
Biobjective Integer Programming

Ted Ralphs and Menal Guzelsoy
Industrial and Systems Engineering, Lehigh University

Matthew Saltzman and Margaret Wiecek
Mathematical Sciences, Clemson University

22500

700

800

1400

2100
400

800

100

500

600
1200

1300

1300

300 900
2100

1000 900

2500

1800

700

1100

22500

700

800

1400

2100
400

800

100

500

600
1200

1300

1300

300 900
2100

1000 900

2500

1800

700

1100

22500

700

800

1400

2100
400

800

100

500

600
1200

1300

1300

300 900
2100

1000 900

2500

1800

700

1100

COR@L Seminar, Thursday, November 3, 2005

COR@L Seminar 1

Outline of Talk

• Preliminaries

• The WCN Algorithm

• Variants

– Interactive algorithm
– Approximation algorithm

• Enhancements

– Avoiding weakly dominated solutions
– Improving efficiency

• Examples and Applications

– Parametric Programming
– Network Routing

• Computational Results

10/18/05

COR@L Seminar 2

Biobjective Mixed-integer Programs

A biobjective or bicriterion mixed-integer program (BMIP) is an optimization
problem of the form

vmax f(x)
subject to x ∈ X,

where

• f : Rn → R2 is the (bicriteria) objective function, and

• X ⊂ Zp × Rn−p is the feasible region, usually defined to be

{x ∈ Zp × Rn−p | gi(x) ≤ 0, i = 1, . . . , m}

for functions gi : Rn → R, i = 1, . . . , m.

The vmax operator indicates that the goal is to generate the set of efficient
solutions (defined next).

10/18/05

COR@L Seminar 3

Some Definitions

• We define the set of outcomes to be Y = f(X) ⊂ R2.

• In outcome space, BMIP can be restated as

vmax y
subject to y ∈ f(X),

• For convenience, we will work primarily in outcome space.

• x1 ∈ X dominates x2 ∈ X if fi(x1) ≤ fi(x2) for i = 1, 2 and at least
one inequality is strict.

• If both inequalities are strict the dominance is strong (otherwise weak).

• Any x ∈ X not dominated by another member of X is said to be
efficient.

• If x ∈ X is efficient, then y = f(x) is a Pareto outcome.

• Our goal is to generate the set of all Pareto outcomes.

10/18/05

COR@L Seminar 4

More Definitions

• We will denote the set of efficient solutions by XE.

• The set of Pareto outcomes is then YE = f(XE).

• We assume that |YE| is finite.

• If x ∈ XE strongly dominates all members of X \XE, then x is said to
be strongly efficient.

• Likewise, if x ∈ XE is strongly efficient, then y = f(x) is strongly Pareto.

• If all members of YE are strongly Pareto, then YE is said to be uniformly
dominant.

• The assumption of uniform dominance simplifies computation
substantially, but is not satisfied in most practical settings.

10/18/05

COR@L Seminar 5

Illustrating Pareto Outcomes

10/18/05

COR@L Seminar 6

Algorithms for Generating Pareto Outcomes

• A number of algorithms for generating Pareto outcomes have been
proposed.

• These can be categorized in several ways:

– By output: complete enumeration, partial enumeration, or heuristic
enumeration of YE.

– By user interaction: Interactive or non-interactive.
– By methodology: branch and bound, dynamic programming, implicit

enumeration, weighted sums, weighted norms, probing.

• We present an algorithm

– that can either partially or completely enumerate the Pareto set,
– has both interactive and non-interactive variants,
– is based on a modified branch and bound algorithm.

10/18/05

COR@L Seminar 7

Probing Algorithms

• We will focus on probing algorithms that scalarize the objective, i.e.,
replace it with a single criterion.

• Such algorithms reduce solution of a BMIP to a series of MIPs.

• The main factor in the running time is then the number of probes.

• The most obvious scalarization is the weighted sum objective.

• We replace the original objective with

max
y∈f(X)

βy1 + (1− β)y2

to obtain a parameterized family of MIPs.

