Column Basis Reduction and Decomposible Knapsack Problems

by B.Krishnamoorthy and G. Pataki

presented by
Zeliha Akca
Lehigh University
zea2@lehigh.edu

Outline of the Presentation

(1) Basis reduction
(2) Column Basis Reduction (CBR)

- CBR in Range Space
- CBR in Null Space
- CBR with rhs reduction
(3) Branching on a constraint
(4) Decomposible knapsack problems

What is Column Basis Reduction?

Given integral matrix A, compute unimodular U s.t.
\rightarrow columns of AU have small Euclidean norm
\rightarrow and nearly orthogonal (angle between any column and the linear space spanned by other columns is ≥ 60 degrees)

Methods are:

- LLL-reduction by Lenstra, Lenstra and Lovasz
- Korkhine-Zolotarev (KZ) reduction

$$
\mathrm{A}=\left(\begin{array}{ll}
289 & 18 \\
466 & 29 \\
273 & 17
\end{array}\right), U=\left(\begin{array}{cc}
1 & -15 \\
-16 & 241
\end{array}\right), A U=\left(\begin{array}{cc}
1 & 3 \\
2 & -1 \\
1 & 2
\end{array}\right)
$$

The Outline of LLL-BR Method

Given matrix $B \in \mathbb{R}^{m x n}$ with m independent columns, $\mathbb{L}(B)=\left\{B v \mid v \in \mathbb{Z}^{n}\right\}$ Basically, set of all integral combinations of the columns of B.

- Finding shortest vector in L is believed to be NP-complete.
- LLL latice basis reduction is approximation algorithm in polynomial time

The Algorithm:

1. Find Gram-Schmidt basis of columns of B. Let them be $b_{1}^{*}, . ., b_{m}^{*}$.

$$
b_{1}^{*}=b_{1}, b_{k}^{*}=b_{k}-\sum_{j=1}^{k-1} \mu_{k j} b_{j}^{*}, \mu_{k j}=\frac{b_{k} \cdot b_{j}^{*}}{b_{j}^{*} \cdot b_{j}^{*}}
$$

The Algorithm: Cont.
2. $b_{1}, b_{2}, . . b_{m}$ is reduced if $\left|\mu_{k j}\right| \leq 1 / 2$ for $1 \leq j<k \leq m$ and

$$
\left.b_{k}^{*} \cdot b_{k}^{*} \geq\left(\alpha-\mu_{k k-1}^{2}\right) b_{k-1}^{*} \cdot b_{k-1}^{*} \quad{ }^{* *}\right)
$$

for $1<k \leq m$ and $1 / 4<\alpha \leq 1$
We say that b_{k} is size-reduced if $\left|\mu_{k j}\right| \leq 1 / 2$ for $1<j \leq k$
3 Let $b_{k} \leftarrow b_{k}-\left\lceil\mu_{k k-1}\right\rfloor b_{k-1}$.
If (**) holds, size-reduce b_{k} completely, do $b_{k} \leftarrow b_{k}-\left\lceil\mu_{k j}\right\rfloor b_{j}$ for $j=k-2, . .1$, increment k

4 Otherwise swap b_{k} and b_{k-1}, decrement k.

Column Basis Reduction (CBR)

CBR in the Range Space:

- Change

$$
\begin{aligned}
(I P) b^{\prime} & \leq A x \leq b \\
x & \in \mathbb{Z}^{n}
\end{aligned}
$$

- †o

$$
\begin{aligned}
(\widetilde{I P}) b^{\prime} & \leq A U y \leq b \\
y & \in \mathbb{Z}
\end{aligned}
$$

- The relation between x and y is $U y=x, y=U^{-1} x$

Example: The infeasible problem,

$$
\begin{array}{r}
106 \leq 21 x_{1}+19 x_{2} \leq 113 \\
0 \leq x_{1}, x_{2} \leq 6 \\
x_{1}, x_{2} \in \mathbb{Z}
\end{array}
$$

- Branching on either variable will create at least 5 feasible nodes.

Apply CBR:

$$
\begin{array}{r}
106 \leq-2 y_{1}+7 y_{2} \leq 113 \\
0 \leq-y_{1}-6 y_{2} \leq 6 \\
0 \leq y_{1}+7 y_{2} \leq 6 \\
y_{1}, y_{2}
\end{array} \in \mathbb{Z} \text { }
$$

- Branching on either variable yl would create 4 feasible branches, but brancing on y2 immediately proves infeasibility.

CBR in the Null Space: Let $A_{1} x=b_{1}$ be a system of equalities in $b^{\prime} \leq A x \leq b$.

