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Outline of Talk

• Preliminaries

• The WCN Algorithm

• Variants

– Interactive algorithm
– Approximation algorithm

• Enhancements

– Avoiding weakly dominated solutions
– Improving efficiency

• Examples and Applications

– Parametric Programming
– Network Routing

• Computational Results
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Biobjective Mixed-integer Programs

A biobjective or bicriterion mixed-integer program (BMIP) is an optimization
problem of the form

vmax f(x)
subject to x ∈ X,

where

• f : Rn → R2 is the (bicriteria) objective function, and

• X ⊂ Zp × Rn−p is the feasible region, usually defined to be

{x ∈ Zp × Rn−p | gi(x) ≤ 0, i = 1, . . . , m}

for functions gi : Rn → R, i = 1, . . . , m.

The vmax operator indicates that the goal is to generate the set of efficient
solutions (defined next).
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Some Definitions

• We define the set of outcomes to be Y = f(X) ⊂ R2.

• In outcome space, BMIP can be restated as

vmax y
subject to y ∈ f(X),

• For convenience, we will work primarily in outcome space.

• x1 ∈ X dominates x2 ∈ X if fi(x1) ≤ fi(x2) for i = 1, 2 and at least
one inequality is strict.

• If both inequalities are strict the dominance is strong (otherwise weak).

• Any x ∈ X not dominated by another member of X is said to be
efficient.

• If x ∈ X is efficient, then y = f(x) is a Pareto outcome.

• Our goal is to generate the set of all Pareto outcomes.
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More Definitions

• We will denote the set of efficient solutions by XE.

• The set of Pareto outcomes is then YE = f(XE).

• We assume that |YE| is finite.

• If x ∈ XE strongly dominates all members of X \XE, then x is said to
be strongly efficient.

• Likewise, if x ∈ XE is strongly efficient, then y = f(x) is strongly Pareto.

• If all members of YE are strongly Pareto, then YE is said to be uniformly
dominant.

• The assumption of uniform dominance simplifies computation
substantially, but is not satisfied in most practical settings.
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Illustrating Pareto Outcomes
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Algorithms for Generating Pareto Outcomes

• A number of algorithms for generating Pareto outcomes have been
proposed.

• These can be categorized in several ways:

– By output: complete enumeration, partial enumeration, or heuristic
enumeration of YE.

– By user interaction: Interactive or non-interactive.
– By methodology: branch and bound, dynamic programming, implicit

enumeration, weighted sums, weighted norms, probing.

• We present an algorithm

– that can either partially or completely enumerate the Pareto set,
– has both interactive and non-interactive variants,
– is based on a modified branch and bound algorithm.
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Probing Algorithms

• We will focus on probing algorithms that scalarize the objective, i.e.,
replace it with a single criterion.

• Such algorithms reduce solution of a BMIP to a series of MIPs.

• The main factor in the running time is then the number of probes.

• The most obvious scalarization is the weighted sum objective.

• We replace the original objective with

max
y∈f(X)

βy1 + (1− β)y2

to obtain a parameterized family of MIPs.
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Supported Outcomes

• Optimal solutions to weighted sum MIPs are extreme points of conv(YE).

• Such outcomes are called supported outcomes.

• The set of all supported outcomes can easily be generated by solving a
sequence of MIPs.

• Every supported outcome is Pareto, but the converse is not true.

• This makes it difficult as a tool to generate all Pareto outcomes.

• Chalmet (1986) suggested restricting the subproblems so that each
Pareto outcome is supported on some subregion.

• Using this technique, it is possibe to generate all Pareto outcomes.
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The Weighted Chebyshev Norm

• Another option is to replace the weighted sum objective with a weighted
Chebyshev norm (WCN) objective.

• The Chebyshev norm (l∞ norm) in R2 is defined by ‖y‖∞ =
max{|y1|, |y2|}.

• The weighted Chebyshev norm with weight 0 ≤ β ≤ 1 is defined by
‖y‖∞ = max{β|y1|, (1− β)|y2|}.

• The ideal point y∗ is (y∗1, y
∗
2) where y∗i = maxx∈X(f(x))i.

• Methods based on the WCN select outcomes with minimum WCN
distance from the ideal point by solving

min
y∈f(X)

{‖y∗ − y‖β
∞}. (1)

• Bowman (1976) showed that every Pareto outcome is a solution to (1)
for some 0 ≤ β ≤ 1.