10/18/05

COR@L Seminar 8

Supported Outcomes

• Optimal solutions to weighted sum MIPs are extreme points of conv(YE).

• Such outcomes are called supported outcomes.

• The set of all supported outcomes can easily be generated by solving a
sequence of MIPs.

• Every supported outcome is Pareto, but the converse is not true.

• This makes it difficult as a tool to generate all Pareto outcomes.

• Chalmet (1986) suggested restricting the subproblems so that each
Pareto outcome is supported on some subregion.

• Using this technique, it is possibe to generate all Pareto outcomes.

10/18/05

COR@L Seminar 9

The Weighted Chebyshev Norm

• Another option is to replace the weighted sum objective with a weighted
Chebyshev norm (WCN) objective.

• The Chebyshev norm (l∞ norm) in R2 is defined by ‖y‖∞ =
max{|y1|, |y2|}.

• The weighted Chebyshev norm with weight 0 ≤ β ≤ 1 is defined by
‖y‖∞ = max{β|y1|, (1− β)|y2|}.

• The ideal point y∗ is (y∗1, y
∗
2) where y∗i = maxx∈X(f(x))i.

• Methods based on the WCN select outcomes with minimum WCN
distance from the ideal point by solving

min
y∈f(X)

{‖y∗ − y‖β
∞}. (1)

• Bowman (1976) showed that every Pareto outcome is a solution to (1)
for some 0 ≤ β ≤ 1.

• The converse only holds if YE is uniformly dominant.

10/18/05

COR@L Seminar 10

Illustrating the WCN

ideal point
level line for

level line for

yr

yq

β = .57

β = .29

yp

10/18/05

COR@L Seminar 11

Ordering the Pareto Outcomes

• Eswaran (1989) suggested ordering the Pareto outcomes so that

– YE = {yp | 1 ≤ p ≤ N}, and
– if p < q, then yp

1 < yq
1 (and hence yp

2 > yq
2).

• For any Pareto outcome yp, if we define

βp = (y∗2 − yp
2)/(y∗1 − yp

1 + y∗2 − yp
2),

then yp is the unique optimal outcome for (1) with β = βp.

• For any pair of Pareto outcomes yp and yq with p < q, if we define

βpq = (y∗2 − yq
2)/(y∗1 − yp

1 + y∗2 − yq
2), (2)

then yp and yq are both optimal outcomes for (1) with β = βpq.

• This provides us with a notion of adjacency and breakpoints.

10/18/05

COR@L Seminar 12

Breakpoints Between Pareto Outcomes with the WCN

yr

level line for

level line for

yq

βr

βpq

yp

10/18/05

COR@L Seminar 13

Algorithms Based on the WCN

• Solanki (1991) proposed an algorithm to generate an approximation to
the Pareto set using the WCN.

– The algorithm probes between pairs of known outcomes for new
outcomes by restricting the domain ala Chalmet.

– The search is controlled by an “error measure,” which can be set to
zero to get complete enumeration.

– The number of probes is asymptotically optimal, but the algorithm
does not produce breakpoints (directly).

• Eswaran (1989) proposed an algorithm based on binary search over the
values of β.

– In the worst case, the number of probes is

|YE|(1− lg(ξ(|YE| − 1))),

where ξ is a chosen error parameter.
– The algorithm produces only approximate breakpoint information.

10/18/05

COR@L Seminar 14

The WCN Algorithm

Let P (β) be the parameterized subproblem defined by (1) for a given weight
β. The WCN algorithm is then:

Initialization Solve P (1) and P (0) to identify optimal outcomes y1 and
yN , respectively, and the ideal point y∗ = (y1

1, y
N
2). Set I = {(y1, yN)}.

Iteration While I 6= ∅ do:

1. Remove any (yp, yq) from I.
2. Compute βpq as in (2) and solve P (βpq). If the outcome is yp or yq,

then yp and yq are adjacent in the list (y1, y2, . . . , yN).
3. Otherwise, a new outcome yr is generated. Add (yp, yr) and (yr, yq)

to I.

This reduces solution of the original BMIP to solution of a sequence of
2N − 1 MIPs, but still requires the assumption of uniform dominance.