- compute an integral matrix B_{1} and and integral vector x_{0} such that $\left\{x \in \mathbb{Z}^{n} \mid A_{1} x=b_{1}\right\}=\left\{B_{1} \lambda+x_{0} \mid \lambda \in \mathbb{Z}^{n-m_{1}}\right\}$
- $A_{1} x_{0}=b_{1}$ and $A_{1} B_{1}=0$.
- B_{1} and x_{0} computed with Hermite Normal Form computation.
- Substitute $B_{1} \lambda+x_{0}$ for x in original problem and apply CBR in range space.

CBR in the Null Space:

- Change

$$
\begin{aligned}
& A x=b \\
& l \leq x \leq u \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

- to

$$
\begin{array}{r}
l \leq B_{1} \lambda+x_{0} \leq u \\
\lambda \in \mathbb{Z}^{n-m_{1}}
\end{array}
$$

- And apply CBR in Range Space.

CBR with Right Hand Side Reduction:

- On several instances RHS reduction gives better reformulations. Write IP as

$$
\begin{aligned}
D x & \leq f \\
x & \in \mathbb{Z}^{n}
\end{aligned}
$$

- Reformulate as

$$
\begin{aligned}
(D U) y & \leq f-D x_{r} \\
y & \in \mathbb{Z}^{n}
\end{aligned}
$$

- x_{r} is calculated (with Babai's algorithm) s. t. $D x_{r}$ is an approximation to a closest vector to f in the $\mathbb{L}(D)$.

Branching On a Constraint

Given P and integral vector c, the width of P in the direction of c is
$\rightarrow \operatorname{width}(c, P)=\max \{c x \mid x \in P\}-\min \{c x \mid x \in P\}$
\rightarrow Branching on $c x$ means creating $c x=\lceil\min \rceil, c x=\lceil\min \rceil+1, . ., c x=\lfloor\max \rfloor$ branches
\rightarrow If $[\min , \max]$ does not contain any integer then P is infeasible
\rightarrow If c is unit vector then it is regular x branching.

Example

$$
\begin{array}{r}
106 \leq 21 x_{1}+19 x_{2} \leq 113 \\
0 \leq x_{1}, x_{2} \leq 6 \\
x_{1}, x_{2} \in \mathbb{Z}
\end{array}
$$

- Branching on $x 1+x 2$ will immediately prove the problem is infeasible, since $\min =5.04$ and $\max =5.94$.

T+1-leVel Decomposible Knapsack Problem

Assume

1. Given matrix $P \in \mathbb{Z}^{t x n}$, row vectors $a, r \in \mathbb{Z}^{n}$, a column vector $u \in \mathbb{Z}_{++}^{n} . u$ might have components equal to $+\infty$. and p_{i} represent a row of P.
2. Given a row vector $M \in \mathbb{Z}_{++}^{t}$ with $M_{1}>M_{2}>. .>M_{t}$
3. $a=M P+r$

Definition: The feasibility problem

$$
\begin{aligned}
\beta^{\prime} & \leq a x \leq \beta \\
0 & \leq x \leq u \\
x & \in \mathbb{Z}^{n}
\end{aligned}
$$

is called $\dagger+1$-level decomposible knapsack problem.

2-level Decomposible Knapsack Problem

$$
\begin{aligned}
\beta^{\prime} & \leq a x \leq \beta \\
0 & \leq x \leq u \\
x & \in \mathbb{Z}^{n}
\end{aligned}
$$

where
$\rightarrow a=p M+r$ with $p \in \mathbb{Z}_{+}^{n}, r \in \mathbb{Z}^{n} ; \mathrm{M}$ large
$\rightarrow \beta, \beta^{\prime}$ are chosen, so the instance is LP-feasible.
\rightarrow IP-infeasibility can be proven by branching $p x$
\rightarrow The previous example is 2-level decomposible knapsack problem with $p=(1,1), r=(1,-1), u=(6,6), M=20$, $a=p M+r=(21,19)$
\rightarrow Remember, branching on $p x=x_{1}+x_{2}$ proves infeasibility at root node

Reformulation with CBR in Range Space

Calculate U such that

$$
\mathrm{A}=\binom{a}{I}=\binom{p M+r}{I} \mathrm{U} \text { is reduced. }
$$

Theorem I: If M is sufficiently large then

$$
p U=(0,0, . ., \alpha) \text { for some } \alpha \in \mathbb{Z} \backslash\{0\}
$$

Corrollary: $U y=x \Rightarrow p U y=p x \Rightarrow \alpha y_{n}=p x$
\Rightarrow branching on y_{n} proves infeasibility.

Sufficiently large means

- If LLL (Lenstra,Lenstra,Lovasz) reduction is used,

$$
M>2^{n+1}\|p\|\|r\|^{2}
$$

- If KZ (Korkhine-Zolotarev) reduction is used, $M>\sqrt{n}\|p\|\|r\|^{2}$.

