Biobjective Integer Programming

Ted Ralphs and Menal Guzelsoy
Industrial and Systems Engineering, Lehigh University

Matthew Saltzman and Margaret Wiecek Mathematical Sciences, Clemson University

COR@L Seminar, Thursday, November 3, 2005

Outline of Talk

- Preliminaries
- The WCN Algorithm
- Variants
- Interactive algorithm
- Approximation algorithm
- Enhancements
- Avoiding weakly dominated solutions
- Improving efficiency
- Examples and Applications
- Parametric Programming
- Network Routing
- Computational Results

Biobjective Mixed-integer Programs

A biobjective or bicriterion mixed-integer program (BMIP) is an optimization problem of the form

$$
\begin{array}{ll}
\text { vmax } & f(x) \\
\text { subject to } & x \in X,
\end{array}
$$

where

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{2}$ is the (bicriteria) objective function, and
- $X \subset \mathbb{Z}^{p} \times \mathbb{R}^{n-p}$ is the feasible region, usually defined to be

$$
\left\{x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} \mid g_{i}(x) \leq 0, i=1, \ldots, m\right\}
$$

for functions $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, m$.

The vmax operator indicates that the goal is to generate the set of efficient solutions (defined next).

Some Definitions

- We define the set of outcomes to be $Y=f(X) \subset \mathbb{R}^{2}$.
- In outcome space, BMIP can be restated as

$$
\begin{array}{ll}
\text { vmax } & y \\
\text { subject to } & y \in f(X),
\end{array}
$$

- For convenience, we will work primarily in outcome space.
- $x^{1} \in X$ dominates $x^{2} \in X$ if $f_{i}\left(x_{1}\right) \leq f_{i}\left(x_{2}\right)$ for $i=1,2$ and at least one inequality is strict.
- If both inequalities are strict the dominance is strong (otherwise weak).
- Any $x \in X$ not dominated by another member of X is said to be efficient.
- If $x \in X$ is efficient, then $y=f(x)$ is a Pareto outcome.
- Our goal is to generate the set of all Pareto outcomes.

More Definitions

- We will denote the set of efficient solutions by X_{E}.
- The set of Pareto outcomes is then $Y_{E}=f\left(X_{E}\right)$.
- We assume that $\left|Y_{E}\right|$ is finite.
- If $x \in X_{E}$ strongly dominates all members of $X \backslash X_{E}$, then x is said to be strongly efficient.
- Likewise, if $x \in X_{E}$ is strongly efficient, then $y=f(x)$ is strongly Pareto.
- If all members of Y_{E} are strongly Pareto, then Y_{E} is said to be uniformly dominant.
- The assumption of uniform dominance simplifies computation substantially, but is not satisfied in most practical settings.

Illustrating Pareto Outcomes

Algorithms for Generating Pareto Outcomes

- A number of algorithms for generating Pareto outcomes have been proposed.
- These can be categorized in several ways:
- By output: complete enumeration, partial enumeration, or heuristic enumeration of Y_{E}.
- By user interaction: Interactive or non-interactive.
- By methodology: branch and bound, dynamic programming, implicit enumeration, weighted sums, weighted norms, probing.
- We present an algorithm
- that can either partially or completely enumerate the Pareto set,
- has both interactive and non-interactive variants,
- is based on a modified branch and bound algorithm.

Probing Algorithms

- We will focus on probing algorithms that scalarize the objective, i.e., replace it with a single criterion.
- Such algorithms reduce solution of a BMIP to a series of MIPs.
- The main factor in the running time is then the number of probes.
- The most obvious scalarization is the weighted sum objective.
- We replace the original objective with

$$
\max _{y \in f(X)} \beta y_{1}+(1-\beta) y_{2}
$$

to obtain a parameterized family of MIPs.

Supported Outcomes

- Optimal solutions to weighted sum MIPs are extreme points of $\operatorname{conv}\left(Y_{E}\right)$.
- Such outcomes are called supported outcomes.
- The set of all supported outcomes can easily be generated by solving a sequence of MIPs.
- Every supported outcome is Pareto, but the converse is not true.
- This makes it difficult as a tool to generate all Pareto outcomes.
- Chalmet (1986) suggested restricting the subproblems so that each Pareto outcome is supported on some subregion.
- Using this technique, it is possibe to generate all Pareto outcomes.