10/18/05

COR@L Seminar 15

Solving P (β)

• Problem (1) is equivalent to

minimize z
subject to z ≥ β(y∗1 − y1),

z ≥ (1− β)(y∗2 − y2), and
y ∈ f(X).

(3)

• This is a MIP, which can be solved by standard methods.

• This reformulation can still produce weakly dominated outcomes.

10/18/05

COR@L Seminar 16

Relaxing the Uniform Dominance Requirement

• Dealing with weakly dominated outcomes is the most challenging aspect
of these methods.

• We need a method of preventing P (β) from producing weakly dominated
outcomes.

• Weakly dominated outcomes are the same WCN distance from the ideal
point as the outcomes they are dominated by.

• However, they are farther from the ideal point as measured by the lp
norm for p < ∞.

• One solution is to replace the WCN with the augmented Chebyshev norm
(ACN), defined by

‖(y1, y2)‖β,ρ
∞ = max{β|y1|, (1− β)|y2|}+ ρ(|y1|+ |y2|),

where ρ is a small positive number.

10/18/05

COR@L Seminar 17

Illustrating the ACN

augmented level line

yq

yr

yp

θ2

θ1

10/18/05

COR@L Seminar 18

Solving P (β) with the ACN

• The problem of determining the outcome closest to the ideal point under
this metric is

min z + ρ(|y∗1 − y1|+ |y∗2 − y2|)
subject to z ≥ β(y∗1 − y1)

z ≥ (1− β)(y∗2 − y2)
y ∈ f(X).

(4)

• Because y∗k − yk ≥ 0 for all y ∈ f(X), the objective function can be
rewritten as

min z − ρ(y1 + y2).

• For fixed ρ > 0 small enough:

– all optimal outcomes for problem (4) are Pareto (in particular, they
are not weakly dominated), and

– for a given Pareto outcome y for problem (4), there exists 0 ≤ β̂ ≤ 1
such that y is the unique outcome to problem (4) with β = β̂.

• In practice, choosing a proper value for ρ can be problematic.

10/18/05

COR@L Seminar 19

Combinatorial Methods for Eliminating Weakly
Dominated Solutions

• In the case of biobjective linear integer programs (BLIPs), we can employ
combinatorial methods.

• Such a strategy involves implicitly enumerating alternative optimal
solutions to P (β).

• Weakly dominated outcomes are eliminated with cutting planes during
the branch and bound procedure.

• Instead of pruning subproblems that yield feasible outcomes, we continue
to search for alternative optima that dominate the current incumbant.

• To do so, we determine which of the two constraints

z ≥ β(y∗1 − y1)

z ≥ (1− β)(y∗2 − y2)

from problem (1) is binding at ŷ.

10/18/05

COR@L Seminar 20

Combinatorial Methods for Eliminating Weakly
Dominated Solutions (cont’d)

• Let ε1 and ε2 be such that if yr is a new outcome between yp and yq,
then yr

i ≥ min{yp
i , y

q
i }+ εi, for i = 1, 2.

• If only the first constraint is binding, then the cut

y1 ≥ ŷ1 + ε1

is valid for any outcome that dominates ŷ.

• If only the second constraint is binding, then the cut

y2 ≥ ŷ2 + ε2

is valid for any outcome that dominates ŷ.

• If both constraints are binding, either cut can be imposed.

10/18/05

COR@L Seminar 21

Hybrid Methods

• In practice, the ACN method is fast, but choosing the proper value of ρ
is problematic.

• Combinatorial methods are less susceptible to numerical difficulties, but
are slower.

• Combining the two methods improves running times and reduces
dependence on the magnitude of ρ.

10/18/05

COR@L Seminar 22

Other Enhancements to the Algorithm

• In Step 2, any new outcome yr will have yr
1 > yp

1 and yr
2 > yq

2.

• If no such outcome exists, then the subproblem solver must still re-prove
the optimality of yp or yq.

