT IS COLUMN BASIS REDUCTION?
Given integral matrix A, compute unimodular U s.t.
Ü columns of AU have small Euclidean norm
Ü and nearly orthogonal (angle between any column and the

linear space spanned by other columns is ≥ 60 degrees)

Methods are:

• LLL-reduction by Lenstra, Lenstra and Lovasz

• Korkhine-Zolotarev (KZ) reduction

A=




289 18

466 29

273 17


 , U =


 1 −15

−16 241


 , AU =




1 3

2 −1

1 2



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THE OUTLINE OF LLL-BR METHOD

Given matrix B ∈ R
mxn with m independent columns,

L(B) = {Bv|v ∈ Z
n} Basically, set of all integral combinations

of the columns of B.

• Finding shortest vector in L is believed to be NP-complete.

• LLL latice basis reduction is approximation algorithm in
polynomial time

The Algorithm:

1. Find Gram-Schmidt basis of columns of B. Let them be
b∗1, .., b

∗

m.

b∗1 = b1, b∗k = bk −
∑k−1

j=1
µkjb

∗

j , µkj =
bk.b∗j
b∗

j
.b∗

j
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The Algorithm: Cont.

2. b1, b2, ..bm is reduced if |µkj | ≤ 1/2 for 1 ≤ j < k ≤ m and

b∗k.b∗k ≥ (α− µ2
kk−1)b

∗

k−1.b
∗

k−1 (**)

for 1 < k ≤ m and 1/4 < α ≤ 1

We say that bk is size-reduced if |µkj | ≤ 1/2 for 1 < j ≤ k

3 Let bk ← bk − dµkk−1cbk−1.
If (**) holds, size-reduce bk completely, do
bk ← bk − dµkjcbj for j = k − 2, ..1, increment k

4 Otherwise swap bk and bk−1, decrement k.
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COLUMN BASIS REDUCTION (CBR)
CBR in the Range Space:

• Change

(IP )b′ ≤ Ax ≤ b

x ∈ Z
n

• to

(ĨP )b′ ≤ AUy ≤ b

y ∈ Z

• The relation between x and y is Uy = x, y = U−1x
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Example: The infeasible problem,

106 ≤ 21x1 + 19x2 ≤ 113

0 ≤ x1, x2 ≤ 6

x1, x2 ∈ Z

• Branching on either variable will create at least 5 feasible
nodes.

Apply CBR:

106 ≤ −2y1 + 7y2 ≤ 113

0 ≤ −y1 − 6y2 ≤ 6

0 ≤ y1 + 7y2 ≤ 6

y1, y2 ∈ Z

• Branching on either variable y1 would create 4 feasible
branches, but brancing on y2 immediately proves infeasibility.
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CBR in the Null Space: Let A1x = b1 be a system of equalities
in b′ ≤ Ax ≤ b.

• compute an integral matrix B1 and and integral vector x0

such that {x ∈ Z
n|A1x = b1} = {B1λ + x0|λ ∈ Z

n−m1}

• A1x0 = b1 and A1B1 = 0.

• B1 and x0 computed with Hermite Normal Form
computation.

• Substitute B1λ + x0 for x in original problem and apply
CBR in range space.
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CBR in the Null Space:

• Change

Ax = b

l ≤ x ≤ u

x ∈ Z
n

• to

l ≤ B1λ + x0 ≤ u

λ ∈ Z
n−m1

• And apply CBR in Range Space.
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CBR with Right Hand Side Reduction:

• On several instances RHS reduction gives better
reformulations. Write IP as

Dx ≤ f

x ∈ Z
n

• Reformulate as

(DU)y ≤ f −Dxr

y ∈ Z
n

• xr is calculated (with Babai’s algorithm) s. t. Dxr is an
approximation to a closest vector to f in the L(D).
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BRANCHING ON A CONSTRAINT

Given P and integral vector c, the width of P in the direction
of c is

Ü width(c, P ) = max{cx|x ∈ P} − min{cx|x ∈ P}

Ü Branching on cx means creating
cx = dmine, cx = dmine + 1, .., cx = bmaxc branches

Ü If [min, max] does not contain any integer then P is infeasible
Ü If c is unit vector then it is regular x branching.
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Example

106 ≤ 21x1 + 19x2 ≤ 113

0 ≤ x1, x2 ≤ 6

x1, x2 ∈ Z

• Branching on x1 + x2 will immediately prove the problem
is infeasible, since min = 5.04 and max = 5.94.
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T+1-LEVEL DECOMPOSIBLE KNAPSACK PROBLEM

Assume

1. Given matrix P ∈ Z
txn, row vectors a, r ∈ Z

n, a column
vector u ∈ Z

n
++. u might have components equal to +∞.

and pi represent a row of P .