• The converse only holds if YE is uniformly dominant.
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Illustrating the WCN

ideal point
level line for

level line for

yr

yq

β = .57

β = .29

yp
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Ordering the Pareto Outcomes

• Eswaran (1989) suggested ordering the Pareto outcomes so that

– YE = {yp | 1 ≤ p ≤ N}, and
– if p < q, then yp

1 < yq
1 (and hence yp

2 > yq
2).

• For any Pareto outcome yp, if we define

βp = (y∗2 − yp
2)/(y∗1 − yp

1 + y∗2 − yp
2),

then yp is the unique optimal outcome for (1) with β = βp.

• For any pair of Pareto outcomes yp and yq with p < q, if we define

βpq = (y∗2 − yq
2)/(y∗1 − yp

1 + y∗2 − yq
2), (2)

then yp and yq are both optimal outcomes for (1) with β = βpq.

• This provides us with a notion of adjacency and breakpoints.
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Breakpoints Between Pareto Outcomes with the WCN

yr

level line for

level line for

yq

βr

βpq

yp
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Algorithms Based on the WCN

• Solanki (1991) proposed an algorithm to generate an approximation to
the Pareto set using the WCN.

– The algorithm probes between pairs of known outcomes for new
outcomes by restricting the domain ala Chalmet.

– The search is controlled by an “error measure,” which can be set to
zero to get complete enumeration.

– The number of probes is asymptotically optimal, but the algorithm
does not produce breakpoints (directly).

• Eswaran (1989) proposed an algorithm based on binary search over the
values of β.

– In the worst case, the number of probes is

|YE|(1− lg(ξ(|YE| − 1))),

where ξ is a chosen error parameter.
– The algorithm produces only approximate breakpoint information.
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The WCN Algorithm

Let P (β) be the parameterized subproblem defined by (1) for a given weight
β. The WCN algorithm is then:

Initialization Solve P (1) and P (0) to identify optimal outcomes y1 and
yN , respectively, and the ideal point y∗ = (y1

1, y
N
2 ). Set I = {(y1, yN)}.

Iteration While I 6= ∅ do:

1. Remove any (yp, yq) from I.
2. Compute βpq as in (2) and solve P (βpq). If the outcome is yp or yq,

then yp and yq are adjacent in the list (y1, y2, . . . , yN).
3. Otherwise, a new outcome yr is generated. Add (yp, yr) and (yr, yq)

to I.

This reduces solution of the original BMIP to solution of a sequence of
2N − 1 MIPs, but still requires the assumption of uniform dominance.
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Solving P (β)

• Problem (1) is equivalent to

minimize z
subject to z ≥ β(y∗1 − y1),

z ≥ (1− β)(y∗2 − y2), and
y ∈ f(X).

(3)

• This is a MIP, which can be solved by standard methods.

• This reformulation can still produce weakly dominated outcomes.
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Relaxing the Uniform Dominance Requirement

• Dealing with weakly dominated outcomes is the most challenging aspect
of these methods.

• We need a method of preventing P (β) from producing weakly dominated
outcomes.

• Weakly dominated outcomes are the same WCN distance from the ideal
point as the outcomes they are dominated by.

• However, they are farther from the ideal point as measured by the lp
norm for p < ∞.

• One solution is to replace the WCN with the augmented Chebyshev norm
(ACN), defined by

‖(y1, y2)‖β,ρ
∞ = max{β|y1|, (1− β)|y2|}+ ρ(|y1|+ |y2|),

where ρ is a small positive number.
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Illustrating the ACN

augmented level line

yq

yr

yp

θ2

θ1
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Solving P (β) with the ACN

• The problem of determining the outcome closest to the ideal point under
this metric is

min z + ρ(|y∗1 − y1|+ |y∗2 − y2|)
subject to z ≥ β(y∗1 − y1)

z ≥ (1− β)(y∗2 − y2)
y ∈ f(X).

(4)

• Because y∗k − yk ≥ 0 for all y ∈ f(X), the objective function can be
rewritten as

min z − ρ(y1 + y2).

• For fixed ρ > 0 small enough:

– all optimal outcomes for problem (4) are Pareto (in particular, they
are not weakly dominated), and

– for a given Pareto outcome y for problem (4), there exists 0 ≤ β̂ ≤ 1
such that y is the unique outcome to problem (4) with β = β̂.