• Then it must be the case that

‖y∗ − yr‖βpq∞ + min{βpqε1, (1− βpq)ε2} ≤ ‖y∗ − yp‖βpq∞ = ‖y∗ − yq‖βpq∞

• Hence, we can impose an a priori upper bound of

‖y∗ − yp‖βpq∞ −min{βpqε1, (1− βpq)ε2}

when solving the subproblem P (βpq).

• With this upper bound, each subproblem will either be infeasible or
produce a new outcome.

10/18/05

COR@L Seminar 23

Using Warm Starting

• We have been developing methodology for warm starting branch and
bound computations.

• Because the WCN algorithm involves solving a sequence of slightly
modified MILPs, warm starting can be used.

• Three approaches

– Warm start from the result of the previous iteration.
– Solve a “base” problem first and warm each subsequent problem from

there.
– Warm start from the “closest” previously solved subproblem.

• In addition, we can optionally save the global cut pool from iteration to
iteration.

10/18/05

COR@L Seminar 24

Approximating the Pareto Set

• If the number of Pareto outcomes is large, it may not be desirable to
generate the entire set.

• If only part of the set is generated, it is important that the subset be
well-distributed among the entire set.

• Any probing algorithm can generate an approximation to the Pareto set
by terminating early.

– In such case, the key is to avoid failed probes whenever possible.
– The order in which the intervals are explored affects both the

distribution of solutions and the number of failed probes.
– Empirically, FIFO selection schemes tend to distribute the points well

and also minimize the number of failed probes.

• Another approach is to generate the set of supported solutions.

• This can be an extremely bad approximation in some cases.

10/18/05

COR@L Seminar 25

Interactive Algorithms

• Interactive algorithms offer another method of avoiding enumeration of
the entire set.

• In an interactive algorithm, the user guides the solution process by
providing real-time feedback.

• This feedback provides information of the user’s unknown utility function.

• A simple feedback mechanism for the WCN algorithm is to allow the
user to select the next interval to be explored.

• In this way, the user is able to zero in on the portion of the tradeoff
curve that is most attractive.

• There are a number of mechanisms for providing estimated tradeoff
information to the user as the algorithm progresses.

10/18/05

COR@L Seminar 26

Implementation: A Brief Overview of SYMPHONY

• SYMPHONY is an open-source software package for solving and
analyzing mixed-integer linear programs (MILPs).

• SYMPHONY can be used in three distinct modes.

– Black box solver: Solve generic MILPs (command line or shell).
– Callable library: Call SYMPHONY from a C/C++ code.
– Framework: Develop a customized black box solver or callable library.

• Makes extensive use of the Computational Infrastructure for Operations
Research (COIN-OR) libraries (www.coin-or.org).

• Complete documentation, code samples, data sets, and application plug-
ins are available (www.BranchAndCut.org).

• Advanced features

– Warm starting
– Bicriteria solve
– Sensitivity analysis
– Parallel execution mode

10/18/05

COR@L Seminar 27

Example: Bicriteria ILP

• Consider the following bicriteria ILP:

vmax [8x1, x2]

s.t. 7x1 + x2≤ 56

28x1 + 9x2≤ 252

3x1 + 7x2≤ 105

x1, x2≥ 0

• The following code solves this model using SYMPHONY.

int main(int argc, char **argv)
{

OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.setObj2Coeff(1, 1);
si.loadProblem();
si.multiCriteriaBranchAndBound();

}

10/18/05

COR@L Seminar 28

Example: Pareto Outcomes for Example

10/18/05

COR@L Seminar 29

Example: Sensitivity Analysis

• By examining the supported solutions and break points, we can easily
determine p(θ), the optimal solution to the ILP with objective 8x1 +θx2.

θ range p(θ) x∗1 x∗2
(−∞, 1.333) 64 8 0
(1.333, 2.667) 56 + 6θ 7 6
(2.667, 8.000) 40+12θ 5 12
(8.000, 16.000) 32+13θ 4 13
(16.000,∞) 15θ 0 15

10/18/05

COR@L Seminar 30

Example: Price Function

10/18/05

COR@L Seminar 31

Application: Capacitated Network Routing Problems

• Using SYMPHONY, we developed a custom solver for a class of
capacitated network routing problems (CNRPs).