The Weighted Chebyshev Norm

- Another option is to replace the weighted sum objective with a weighted Chebyshev norm (WCN) objective.
- The Chebyshev norm $\left(l_{\infty}\right.$ norm $)$ in \mathbb{R}^{2} is defined by $\|y\|_{\infty}=$ $\max \left\{\left|y_{1}\right|,\left|y_{2}\right|\right\}$.
- The weighted Chebyshev norm with weight $0 \leq \beta \leq 1$ is defined by $\|y\|_{\infty}=\max \left\{\beta\left|y_{1}\right|,(1-\beta)\left|y_{2}\right|\right\}$.
- The ideal point y^{*} is $\left(y_{1}^{*}, y_{2}^{*}\right)$ where $y_{i}^{*}=\max _{x \in X}(f(x))_{i}$.
- Methods based on the WCN select outcomes with minimum WCN distance from the ideal point by solving

$$
\begin{equation*}
\min _{y \in f(X)}\left\{\left\|y^{*}-y\right\|_{\infty}^{\beta}\right\} \tag{1}
\end{equation*}
$$

- Bowman (1976) showed that every Pareto outcome is a solution to (1) for some $0 \leq \beta \leq 1$.
- The converse only holds if Y_{E} is uniformly dominant.

Illustrating the WCN

Ordering the Pareto Outcomes

- Eswaran (1989) suggested ordering the Pareto outcomes so that
- $Y_{E}=\left\{y_{p} \mid 1 \leq p \leq N\right\}$, and
- if $p<q$, then $y_{1}^{p}<y_{1}^{q}$ (and hence $y_{2}^{p}>y_{2}^{q}$).
- For any Pareto outcome y_{p}, if we define

$$
\beta_{p}=\left(y_{2}^{*}-y_{2}^{p}\right) /\left(y_{1}^{*}-y_{1}^{p}+y_{2}^{*}-y_{2}^{p}\right)
$$

then y^{p} is the unique optimal outcome for (1) with $\beta=\beta_{p}$.

- For any pair of Pareto outcomes y^{p} and y^{q} with $p<q$, if we define

$$
\begin{equation*}
\beta_{p q}=\left(y_{2}^{*}-y_{2}^{q}\right) /\left(y_{1}^{*}-y_{1}^{p}+y_{2}^{*}-y_{2}^{q}\right), \tag{2}
\end{equation*}
$$

then y^{p} and y^{q} are both optimal outcomes for (1) with $\beta=\beta_{p q}$.

- This provides us with a notion of adjacency and breakpoints.

Breakpoints Between Pareto Outcomes with the WCN

Algorithms Based on the WCN

- Solanki (1991) proposed an algorithm to generate an approximation to the Pareto set using the WCN.
- The algorithm probes between pairs of known outcomes for new outcomes by restricting the domain ala Chalmet.
- The search is controlled by an "error measure," which can be set to zero to get complete enumeration.
- The number of probes is asymptotically optimal, but the algorithm does not produce breakpoints (directly).
- Eswaran (1989) proposed an algorithm based on binary search over the values of β.
- In the worst case, the number of probes is

$$
\left|Y_{E}\right|\left(1-\lg \left(\xi\left(\left|Y_{E}\right|-1\right)\right)\right),
$$

where ξ is a chosen error parameter.

- The algorithm produces only approximate breakpoint information.

The WCN Algorithm

Let $P(\beta)$ be the parameterized subproblem defined by (1) for a given weight β. The WCN algorithm is then:

Initialization Solve $P(1)$ and $P(0)$ to identify optimal outcomes y^{1} and y^{N}, respectively, and the ideal point $y^{*}=\left(y_{1}^{1}, y_{2}^{N}\right)$. Set $I=\left\{\left(y^{1}, y^{N}\right)\right\}$. Iteration While $I \neq \emptyset$ do:

1. Remove any $\left(y^{p}, y^{q}\right)$ from I.
2. Compute $\beta_{p q}$ as in (2) and solve $P\left(\beta_{p q}\right)$. If the outcome is y^{p} or y^{q}, then y^{p} and y^{q} are adjacent in the list $\left(y^{1}, y^{2}, \ldots, y^{N}\right)$.
3. Otherwise, a new outcome y^{r} is generated. Add $\left(y^{p}, y^{r}\right)$ and $\left(y^{r}, y^{q}\right)$ to I.