• In practice, choosing a proper value for ρ can be problematic.
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Combinatorial Methods for Eliminating Weakly
Dominated Solutions

• In the case of biobjective linear integer programs (BLIPs), we can employ
combinatorial methods.

• Such a strategy involves implicitly enumerating alternative optimal
solutions to P (β).

• Weakly dominated outcomes are eliminated with cutting planes during
the branch and bound procedure.

• Instead of pruning subproblems that yield feasible outcomes, we continue
to search for alternative optima that dominate the current incumbant.

• To do so, we determine which of the two constraints

z ≥ β(y∗1 − y1)

z ≥ (1− β)(y∗2 − y2)

from problem (1) is binding at ŷ.
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Combinatorial Methods for Eliminating Weakly
Dominated Solutions (cont’d)

• Let ε1 and ε2 be such that if yr is a new outcome between yp and yq,
then yr

i ≥ min{yp
i , y

q
i }+ εi, for i = 1, 2.

• If only the first constraint is binding, then the cut

y1 ≥ ŷ1 + ε1

is valid for any outcome that dominates ŷ.

• If only the second constraint is binding, then the cut

y2 ≥ ŷ2 + ε2

is valid for any outcome that dominates ŷ.

• If both constraints are binding, either cut can be imposed.
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Hybrid Methods

• In practice, the ACN method is fast, but choosing the proper value of ρ
is problematic.

• Combinatorial methods are less susceptible to numerical difficulties, but
are slower.

• Combining the two methods improves running times and reduces
dependence on the magnitude of ρ.
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Other Enhancements to the Algorithm

• In Step 2, any new outcome yr will have yr
1 > yp

1 and yr
2 > yq

2.

• If no such outcome exists, then the subproblem solver must still re-prove
the optimality of yp or yq.

• Then it must be the case that

‖y∗ − yr‖βpq∞ + min{βpqε1, (1− βpq)ε2} ≤ ‖y∗ − yp‖βpq∞ = ‖y∗ − yq‖βpq∞

• Hence, we can impose an a priori upper bound of

‖y∗ − yp‖βpq∞ −min{βpqε1, (1− βpq)ε2}

when solving the subproblem P (βpq).

• With this upper bound, each subproblem will either be infeasible or
produce a new outcome.
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Using Warm Starting

• We have been developing methodology for warm starting branch and
bound computations.

• Because the WCN algorithm involves solving a sequence of slightly
modified MILPs, warm starting can be used.

• Three approaches

– Warm start from the result of the previous iteration.
– Solve a “base” problem first and warm each subsequent problem from

there.
– Warm start from the “closest” previously solved subproblem.

• In addition, we can optionally save the global cut pool from iteration to
iteration.
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Approximating the Pareto Set

• If the number of Pareto outcomes is large, it may not be desirable to
generate the entire set.

• If only part of the set is generated, it is important that the subset be
well-distributed among the entire set.

• Any probing algorithm can generate an approximation to the Pareto set
by terminating early.

– In such case, the key is to avoid failed probes whenever possible.
– The order in which the intervals are explored affects both the

distribution of solutions and the number of failed probes.
– Empirically, FIFO selection schemes tend to distribute the points well

and also minimize the number of failed probes.

• Another approach is to generate the set of supported solutions.

• This can be an extremely bad approximation in some cases.
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Interactive Algorithms

• Interactive algorithms offer another method of avoiding enumeration of
the entire set.

• In an interactive algorithm, the user guides the solution process by
providing real-time feedback.

• This feedback provides information of the user’s unknown utility function.

• A simple feedback mechanism for the WCN algorithm is to allow the
user to select the next interval to be explored.

• In this way, the user is able to zero in on the portion of the tradeoff
curve that is most attractive.

• There are a number of mechanisms for providing estimated tradeoff
information to the user as the algorithm progresses.
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Implementation: A Brief Overview of SYMPHONY

• SYMPHONY is an open-source software package for solving and
analyzing mixed-integer linear programs (MILPs).

• SYMPHONY can be used in three distinct modes.

– Black box solver: Solve generic MILPs (command line or shell).
– Callable library: Call SYMPHONY from a C/C++ code.
– Framework: Develop a customized black box solver or callable library.