• A single commodity is supplied to a set of customers from a single supply
point.

• We must design the network and route the demand, obeying capacity
and other side constraints.

• We wish to consider both

– the cost of construction (the sum of lengths of all links), and
– the latency of the resulting network (the sum of length multiplied by

demand carried for all links).

• These are competing objectives, so we can analyze the tradeoff by using
the SYMPHONY multicriteria solver.

10/18/05

COR@L Seminar 32

Application: Efficient Solutions for a Small CNRP

22500

700

800

1400

2100
400

800

100

500

600
1200

1300

1300

300 900
2100

1000 900

2500

1800

700

1100

22500

700

800

1400

2100
400

800

100

500

600
1200

1300

1300

300 900
2100

1000 900

2500

1800

700

1100

22500

700

800

1400

2100
400

800

100

500

600
1200

1300

1300

300 900
2100

1000 900

2500

1800

700

1100

(a) (b) (c) (d)

10/18/05

COR@L Seminar 33

Application: Pareto Outcomes for a Small CNRP

10/18/05

COR@L Seminar 34

Application: Pareto Outcomes for a Larger CNRP

10/18/05

COR@L Seminar 35

Computational Results: Comparing WCN with Bisection
Search

Knapsack
Iterations Outcomes Found

WCN ∆ from WCN WCN ∆ from WCN Max Missed

Size 0 10−1 10−2 10−3 0 10−1 10−2 10−3 10−1 10−2 10−3

10 278 12 300 679 149 −17 0 0 6 0 0
20 364 −1 390 896 192 −22 −2 0 6 1 0
30 324 −43 246 712 167 −25 0 0 4 0 0
40 490 −108 235 898 250 −55 −11 0 5 2 0
50 686 −138 235 1123 348 −69 −9 −1 11 1 1

Totals 2142 −278 1406 4308 1106 −188 −22 −1 11 2 1

CNRP
Iterations Outcomes Found

WCN ∆ from WCN WCN ∆ from WCN Max Missed

Name 0 10−1 10−2 10−3 0 10−1 10−2 10−3 10−1 10−2 10−3

att48 147 −35 −9 104 74 −18 −15 −4 3 3 1

Totals 2381 −264 724 3794 1207 −135 −13 0 5 1 0

10/18/05

COR@L Seminar 36

Computational Results: Comparing WCN with ACN

Knapsack
Iterations Outcomes Found

WCN ∆ from WCN WCN ∆ from WCN Max Missed

Size 0 10−2 10−3 10−4 0 10−2 10−3 10−4 10−2 10−3 10−4

10 278 −4 0 0 149 −2 0 0 1 0 0
20 364 −6 0 0 192 −3 0 0 1 0 0
30 324 −6 0 0 167 −3 0 0 1 0 0
40 490 −24 0 0 250 −12 0 0 1 0 0
50 686 −28 -4 0 348 −24 −2 0 3 2 0

Totals 2142 −70 0 0 1106 −34 −2 0 3 2 0

CNRP
Iterations Outcomes Found

WCN ∆ from WCN WCN ∆ from WCN Max Missed

Name 0 10−2 10−3 10−4 0 10−2 10−3 10−4 10−2 10−3 10−4

att48 147 −140 −106 −62 74 −70 −53 −31 44 17 8

Totals 2381 −2056 −1012 −34 1207 −1028 −506 −17 18 5 1

10/18/05

COR@L Seminar 37

Computational Results: Comparing WCN with Hybrid
ACN

Knapsack
Iterations Outcomes Found

WCN ∆ from WCN WCN ∆ from WCN Max Missed

Size 0 10−2 10−3 10−4 0 10−2 10−3 10−4 10−2 10−3 10−4

10 278 −4 0 0 149 −2 0 0 1 0 0
20 364 −6 0 0 192 −3 0 0 1 0 0
30 324 −6 0 0 167 −3 0 0 1 0 0
40 490 −24 0 0 250 −12 0 0 1 0 0
50 686 −28 -4 0 348 −14 -2 0 3 2 0