This reduces solution of the original BMIP to solution of a sequence of $2 N-1$ MIPs, but still requires the assumption of uniform dominance.

Solving $P(\beta)$

- Problem (1) is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & z \\
\text { subject to } & z \geq \beta\left(y_{1}^{*}-y_{1}\right), \tag{3}\\
& z \geq(1-\beta)\left(y_{2}^{*}-y_{2}\right), \text { and } \\
& y \in f(X)
\end{array}
$$

- This is a MIP, which can be solved by standard methods.
- This reformulation can still produce weakly dominated outcomes.

Relaxing the Uniform Dominance Requirement

- Dealing with weakly dominated outcomes is the most challenging aspect of these methods.
- We need a method of preventing $P(\beta)$ from producing weakly dominated outcomes.
- Weakly dominated outcomes are the same WCN distance from the ideal point as the outcomes they are dominated by.
- However, they are farther from the ideal point as measured by the l_{p} norm for $p<\infty$.
- One solution is to replace the WCN with the augmented Chebyshev norm (ACN), defined by

$$
\left\|\left(y_{1}, y_{2}\right)\right\|_{\infty}^{\beta, \rho}=\max \left\{\beta\left|y_{1}\right|,(1-\beta)\left|y_{2}\right|\right\}+\rho\left(\left|y_{1}\right|+\left|y_{2}\right|\right)
$$

where ρ is a small positive number.

Illustrating the ACN

Solving $P(\beta)$ with the ACN

- The problem of determining the outcome closest to the ideal point under this metric is

$$
\begin{array}{ll}
\min & z \\
\text { subject to } & z \geq \beta\left(\left|y_{1}^{*}-y_{1}\right|+\left|y_{2}^{*}-y_{2}\right|\right) \tag{4}\\
& z \geq(1-\beta)\left(y_{2}^{*}-y_{2}\right) \\
& y \in f(X)
\end{array}
$$

- Because $y_{k}^{*}-y_{k} \geq 0$ for all $y \in f(X)$, the objective function can be rewritten as

$$
\min z-\rho\left(y_{1}+y_{2}\right)
$$

- For fixed $\rho>0$ small enough:
- all optimal outcomes for problem (4) are Pareto (in particular, they are not weakly dominated), and
- for a given Pareto outcome y for problem (4), there exists $0 \leq \hat{\beta} \leq 1$ such that y is the unique outcome to problem (4) with $\beta=\hat{\beta}$.
- In practice, choosing a proper value for ρ can be problematic.

Combinatorial Methods for Eliminating Weakly Dominated Solutions

- In the case of biobjective linear integer programs (BLIPs), we can employ combinatorial methods.
- Such a strategy involves implicitly enumerating alternative optimal solutions to $P(\beta)$.
- Weakly dominated outcomes are eliminated with cutting planes during the branch and bound procedure.
- Instead of pruning subproblems that yield feasible outcomes, we continue to search for alternative optima that dominate the current incumbant.
- To do so, we determine which of the two constraints

$$
\begin{aligned}
& z \geq \beta\left(y_{1}^{*}-y_{1}\right) \\
& z \geq(1-\beta)\left(y_{2}^{*}-y_{2}\right)
\end{aligned}
$$

from problem (1) is binding at \hat{y}.

Combinatorial Methods for Eliminating Weakly Dominated Solutions (cont'd)

- Let ϵ_{1} and ϵ_{2} be such that if y_{r} is a new outcome between y^{p} and y^{q}, then $y_{i}^{r} \geq \min \left\{y_{i}^{p}, y_{i}^{q}\right\}+\epsilon_{i}$, for $i=1,2$.
- If only the first constraint is binding, then the cut

$$
y_{1} \geq \hat{y}_{1}+\epsilon_{1}
$$

is valid for any outcome that dominates \hat{y}.

- If only the second constraint is binding, then the cut

$$
y_{2} \geq \hat{y}_{2}+\epsilon_{2}
$$

is valid for any outcome that dominates \hat{y}.

- If both constraints are binding, either cut can be imposed.

Hybrid Methods

- In practice, the ACN method is fast, but choosing the proper value of ρ is problematic.
- Combinatorial methods are less susceptible to numerical difficulties, but are slower.
- Combining the two methods improves running times and reduces dependence on the magnitude of ρ.