• Makes extensive use of the Computational Infrastructure for Operations
Research (COIN-OR) libraries (www.coin-or.org).

• Complete documentation, code samples, data sets, and application plug-
ins are available (www.BranchAndCut.org).

• Advanced features

– Warm starting
– Bicriteria solve
– Sensitivity analysis
– Parallel execution mode
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Example: Bicriteria ILP

• Consider the following bicriteria ILP:

vmax [8x1, x2]

s.t. 7x1 + x2≤ 56

28x1 + 9x2≤ 252

3x1 + 7x2≤ 105

x1, x2≥ 0

• The following code solves this model using SYMPHONY.

int main(int argc, char **argv)
{

OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.setObj2Coeff(1, 1);
si.loadProblem();
si.multiCriteriaBranchAndBound();

}
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Example: Pareto Outcomes for Example
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Example: Sensitivity Analysis

• By examining the supported solutions and break points, we can easily
determine p(θ), the optimal solution to the ILP with objective 8x1 +θx2.

θ range p(θ) x∗1 x∗2
(−∞, 1.333) 64 8 0
(1.333, 2.667) 56 + 6θ 7 6
(2.667, 8.000) 40+12θ 5 12
(8.000, 16.000) 32+13θ 4 13
(16.000,∞) 15θ 0 15
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Example: Price Function
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Application: Capacitated Network Routing Problems

• Using SYMPHONY, we developed a custom solver for a class of
capacitated network routing problems (CNRPs).

• A single commodity is supplied to a set of customers from a single supply
point.

• We must design the network and route the demand, obeying capacity
and other side constraints.

• We wish to consider both

– the cost of construction (the sum of lengths of all links), and
– the latency of the resulting network (the sum of length multiplied by

demand carried for all links).

• These are competing objectives, so we can analyze the tradeoff by using
the SYMPHONY multicriteria solver.
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Application: Efficient Solutions for a Small CNRP
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Application: Pareto Outcomes for a Small CNRP
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Application: Pareto Outcomes for a Larger CNRP
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Computational Results: Comparing WCN with Bisection
Search

Knapsack
Iterations Outcomes Found

WCN ∆ from WCN WCN ∆ from WCN Max Missed

Size 0 10−1 10−2 10−3 0 10−1 10−2 10−3 10−1 10−2 10−3

10 278 12 300 679 149 −17 0 0 6 0 0
20 364 −1 390 896 192 −22 −2 0 6 1 0
30 324 −43 246 712 167 −25 0 0 4 0 0
40 490 −108 235 898 250 −55 −11 0 5 2 0
50 686 −138 235 1123 348 −69 −9 −1 11 1 1

Totals 2142 −278 1406 4308 1106 −188 −22 −1 11 2 1

CNRP
Iterations Outcomes Found

WCN ∆ from WCN WCN ∆ from WCN Max Missed

Name 0 10−1 10−2 10−3 0 10−1 10−2 10−3 10−1 10−2 10−3

att48 147 −35 −9 104 74 −18 −15 −4 3 3 1

Totals 2381 −264 724 3794 1207 −135 −13 0 5 1 0
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Computational Results: Comparing WCN with ACN

Knapsack
Iterations Outcomes Found

WCN ∆ from WCN WCN ∆ from WCN Max Missed

Size 0 10−2 10−3 10−4 0 10−2 10−3 10−4 10−2 10−3 10−4

10 278 −4 0 0 149 −2 0 0 1 0 0
20 364 −6 0 0 192 −3 0 0 1 0 0
30 324 −6 0 0 167 −3 0 0 1 0 0
40 490 −24 0 0 250 −12 0 0 1 0 0
50 686 −28 -4 0 348 −24 −2 0 3 2 0

Totals 2142 −70 0 0 1106 −34 −2 0 3 2 0

CNRP
Iterations Outcomes Found

WCN ∆ from WCN WCN ∆ from WCN Max Missed

Name 0 10−2 10−3 10−4 0 10−2 10−3 10−4 10−2 10−3 10−4

att48 147 −140 −106 −62 74 −70 −53 −31 44 17 8

Totals 2381 −2056 −1012 −34 1207 −1028 −506 −17 18 5 1

10/18/05



COR@L Seminar 37

Computational Results: Comparing WCN with Hybrid
ACN

Knapsack
Iterations Outcomes Found

WCN ∆ from WCN WCN ∆ from WCN Max Missed

Size 0 10−2 10−3 10−4 0 10−2 10−3 10−4 10−2 10−3 10−4

10 278 −4 0 0 149 −2 0 0 1 0 0
20 364 −6 0 0 192 −3 0 0 1 0 0
30 324 −6 0 0 167 −3 0 0 1 0 0
40 490 −24 0 0 250 −12 0 0 1 0 0
50 686 −28 -4 0 348 −14 -2 0 3 2 0