Strength of the BR algorithm is represented by c_{n}.
$c_{n}(L L L)=2^{n+1}$ and $c_{n}(K Z)=\sqrt{n}$.
If c_{n} is smaller, the columns are more reduced.

CBR in T+1-Level Knapsack Problems

Let $\mathrm{A}=\binom{a}{I}=\binom{M P+r}{I}, \widetilde{P}=P U$ and $\widetilde{p_{i}}$ for the rows of \widetilde{P}.

Theorem2: There exists functions $f_{1}, f_{2}, . . f_{t}$ with:
(1) Given $s \in \mathbb{Z}^{t}$ with $1 \leq s_{t} \leq \ldots \leq s_{1} \leq n-t$ If

$$
M_{i}>f_{i}\left(M_{i+1}, . ., M_{t}, s_{i}, P, r, c_{n}\right)(i=1, . ., t)\left(^{*}\right)
$$

then

$$
\widetilde{p}_{i, 1: s_{i}}=0(i=1, . ., t)
$$

(2) There is M with

$$
\operatorname{size}(M)=\operatorname{poly}\left(\operatorname{size}(P), \operatorname{size}(r), \operatorname{size}\left(c_{n}\right), n\right)
$$

that satisfies (${ }^{*}$).

What Theorem 2 says:

- If M_{1} is sufficiently large compared to $M_{2}, . . M_{t}$, then $p_{1} M_{1}$ contributes the most to the length of a.
- If M_{2} is sufficiently large compared to $M_{3}, . . M_{t}$, then $p_{2} M_{2}$ contributes the second most to the length of a and so on.
- To reduce the length of the columns of A, zero out many components of p_{1}, fewer components of p_{2} and so on.
- Let $n=10, t=4, s_{1}=6, s_{2}=s_{3}=5, s_{4}=4$, the matrix \widetilde{P} :

$$
\left(\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & * & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & * & * & * & * & * \\
0 & 0 & 0 & 0 & * & * & * & * & * & *
\end{array}\right)
$$

Branching in CBR and B \&B

Since $\widetilde{p_{i}} y=p_{i} x(i=1, . ., t)$
\rightarrow Branching on $y_{n}, . . y_{s_{1}+1}$ in CBR in Range space has the same effect as branching on $p_{1} x$ in original problem.
\rightarrow Branching on $y_{s_{1}+1}, . ., y_{s_{2}}$ in CBR in Range space has the same effect as branching on $p_{2} x$ in original problem.

Thus, CBR

\rightarrow takes the unkown dominant branching combinations
\rightarrow transforms them into individual variables s.t. y_{n} has more significance than y_{n-1}

Example:

- An instance of 3-level knapsack problem with

$$
n=11, t=2, u=e, M_{1}=220, M_{2}=11, \beta=5661, \beta^{\prime}=5660
$$

- $p_{1}=(2,3,5,7,8,8,9,10,10,11,11)$,

$$
\begin{aligned}
& p_{2}=(7,6,5,3,3,6,4,2,6,4,7) \\
& r=(3,-1,1,1,1,3,-1,-1,1,1,-1)
\end{aligned}
$$

- $5660 \leq 520 x_{1}+725 x_{2}+1156 x_{3}+1574 x_{4}+1794 x_{5}+1829 x_{6}+$

$$
\begin{gathered}
2023 x_{7}+2221 x_{8}+2267 x_{9}+2465 x_{10}+2496 x_{11} \leq 5661 \\
x_{i} \in\{0,1\}
\end{gathered}
$$

Example: Cont.

\rightarrow It is reasonably hard with pure $\mathrm{B} \& \mathrm{~B}$ on x_{i} variables. Few hundred nodes to prove infeasibility
\rightarrow Branching on $p_{1} x$ is very useful. $24.30 \leq p_{1} x \leq 25.34$
\rightarrow Then, branching on $p_{2} x$ proves infeasibility, since $14.02 \leq p_{2} x \leq 14.93$
\rightarrow After CBR, branch on $y_{11}=25$ that results $24.30 \leq y_{2} \leq 25.34$, then branching on y_{10} proves infeasibility since $14.02 \leq y_{10} \leq 14.93$

Computational Results

If maximization (or minimization) problem:

$$
\begin{aligned}
\max c x & \\
& b^{\prime} \\
& \leq A x \leq b \\
x & \in \mathbb{Z}^{n}
\end{aligned}
$$

Apply CBR to $\binom{c}{A}$
The CBR is successful in the following problems:

- Subset sum problems
- Strongly correlated knapsack problems
- The market share problems