Other Enhancements to the Algorithm

- In Step 2, any new outcome y^{r} will have $y_{1}^{r}>y_{1}^{p}$ and $y_{2}^{r}>y_{2}^{q}$.
- If no such outcome exists, then the subproblem solver must still re-prove the optimality of y^{p} or y^{q}.
- Then it must be the case that

$$
\left\|y^{*}-y^{r}\right\|_{\infty}^{\beta_{p q}}+\min \left\{\beta_{p q} \epsilon_{1},\left(1-\beta_{p q}\right) \epsilon_{2}\right\} \leq\left\|y^{*}-y^{p}\right\|_{\infty}^{\beta_{p q}}=\left\|y^{*}-y^{q}\right\|_{\infty}^{\beta_{p q}}
$$

- Hence, we can impose an a priori upper bound of

$$
\left\|y^{*}-y^{p}\right\|_{\infty}^{\beta_{p q}}-\min \left\{\beta_{p q} \epsilon_{1},\left(1-\beta_{p q}\right) \epsilon_{2}\right\}
$$

when solving the subproblem $P\left(\beta_{p q}\right)$.

- With this upper bound, each subproblem will either be infeasible or produce a new outcome.

Using Warm Starting

- We have been developing methodology for warm starting branch and bound computations.
- Because the WCN algorithm involves solving a sequence of slightly modified MILPs, warm starting can be used.
- Three approaches
- Warm start from the result of the previous iteration.
- Solve a "base" problem first and warm each subsequent problem from there.
- Warm start from the "closest" previously solved subproblem.
- In addition, we can optionally save the global cut pool from iteration to iteration.

Approximating the Pareto Set

- If the number of Pareto outcomes is large, it may not be desirable to generate the entire set.
- If only part of the set is generated, it is important that the subset be well-distributed among the entire set.
- Any probing algorithm can generate an approximation to the Pareto set by terminating early.
- In such case, the key is to avoid failed probes whenever possible.
- The order in which the intervals are explored affects both the distribution of solutions and the number of failed probes.
- Empirically, FIFO selection schemes tend to distribute the points well and also minimize the number of failed probes.
- Another approach is to generate the set of supported solutions.
- This can be an extremely bad approximation in some cases.

Interactive Algorithms

- Interactive algorithms offer another method of avoiding enumeration of the entire set.
- In an interactive algorithm, the user guides the solution process by providing real-time feedback.
- This feedback provides information of the user's unknown utility function.
- A simple feedback mechanism for the WCN algorithm is to allow the user to select the next interval to be explored.
- In this way, the user is able to zero in on the portion of the tradeoff curve that is most attractive.
- There are a number of mechanisms for providing estimated tradeoff information to the user as the algorithm progresses.

Implementation: A Brief Overview of SYMPHONY

- SYMPHONY is an open-source software package for solving and analyzing mixed-integer linear programs (MILPs).
- SYMPHONY can be used in three distinct modes.
- Black box solver: Solve generic MILPs (command line or shell).
- Callable library: Call SYMPHONY from a C/C++ code.
- Framework: Develop a customized black box solver or callable library.
- Makes extensive use of the Computational Infrastructure for Operations Research (COIN-OR) libraries (www. coin-or.org).
- Complete documentation, code samples, data sets, and application plugins are available (www. BranchAndCut.org).
- Advanced features
- Warm starting
- Bicriteria solve
- Sensitivity analysis
- Parallel execution mode

Example: Bicriteria ILP

- Consider the following bicriteria ILP:

$$
\begin{array}{rlrl}
& \operatorname{vmax} & {\left[8 x_{1}, x_{2}\right]} & \\
\text { s.t. } & 7 x_{1}+x_{2} & \leq 56 \\
& 28 x_{1}+9 x_{2} & \leq 252 \\
& 3 x_{1}+7 x_{2} & \leq 105 \\
& & x_{1}, x_{2} & \geq 0
\end{array}
$$

- The following code solves this model using SYMPHONY.

```
int main(int argc, char **argv)
{
    OsiSymSolverInterface si;
    si.parseCommandLine(argc, argv);
    si.setObj2Coeff(1, 1);
    si.loadProblem();
    si.multiCriteriaBranchAndBound();
}
```


Example: Pareto Outcomes for Example

Non-dominated Solutions

Example: Sensitivity Analysis

- By examining the supported solutions and break points, we can easily determine $p(\theta)$, the optimal solution to the ILP with objective $8 x_{1}+\theta x_{2}$.

