Using Split Disjunctions to Improve the Formulation of MILP

Jerry Shen and Wasu Glankwamdee

References

• K. Andersen, Using split disjunctions to improve the formulation of a mixed integer linear program.

Introduction

- $\min\{c^T x : Ax \ge b, x \ge 0 \text{ and } x_j \text{ integer for } j \in N_I\}.$
- $c \in \mathbb{R}^n, b \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n} \text{ and } N_I \subseteq N := \{1, \dots, n\}.$
- The set P denotes the feasible solution to LP.
- The set P_I denotes the feasible solution to MILP.

Introduction

- Problem formulation (matrix A and vector b) is crucial for solving MILP.
- Solvers cannot expect users to provide a "good" formulation.
- Why not try to replace (A, b) with better formulation (A', b')?
- The idea is try to replace a constraint with a valid inequality that strictly dominates it.
- The advantage is number of constraints is not changed.

Good Formulation

- $\alpha^T x \geq \beta$ dominates $a_i^T x \geq b_i$, if replacing $a_i^T x \geq b_i$ with $\alpha^T x \geq \beta$ gives tighter LP relaxation, $R \subseteq P$.
- Replace $a_i^T x \ge b_i$, where $i \in M$ with a valid inequality for P_I that dominates it on P.
- $\alpha^T x \ge \beta$ strictly dominates if $\alpha^T y' < \beta$ for some $y' \in P$.
- Consider relaxations of P_I derived from split disjunctions.

Disjunctive Constraints

- MILP can be formulated as LP in which the feasible solution have to satisfy a set of disjunction (Balas).
- A set $S = S^1 \cup S^2$ with $S^i \subseteq \mathbb{R}^n_+$ is a disjunction (union) of the two sets S^1 and S^2 .
- If $\sum_{j=1}^{n} \pi_{j}^{1} x_{j} \leq \pi_{0}^{1}$ is valid for S^{1} and $\sum_{j=1}^{n} \pi_{j}^{2} x_{j} \leq \pi_{0}^{2}$ is valid for S^{2} , then $\sum_{j=1}^{n} \min(\pi_{j}^{1}, \pi_{j}^{2}) x_{j} \leq \max(\pi_{0}^{1}, \pi_{0}^{2})$ is valid for S.

Disjunctive Procedure

- Disjunctive procedure is a systematic way to generate valid inequalities for $S = x \in \mathbb{Z}_+^n : Ax \leq b$.
- Given $\delta \in \mathbb{Z}^1_+$, if
- $\diamond \sum_{j=1}^n \pi_j x_j \alpha(x_k \delta) \leq \pi_0$ is valid for S for some $\alpha \geq 0$ and
- $\diamond \sum_{j=1}^n \pi_j x_j \le \pi_0$ is valid for S.

Example

- $P = \{x \in \mathbb{R}^2_+ : -x_1 + x_2 \le \frac{1}{2}, \frac{1}{2}x_1 + x_2 \le \frac{5}{4}, x_1 \le 2\}.$
- The first two inequalities can be written as

$$\diamond \ -\frac{1}{4}x_1 + x_2 - \frac{3}{4}x_1 \le \frac{1}{2}$$

$$\diamond -\frac{1}{4}x_1 + x_2 + \frac{3}{4}(x_1 - 1) \le \frac{1}{2}$$

- Using the disjunction $x_1 \leq 0$ or $x_1 \geq 1$.
- The valid inequality is $-\frac{1}{4}x_1 + x_2 \leq \frac{1}{2}$ for $S = P \cup Z^2$.

Split Disjunction $D(\pi, \pi_0)$

- $\pi^T x \leq \pi_0 \vee \pi^T x \geq \pi_0 + 1$, where $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$ and $\pi_j = 0$ for $\forall j \notin N_I$.
- $D(\pi, \pi_0)$ splits the polyhedron in two parts (Picture),
- $P_1^{(\pi,\pi_0)} = \{ x \in P : \pi^T x \le \pi_0 \}$
- $P_2^{(\pi,\pi_0)} = \{ x \in P : \pi^T x \ge \pi_0 + 1 \}$

Split Disjunction $D(\pi, \pi_0)$

- Any feasible solutions to MILP have to satisfy every split disjunction.
- Split disjunctions are used to generate cutting planes that cut off points of P violating $D(\pi, \pi_0)$.

Split Cut and Split Closure

- A split cut is a valid inequality for $Conv(P_1^{(\pi,\pi_0)} \cup P_2^{(\pi,\pi_0)})$.
- A split closure is the set of points in P that satisfy all split cuts.
- The split closure is a polyhedron (Cook, Kannan and Shrijver).

Recall

- $\min\{c^T x : Ax \ge b, x \ge 0 \text{ and } x_j \text{ integer for } j \in N_I\}$ (MILP)
- $\min\{c^T x : Ax \ge b, x \ge 0\}$ (LP)
- $\diamond c \in \mathbb{R}^n, b \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n},$
- $M := \{1, ..., m\} \text{ and } N_I \subseteq N := \{1, ..., n\}.$
- \diamond The set P_I denotes the feasible solution to MILP.
- \diamond The set P denotes the feasible solution to LP.
- $D(\pi, \pi_0)$ is a splits disjunction.
- $P_1^{(\pi,\pi_0)} = \{ x \in P : \pi^T x \le \pi_0 \}$
- $P_2^{(\pi,\pi_0)} = \{x \in P : \pi^T x \ge \pi_0 + 1\}$

Sequential Strengthening

- ★ Sequential: Improve the coefficient of one variable in a given constraint.
- Let
- $\diamond a_i^T x \geq b_i$ be an arbitrary constraint, where $i \in M$;
- \diamond x_k be an arbitrary variable, where $k \in N$;
- Aim: Find minimum δ such that $\sum_{j \in N \setminus \{k\}} a_{i,j} x_j + \delta x_k \geq b_i$ is valid for $R^{(\pi,\pi_0)} := Conv(P_1^{(\pi,\pi_0)} \cup P_2^{(\pi,\pi_0)})$.

