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OUTLINE OF THE PRESENTATION

@ Basis reduction
@ Column Basis Reduction (CBR)

e CBRin Range Space

e CBR in Null Space
e CBR with rhs reduction

® Branching on a constraint
@ Decomposible knapsack problems
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WHAT IS COLUMN BASIS REDUCTION?

Given integral matrix A, compute unimodular U s.t.

=> columns of AU have small Euclidean norm

=» and nearly orthogonal (angle between any column and the
linear space spanned by other columns is > 60 degrees)

Methods are:
e LLL-reduction by Lenstra, Lenstra and Lovasz

e Korkhine-Zolotarev (KZ) reduction
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THE OUTLINE OF LLL-BR METHOD

Given matrix B € R™*" with m independent columns,
L(B) = {Bv|v € Z"™} Basically, set of all integral combinations
of the columns of B.

e Finding shortest vectorin L is believed to be NP-complete.

e LLL lafice basis reduction is approximation algorithm in
polynomial fime

The Algorithm:
1. Find Gram-Schmidt basis of columns of B. Let them be
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The Algorithm: Cont.

2. by,ba,..by, isreduced if |ug;| <1/2for1 <j <k <mand
by, -by, > (a — Mik—1)b2—1'b2—1 "

forl<k<mandl/i<a<1
We say that by is size-reduced if |ug,| <1/2forl1 < j <k

3 Let b < by, — [,ukk_ljbk_l.
If (**) holds, size-reduce b, completely, do
br < br — [px; |bj for j =k —2,..1, increment k

4 Otherwise swap b, and b, _;, decrement k.

THE OUTLINE OF LLL-BR METHOD



COLUMN BASIS REDUCTION (CBR)
CBR in the Range Space:
e Change

e TO

e The relation betweenxandyisUy =z, y =U "'z

COLUMN BASIS REDUCTION (CBR)



Example: The infeasible problem,

106 < 21x1 + 1925 < 113
0< 21,79 <6
r1,To € 7L

e Branching on either variable will create at least 5 feasible
nodes.

Apply CBR:
106 < —2y; + Tys < 113
0< -y —6y2 <6
0<wy1+7y2 <6
Y1, Y2 < 7

e Branching on either variable y1 would creatfe 4 feasible
branches, but brancing on y2 immediately proves infeasibility.

COLUMN BASIS REDUCTION (CBR)



CBR in the Null Space: Let A;x = b; be a system of equalifies
Ny < Ax <b.

e Ccompute an infegral matrix B; and and infegral vector x
such that {z € Z"|A1x = b} = {B1)\ + 2|\ € Z"~™}

o Aixg = b and A;B; = 0.

e By and zy computed with Hermite Normal Form
computation.

e Substitute B1 A + x( for x in original problem and apply
CBR in range space.

COLUMN BASIS REDUCTION (CBR)



CBR in the Null Space:

e Change
Az =D
[ <z <u
r € 7"
e TO

| < BiA+x9 <u
Aezt™

e And apply CBR in Range Space.

COLUMN BASIS REDUCTION (CBR)



CBR with Right Hand Side Reduction:

e On several instances RHS reduction gives better
reformulatfions. Write IP as

Dx < f
r € 7"

e Reformulate as

y € 7"

e 1, IS calculated (with Babai’s algorithm) s. t. Dz, is an
approximation fo a closest vector o f in the L(D).

COLUMN BASIS REDUCTION (CBR)



BRANCHING ON A CONSTRAINT

Given P and integral vector ¢, the width of P in the direction
of Ccis

= width(c, P) = mazx{cx|r € P} — min{cx|x € P}
=» Branching on cx means creafing
cr = [min],cx = [min] + 1,..,cx = |max] branches
=» If [min, maz] does not contain any integer then P is infeasible
=>» If cis unif vector then it is regular x bbranching.

BRANCHING ON A CONSTRAINT
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Example

106 < 21z + 1925 < 113
0<xz,22 <6
r1,To € L

e Branching on x1 + z2 will immediately prove the problem
Is infeasible, since min = 5.04 and max = 5.94.

BRANCHING ON A CONSTRAINT
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T+1-LEVEL DECOMPOSIBLE KNAPSACK PROBLEM

Assume

1. Given matrix P € Z'*™, row vectors a,r € Z™, a column
vector u € Z% . u might have components equal to +oo.
and p; represent a row of P.