Totals 2142 −68 −4 0 1106 −34 −2 0 3 2 0

CNRP
Iterations Outcomes Found

WCN ∆ from WCN WCN ∆ from WCN Max Missed

Name 0 10−3 10−4 10−5 0 10−3 10−4 10−5 10−3 10−4 10−5

att48 147 −106 −62 −6 74 −53 −31 −3 17 8 2

Totals 2381 −1012 −44 −2 1207 −612 −22 −1 5 1 1
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Computational Results: Comparing WCN with ACN and
Hybrid ACN (CPU Time)

Knapsack
CPU Time (ACN) CPU Time (Hybrid)

WCN ∆ from WCN WCN ∆ from WCN

Size 0 10−2 10−3 10−4 0 10−2 10−3 10−4

10 13.18 0.06 −0.23 −0.10 13.18 0.34 0.12 0.16
20 17.46 −1.33 −0.41 −0.21 17.46 −1.17 0.03 −0.16
30 24.93 −1.28 −0.43 −0.43 24.93 −1.02 −0.11 0.10
40 65.88 −5.69 −1.70 −0.66 24.93 −1.02 −0.11 0.10
50 139.42 −27.18 −3.78 −1.35 65.88 −4.89 −1.09 −0.30
60 260.87 −35.42 −6.55 −2.75 139.42 −13.04 −3.37 −1.17

Totals 260.87 −35.42 −6.55 −2.75 260.87 −19.78 −4.42 −1.37

CNRP
CPU Time (ACN) CPU Time (Hybrid)

WCN ∆ from WCN WCN ∆ from WCN

Name 0 10−2 10−3 10−4 0 10−2 10−3 10−4

att48 83.67 −80.14 −59.83 −28.48 83.67 −59.34 −30.19 −1.12

Totals 8122.36 −7728.51 −5244.54 −1451.37 8122.36 −5481.53 −1531.35 −589.90
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Computational Results: Using Warm Starting to Solve
CNRP Instances

These are results using SYMPHONY to solve CNRP instances with two
different warm starting strategies.
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Conclusion

• Generating the complete set of Pareto outcomes is a challenging
computational problem.

• We presented a new algorithm for solving bicriteria mixed-integer
programs.

• The algorithm is

– asymptotically optimal,
– generates exact breakpoints,
– has good numerical properties, and
– can exploits modern solution techniques.

• We have shown how this algorithm is implemented in the SYMPHONY
MILP solver framework.

• Future work

– Improvements to warm starting procedures
– Parallelization
– More than two objective
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Shameless Plug

• The software discussed in this talk is available for free download from
the Computational Infrastructure for Operations Research Web site

www.coin-or.org

• The COIN-OR Project

– An initiative promoting the development and use of interoperable,
open-source software for operations research.

– A consortium of researchers in both industry and academia dedicated
to improving the state of computational research in OR.

– A non-profit educational foundation known as the COIN-OR
Foundation.

• The COIN-OR Repository

– A library of interoperable software tools for building optimization
codes, as well as some stand-alone packages.

– A venue for peer review of OR software tools.
– A development platform for open source projects, including a CVS

repository.
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More Information

• SYMPHONY

– Prepackaged releases can be obtained from www.BranchAndCut.org.
– Up-to-date source is available from www.coin-or.org.
– Available Solvers

- Generic MILP
- Traveling Salesman Problem
- Vehicle Routing Problem
- Mixed Postman Problem

- Bicriteria Knapsack Solver
- Set Partitioning Problem
- Matching Problem
- Network Routing

• For references and further details, see An Improved Algorithm for
Biobjective Integer Programming, to appear in Annals of OR, available
from

www.lehigh.edu/~tkr2

• Overviews of multiobjective integer programming

– Climaco (1997)
– Ehrgott and Gandibleux (2002)
– Ehrgott and Wiecek (2005)
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