θ range	$p(\theta)$	x_{1}^{*}	x_{2}^{*}
$(-\infty, 1.333)$	64	8	0
$(1.333,2.667)$	$56+6 \theta$	7	6
$(2.667,8.000)$	$40+12 \theta$	5	12
$(8.000,16.000)$	$32+13 \theta$	4	13
$(16.000, \infty)$	15θ	0	15

Example: Price Function

Application: Capacitated Network Routing Problems

- Using SYMPHONY, we developed a custom solver for a class of capacitated network routing problems (CNRPs).
- A single commodity is supplied to a set of customers from a single supply point.
- We must design the network and route the demand, obeying capacity and other side constraints.
- We wish to consider both
- the cost of construction (the sum of lengths of all links), and
- the latency of the resulting network (the sum of length multiplied by demand carried for all links).
- These are competing objectives, so we can analyze the tradeoff by using the SYMPHONY multicriteria solver.

Application: Efficient Solutions for a Small CNRP

Application: Pareto Outcomes for a Small CNRP

Application: Pareto Outcomes for a Larger CNRP

Computational Results: Comparing WCN with Bisection Search

	Knapsack										
	Iterations				Outcomes Found				Max Missed		
	WCN	Δ from WCN			WCN	Δ from WCN					
Size	0	10^{-1}	10^{-2}	10^{-3}	0	10^{-1}	10^{-2}	10^{-3}	10^{-1}	10^{-2}	10^{-3}
10	278	12	300	679	149	-17	0	0	6	0	0
20	364	-1	390	896	192	-22	-2	0	6	1	0
30	324	-43	246	712	167	-25	0	0	4	0	0
40	490	-108	235	898	250	-55	-11	0	5	2	0
50	686	-138	235	1123	348	-69	-9	-1	11	1	1
Totals	2142	-278	1406	4308	1106	-188	-22	-1	11	2	1

	CNRP										
	Iterations				Outcomes Found				Max Missed		
	WCN	Δ from WCN			WCN	Δ from WCN					
Name	0	10^{-1}	10^{-2}	10^{-3}	0	10^{-1}	10^{-2}	10^{-3}	10^{-1}	10^{-2}	10^{-3}
att48	147	-35	-9	104	74	-18	-15	-4	3	3	1
Totals	2381	-264	724	3794	1207	-135	-13	0	5	1	0

Computational Results: Comparing WCN with ACN

	Knapsack										
	Iterations				Outcomes Found				Max Missed		
	WCN	Δ from WCN			WCN	Δ from WCN					
Size	0	10^{-2}	10^{-3}	10^{-4}	0	10^{-2}	10^{-3}	10^{-4}	10^{-2}	10^{-3}	10^{-4}
10	278	-4	0	0	149	-2	0	0	1	0	0
20	364	-6	0	0	192	-3	0	0	1	0	0
30	324	-6	0	0	167	-3	0	0	1	0	0
40	490	-24	0	0	250	-12	0	0	1	0	0
50	686	-28	-4	0	348	-24	-2	0	3	2	0
Totals	2142	-70	0	0	1106	-34	-2	0	3	2	0

CNRP

	Iterations				Outcomes Found				Max Missed		
	WCN	Δ from WCN			WCN	Δ from WCN					
Name	0	10^{-2}	10^{-3}	10^{-4}	0	10^{-2}	10^{-3}	10^{-4}	10^{-2}	10^{-3}	10^{-4}
att48	147	-140	-106	-62	74	-70	-53	-31	44	17	8
Totals	2381	-2056	-1012	-34	1207	-1028	-506	-17	18	5	1

Computational Results: Comparing WCN with Hybrid ACN

	Knapsack										
	Iterations				Outcomes Found				Max Missed		
	WCN	Δ from WCN			WCN	Δ from WCN					
Size	0	10^{-2}	10^{-3}	10^{-4}	0	10^{-2}	10^{-3}	10^{-4}	10^{-2}	10^{-3}	10^{-4}
10	278	-4	0	0	149	-2	0	0	1	0	0
20	364	-6	0	0	192	-3	0	0	1	0	0
30	324	-6	0	0	167	-3	0	0	1	0	0
40	490	-24	0	0	250	-12	0	0	1	0	0
50	686	-28	-4	0	348	-14	-2	0	3	2	0
Totals	2142	-68	-4	0	1106	-34	-2	0	3	2	0