2. Given arow vector M € Z' | with M; > My > .. > M,
3. a=MP+r
Definition: The feasibility problem

B < ax<p
0 < z<u

M
N
3

X

is called t+1-level decomposible knapsack problem.
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2-LEVEL DECOMPOSIBLE KNAPSACK PROBLEM

o R
IA A
A

<IN
@

where
= a=pM +rwithpeZi, reZ" Mlarge

= 3,3’ are chosen, so the instance is LP-feasible.

=» |P-infeasibility can be proven by branching px

=» The previous example is 2-level decomposible knapsack
problem withp = (1,1),r = (1,-1), u = (6,6), M = 20,
a=pM +r=(21,19)

=» Remember, branching on px = x1 + x2 proves infeasibility at root

node

2-LEVEL DECOMPOSIBLE KNAPSACK PROBLEM
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REFORMULATION WITH CBR IN RANGE SPACE

Calculate U such that

M
A= (j) = (p +T)U is reduced.
1

Theoreml: If M is sufficiently large then

pU = (0,0, .., a) forsome « € Z\{0}

Corrollary: Uy = x = pUy = px = ay, = px

= branching on y,, proves infeasibility.

REFORMULATION WITH CBR IN RANGE SPACE
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Sufficiently large means

e If LLL (Lenstra,Lenstra,Lovasz) reduction is used,
M > 2" [ p ||| r .

o |If KZ (Korkhine-Zolotarev) reduction is used,
M > /np|llrI?

Strength of the BR algorithm is represented by ¢,,.
co(LLL) = 2"t and ¢, (K Z) = /n.
If ¢,, IS smaller, the columns are more reduced.

REFORMULATION WITH CBR IN RANGE SPACE
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CBR IN T+1-LEVEL KNAPSACK PROBLEMS

a MP+7r\| =~ _ ~
Let A= ( ) = ( ),PPU and p; for the rows of P.
1 1

Theorem2: There exists functions f1, fs, .. f: with:

(1) GivenseZtwithl1 <s; <..<s<n-—t
If

M; > fi(Mi11,.., My, 8, Pyrycyn) (1 =1,..,t) ()
then
Piis;, =0(=1,.,1)
(2) There is M with
size(M) = poly(size(P), size(r), size(cy),n)
that satisfies (%).

CBR IN T+ 1-LEVEL KNAPSACK PROBLEMS
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What Theorem 2 says:

If M is sufficiently large compared to M, ..M;, then p; M;
confributes the most tfo the length of a.

If M, is sufficiently large compared to Ms, ..M;, then po My

contributes the second most to the length of « and so on.

To reduce the length of the columns of A, zero out many
components of p;, fewer components of p, and so on.

Lletn =10,t =4, s; =6, s = s3 = 5, s, = 4, The matrix P:
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BRANCHING IN CBR AND B &B

Since p,y=pix (1 =1,..,1)

=» Branching on y., ..ys,+1 iN CBR in Range space has the same
effect as branching on p;z in original problem.

=» Branching on ys, +1, -, ¥ys, IN CBR iIn Range space has the same
effect as branching on p.x In original problem.

Thus, CBR
=» fakes the unkown dominant branching combinations

= transforms them into individual variables s.1. y,, has more
significance than y,,—1

BRANCHING IN CBR AND B &B
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Example:

e An instance of 3-level knapsack problem with
n=11t=2u=-e, M; =220, My =11, 8 = 5661, 3 = 5660

e p1 =(2,3,5,7,8,8,9,10,10,11,11),
P2 = (77675737376747276747 7)'
r= (37 _17 17 17 1737 _17 _17 17 17 _1)

e 5060 < 520x1 + 72529 + 115623 + 1574x4 + 179425 + 182924 +
2023x7 + 2221xg + 226719 + 24652109 + 2496211 < 5661
T; € {0, 1}
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Example: Cont.
=» It is reasonably hard with pure B&B on x; variables. Few
hundred nodes to prove infeasibility
=» Branching on pix is very useful. 24.30 < p1x < 25.34

=» Then, branching on psx proves infeasibility, since
14.02 < poz < 14.93

=» After CBR, branch on y1; = 25 that results 24.30 < yo < 25.34,

then branching on gy, proves infeasibility since

BRANCHING IN CBR AND B &B
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COMPUTATIONAL RESULTS

If maximization (or minimization) problem:

maxr cx
b < Ax <b
x € 7"

Apply CBR to (Z)

The CBR is successful in the following problems:
e Subset sum problems
e Strongly correlated knapsack problems

e The market share problems

COMPUTATIONAL RESULTS
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