2. Given a row vector M ∈ Z
t
++ with M1 > M2 > .. > Mt

3. a = MP + r

Definition: The feasibility problem

β′ ≤ ax ≤ β

0 ≤ x ≤ u

x ∈ Z
n

is called t+1-level decomposible knapsack problem.
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2-LEVEL DECOMPOSIBLE KNAPSACK PROBLEM

β′ ≤ ax ≤ β

0 ≤ x ≤ u

x ∈ Z
n

where
Ü a = pM + r with p ∈ Z

n

+, r ∈ Z
n; M large

Ü β, β′ are chosen, so the instance is LP-feasible.
Ü IP-infeasibility can be proven by branching px

Ü The previous example is 2-level decomposible knapsack
problem with p = (1, 1), r = (1,−1), u = (6, 6), M = 20,
a = pM + r = (21, 19)

Ü Remember, branching on px = x1 + x2 proves infeasibility at root
node
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REFORMULATION WITH CBR IN RANGE SPACE

Calculate U such that

A=


a

I


 =


pM + r

I


U is reduced.

Theorem1: If M is sufficiently large then

pU = (0, 0, .., α) for some α ∈ Z\{0}

Corrollary: Uy = x⇒ pUy = px⇒ αyn = px

⇒ branching on yn proves infeasibility.
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Sufficiently large means

• If LLL (Lenstra,Lenstra,Lovasz) reduction is used,
M > 2n+1 ‖ p ‖‖ r ‖2.

• If KZ (Korkhine-Zolotarev) reduction is used,
M >

√
n ‖ p ‖‖ r ‖2.

Strength of the BR algorithm is represented by cn.
cn(LLL) = 2n+1 and cn(KZ) =

√
n.

If cn is smaller, the columns are more reduced.
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CBR IN T+1-LEVEL KNAPSACK PROBLEMS

Let A=

0
@a

I

1
A =

0
@MP + r

I

1
A, eP = PU and epi for the rows of eP .

Theorem2: There exists functions f1, f2, ..ft with:

(1) Given s ∈ Z
t with 1 ≤ st ≤ ... ≤ s1 ≤ n− t

If
Mi > fi(Mi+1, .., Mt, si, P, r, cn) (i = 1, .., t) (*)

then
p̃i,1:si

= 0 (i = 1, .., t)

(2) There is M with
size(M) = poly(size(P ), size(r), size(cn), n)

that satisfies (*).
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What Theorem 2 says:

• If M1 is sufficiently large compared to M2, ..Mt, then p1M1

contributes the most to the length of a.

• If M2 is sufficiently large compared to M3, ..Mt, then p2M2

contributes the second most to the length of a and so on.

• To reduce the length of the columns of A, zero out many
components of p1, fewer components of p2 and so on.

• Let n = 10, t = 4, s1 = 6, s2 = s3 = 5, s4 = 4, the matrix P̃ :
0
BBBBB@

0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 ∗ ∗ ∗ ∗ ∗

0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗

1
CCCCCA
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BRANCHING IN CBR AND B &B
Since p̃iy = pix (i = 1, .., t)

Ü Branching on yn, ..ys1+1 in CBR in Range space has the same
effect as branching on p1x in original problem.

Ü Branching on ys1+1, .., ys2
in CBR in Range space has the same

effect as branching on p2x in original problem.

Thus, CBR
Ü takes the unkown dominant branching combinations
Ü transforms them into individual variables s.t. yn has more

significance than yn−1
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Example:

• An instance of 3-level knapsack problem with
n = 11,t = 2, u = e, M1 = 220, M2 = 11, β = 5661, β′ = 5660

• p1 = (2, 3, 5, 7, 8, 8, 9, 10, 10, 11, 11),
p2 = (7, 6, 5, 3, 3, 6, 4, 2, 6, 4, 7),
r = (3,−1, 1, 1, 1, 3,−1,−1, 1, 1,−1)

• 5660 ≤ 520x1 + 725x2 + 1156x3 + 1574x4 + 1794x5 + 1829x6 +

2023x7 + 2221x8 + 2267x9 + 2465x10 + 2496x11 ≤ 5661

xi ∈ {0, 1}
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Example: Cont.
Ü It is reasonably hard with pure B&B on xi variables. Few

hundred nodes to prove infeasibility
Ü Branching on p1x is very useful. 24.30 ≤ p1x ≤ 25.34

Ü Then, branching on p2x proves infeasibility, since
14.02 ≤ p2x ≤ 14.93

Ü After CBR, branch on y11 = 25 that results 24.30 ≤ y2 ≤ 25.34,
then branching on y10 proves infeasibility since
14.02 ≤ y10 ≤ 14.93
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COMPUTATIONAL RESULTS

If maximization (or minimization) problem:

max cx

b′ ≤ Ax ≤ b

x ∈ Z
n

Apply CBR to


 c

A




The CBR is successful in the following problems:

• Subset sum problems

• Strongly correlated knapsack problems

• The market share problems
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