Example

- $P = \{x \in \mathbb{R}^2_+ : x_1 x_2 \ge -\frac{1}{2}, -\frac{1}{2}x_1 x_2 \ge \frac{5}{4}, -x_1 \ge -2\}.$
- Using the splits disjunction D(1,0,0) that is $x_1 \leq 0$ or $x_1 \geq 1$.
- (Picture)
- Find minimum δ such that $\delta x_1 x_2 \ge -\frac{1}{2}$ is valid for $R^{(1,0,0)}$.

How to find δ ?

- Find minimum δ^1 such that $\sum_{j \in N \setminus \{k\}} a_{i,j} x_j + \delta x_k \ge b_i$ is valid for $P_1^{(\pi,\pi_0)}$.
- Find minimum δ^2 such that $\sum_{j \in N \setminus \{k\}} a_{i,j} x_j + \delta x_k \ge b_i$ is valid for $P_2^{(\pi,\pi_0)}$.
- If one or both of δ^1 and δ^2 are found, then by disjunctive argument of Balas (Disjunctive Programming. Annals of Discrete Mathematics, 5:3-51, 1979), $\delta = \max(\delta^1, \delta^2)$

How to find δ^1 ?

• Solve $(LP_1(i,k))$

$$\max \quad \lambda b_i - \sum_{j \in N \setminus \{k\}} a_{i,j} x_j$$
s.t.
$$Ax \ge \lambda b$$

$$x_k = 1,$$

$$\lambda \ge 0,$$

$$x \ge 0,$$

$$\pi^T x \le \lambda \pi_0.$$

• Find the optimal objective value δ^1 valid for $P_1^{(\pi,\pi_0)}$

How to find δ^2 ?

• Solve $(LP_2(i,k))$

$$\max \quad \lambda b_i - \sum_{j \in N \setminus \{k\}} a_{i,j} x_j$$
s.t.
$$Ax \ge \lambda b$$

$$x_k = 1,$$

$$\lambda \ge 0,$$

$$x \ge 0,$$

$$x \ge 0,$$

$$\pi^T x \ge \lambda (\pi_0 + 1).$$

• Find the optimal objective value δ^2 valid for $P_2^{(\pi,\pi_0)}$

Sequential Strengthening (Cont.)

- If both $(LP_1(i,k))$ and $(LP_2(i,k))$ are infeasible, then $x_k = 0$ for all $x \in R^{(\pi,\pi_0)}$.
- Otherwise the inequality $\sum_{j \in N \setminus \{k\}} a_{i,j} x_j + \hat{\delta} x_k \ge b_i$ is valid for $R^{(\pi,\pi_0)}$, where $\hat{\delta} = \max(\delta^1, \delta^2) \le a_{i,k}$

Do we need to solve $LP_1(i,k)$ and $LP_2(i,k)$ every time?

- Let LP'(i,k) denote the linear program obtained from $LP_1(i,k)$ ($LP_2(i,k)$) by deleting the disjunction constraint.
- Lemma: Let \hat{x} be an optimal basic feasible solution to LP, and let (x^b, λ^b) be an arbitrary basic feasible solution to $LP_1(i, k)$
 - 1. If $\hat{x}_k > 0$ then $(\hat{y}, \hat{\lambda}) := (\frac{\hat{x}}{\hat{x}_k}, \frac{1}{\hat{x}_k})$ is a basic feasible solution to LP'(i, k).
 - 2. If $\hat{x}_k > 0$ and $a_i^T \hat{x} = b_i$, then $(\hat{y}, \hat{\lambda})$ is an optimal solution to LP'(i, k).
 - 3. If $a_q^T x^b = \lambda^b b_q$ where $q \in M$, then (x^b, λ^b) is an optimal solution to $LP_1(q, k)$.

Do we need to solve $LP_1(i,k)$ and $LP_2(i,k)$ every time?

- (1) and (2) indicate we can solve LP, find optimal basis to LP'(i,k), then add disjunction constraint to re-optimize to get optimal solution to $LP_1(i,k)$ and $LP_2(i,k)$.
- (3) indicates any basic feasible solution to $LP_1(i, k)$ might be an optimal solution to $LP_1(q, k)$, where $q \in M$.

Experiment and Conclusion

- Compare two cutting plane (Mixed Interger Gomory cuts) algorithms, with and without strengthening.
- ♦ After 20 rounds of adding cutting-planes, call branch-and-bound algorithm to solve the problem.
- ♦ Use CPLEX 8.0. Test problem from MIPLIB 3.0
- ★ Strengthening helps in closing the gap on the MILP problems.
- ★ Number of branch-and-bound nodes are reduced.
- * Seems only improving the solution time on difficult problems.