CNRP

	Iterations				Outcomes Found				Max Missed		
	WCN	Δ from WCN			WCN	Δ from WCN					
Name	0	10^{-3}	10^{-4}	10^{-5}	0	10^{-3}	10^{-4}	10^{-5}	10^{-3}	10^{-4}	10^{-5}
att48	147	-106	-62	-6	74	-53	-31	-3	17	8	2
Totals	2381	-1012	-44	-2	1207	-612	-22	-1	5	1	1

Computational Results: Comparing WCN with ACN and Hybrid ACN (CPU Time)

Knapsack								
	CPU Time (ACN)				CPU Time (Hybrid)			
	WCN	Δ from WCN			WCN	Δ from WCN		
Size	0	10^{-2}	10^{-3}	10^{-4}	0	10^{-2}	10^{-3}	10^{-4}
10	13.18	0.06	-0.23	-0.10	13.18	0.34	0.12	0.16
20	17.46	-1.33	-0.41	-0.21	17.46	-1.17	0.03	-0.16
30	24.93	-1.28	-0.43	-0.43	24.93	-1.02	-0.11	0.10
40	65.88	-5.69	-1.70	-0.66	24.93	-1.02	-0.11	0.10
50	139.42	-27.18	-3.78	-1.35	65.88	-4.89	-1.09	-0.30
60	260.87	-35.42	-6.55	-2.75	139.42	-13.04	-3.37	-1.17
Totals	260.87	-35.42	-6.55	-2.75	260.87	-19.78	-4.42	-1.37

	CNRP							
	CPU Time (ACN)				CPU Time (Hybrid)			
	WCN	Δ from WCN			WCN	Δ from WCN		
Name	0	10^{-2}	10^{-3}	10^{-4}	0	10^{-2}	10^{-3}	10^{-4}
att48	83.67	-80.14	-59.83	-28.48	83.67	-59.34	-30.19	-1.12
Totals	8122.36	-7728.51	-5244.54	-1451.37	8122.36	-5481.53	-1531.35	-589.90

Computational Results: Using Warm Starting to Solve CNRP Instances

These are results using SYMPHONY to solve CNRP instances with two different warm starting strategies.

Conclusion

- Generating the complete set of Pareto outcomes is a challenging computational problem.
- We presented a new algorithm for solving bicriteria mixed-integer programs.
- The algorithm is
- asymptotically optimal,
- generates exact breakpoints,
- has good numerical properties, and
- can exploits modern solution techniques.
- We have shown how this algorithm is implemented in the SYMPHONY MILP solver framework.
- Future work
- Improvements to warm starting procedures
- Parallelization
- More than two objective

Shameless Plug

- The software discussed in this talk is available for free download from the Computational Infrastructure for Operations Research Web site

```
WWW.coin-or.org
```

- The COIN-OR Project
- An initiative promoting the development and use of interoperable, open-source software for operations research.
- A consortium of researchers in both industry and academia dedicated to improving the state of computational research in OR.
- A non-profit educational foundation known as the COIN-OR Foundation.
- The COIN-OR Repository
- A library of interoperable software tools for building optimization codes, as well as some stand-alone packages.
- A venue for peer review of OR software tools.
- A development platform for open source projects, including a CVS repository.

More Information

- SYMPHONY
- Prepackaged releases can be obtained from www. BranchAndCut.org.
- Up-to-date source is available from www. coin-or.org.
- Available Solvers
- Generic MILP
- Traveling Salesman Problem
- Vehicle Routing Problem
- Mixed Postman Problem
- Bicriteria Knapsack Solver
- Set Partitioning Problem
- Matching Problem
- Network Routing
- For references and further details, see An Improved Algorithm for Biobjective Integer Programming, to appear in Annals of OR, available from
www.lehigh.edu/~tkr2
- Overviews of multiobjective integer programming
- Climaco (1997)
- Ehrgott and Gandibleux (2002)
- Ehrgott and Wiecek (2005)