Totals 2142 −68 −4 0 1106 −34 −2 0 3 2 0

CNRP
Iterations Outcomes Found

WCN ∆ from WCN WCN ∆ from WCN Max Missed

Name 0 10−3 10−4 10−5 0 10−3 10−4 10−5 10−3 10−4 10−5

att48 147 −106 −62 −6 74 −53 −31 −3 17 8 2

Totals 2381 −1012 −44 −2 1207 −612 −22 −1 5 1 1

10/18/05

COR@L Seminar 38

Computational Results: Comparing WCN with ACN and
Hybrid ACN (CPU Time)

Knapsack
CPU Time (ACN) CPU Time (Hybrid)

WCN ∆ from WCN WCN ∆ from WCN

Size 0 10−2 10−3 10−4 0 10−2 10−3 10−4

10 13.18 0.06 −0.23 −0.10 13.18 0.34 0.12 0.16
20 17.46 −1.33 −0.41 −0.21 17.46 −1.17 0.03 −0.16
30 24.93 −1.28 −0.43 −0.43 24.93 −1.02 −0.11 0.10
40 65.88 −5.69 −1.70 −0.66 24.93 −1.02 −0.11 0.10
50 139.42 −27.18 −3.78 −1.35 65.88 −4.89 −1.09 −0.30
60 260.87 −35.42 −6.55 −2.75 139.42 −13.04 −3.37 −1.17

Totals 260.87 −35.42 −6.55 −2.75 260.87 −19.78 −4.42 −1.37

CNRP
CPU Time (ACN) CPU Time (Hybrid)

WCN ∆ from WCN WCN ∆ from WCN

Name 0 10−2 10−3 10−4 0 10−2 10−3 10−4

att48 83.67 −80.14 −59.83 −28.48 83.67 −59.34 −30.19 −1.12

Totals 8122.36 −7728.51 −5244.54 −1451.37 8122.36 −5481.53 −1531.35 −589.90

10/18/05

COR@L Seminar 39

Computational Results: Using Warm Starting to Solve
CNRP Instances

These are results using SYMPHONY to solve CNRP instances with two
different warm starting strategies.

10/18/05

COR@L Seminar 40

Conclusion

• Generating the complete set of Pareto outcomes is a challenging
computational problem.

• We presented a new algorithm for solving bicriteria mixed-integer
programs.

• The algorithm is

– asymptotically optimal,
– generates exact breakpoints,
– has good numerical properties, and
– can exploits modern solution techniques.

• We have shown how this algorithm is implemented in the SYMPHONY
MILP solver framework.

• Future work

– Improvements to warm starting procedures
– Parallelization
– More than two objective

10/18/05

COR@L Seminar 41

Shameless Plug

• The software discussed in this talk is available for free download from
the Computational Infrastructure for Operations Research Web site

www.coin-or.org

• The COIN-OR Project

– An initiative promoting the development and use of interoperable,
open-source software for operations research.

– A consortium of researchers in both industry and academia dedicated
to improving the state of computational research in OR.

– A non-profit educational foundation known as the COIN-OR
Foundation.

• The COIN-OR Repository

– A library of interoperable software tools for building optimization
codes, as well as some stand-alone packages.

– A venue for peer review of OR software tools.
– A development platform for open source projects, including a CVS

repository.

10/18/05

COR@L Seminar 42

More Information

• SYMPHONY

– Prepackaged releases can be obtained from www.BranchAndCut.org.
– Up-to-date source is available from www.coin-or.org.
– Available Solvers

- Generic MILP
- Traveling Salesman Problem
- Vehicle Routing Problem
- Mixed Postman Problem

- Bicriteria Knapsack Solver
- Set Partitioning Problem
- Matching Problem
- Network Routing

• For references and further details, see An Improved Algorithm for
Biobjective Integer Programming, to appear in Annals of OR, available
from

www.lehigh.edu/~tkr2

• Overviews of multiobjective integer programming

– Climaco (1997)
– Ehrgott and Gandibleux (2002)
– Ehrgott and Wiecek (2005)

10/18/05

