A Precise Correspondance Between Lift-and-Project Cuts, Simple Disjunctive Cuts, and Mixed Integer Gomory Cuts

Egon Balas Michael Perregaard

September 29, 2005

Ali Pilatin, Mustafa R. Kilinc Correspondance Between Cuts

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Outline of the Paper

- problem statement
- Simple Disjuctive Cuts and Mixed Integer Gomory Cuts
- Lift-and-Project Cuts
- correspondance btw. Lift-and-Project Cuts and Simple Disjuctive Cuts
- correspondance for the strengthened versions

(日)

Outline of the Paper (Cont'd)

- bounds on the number o fundominated disjunctive cuts
- Obounds on the rank of LP polyhedron wrt. various families of cuts
- an algorithm for solving the cut generating LP
- computational results
- using the algorithm for Gomory Cuts

(日)

Mixed Integer 0-1 Program

(MIP):

$$\begin{array}{rcl} \min & cx \\ s.t \\ Ax & \geq & b \\ x & \geq & 0 \\ x_j & \in & \{0, 1\}, \ j = 1, \dots, p \end{array}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

LP Relaxation

(LP): $min\{cx : x \in P\},\ P := \{x \in \mathbb{R}^n_+\}$

P is sometimes denoted by $\tilde{A}x \geq \tilde{b}$, where $A := \begin{pmatrix} A \\ I \end{pmatrix}$ and

$$b := \begin{pmatrix} b \\ 0 \end{pmatrix}.$$

- \bar{x} denotes the optimum solution to the (LP)
- *S* is the set of surplus variables and *N* is the set of structural variables

Mixed Integer 0-1 Program (Cont'd)

- the simplex tableau for (LP) can be uniquely determined by the set of variables chosen to be nonbasic.
- the simplex tableau with such a choice can be writen as

$$\begin{aligned} x_i + \sum_{j \in N \cap J} \bar{a}_{ij} x_j + \sum_{j \in S \cap J} \bar{a}_{ij} s_j &= \bar{a}_{i0} \text{ for } i \in N \cap I \\ s_i + \sum_{j \in N \cap J} \bar{a}_{ij} x_j + \sum_{j \in S \cap J} \bar{a}_{ij} s_j &= \bar{a}_{i0} \text{ for } i \in S \cap I \end{aligned}$$

 \bar{a}_{ij} denotes the coefficient of nonbasic variable *j* in the row for the nonbasic variable *i*, and \bar{a}_{i0} is the corresponding RHS

・ロット (四)・ (田)・ (田)・

-2

Cuts

• S.Disj. Cuts and M.I.G. Cuts

Lift-and-Project Cuts

4 Bounds

Algorithm

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

・ロ・ ・ 四・ ・ 回・ ・ 日・

-31

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Simple Disjuctive vs. Mixed Int. Gomory

 if we identify the nonbasic variables x_j with their corresponding surplus variables s_j, row k becomes:

$$x_k + \sum_{j \in J} \bar{a}_{kj} s_j = \bar{a}_{k0}$$

- in particular, chose x_k to be s.t. $0 \le \bar{a}_{k0} \le 1$ and apply disjunction $x_k \le 0 \lor x_k \ge 1$ you get $\pi s_j \ge \pi_0$ where $\pi_0 := \bar{a}_{k0}(1 \bar{a}_{k0})$ and $\pi_j := max\{\bar{a}_{k0}(1 \bar{a}_{k0}), -\bar{a}_{kj}\bar{a}_{k0}\}$
- the cut $\pi s_i \geq \pi_0$ depends on nonbasic set *J*.

(日)

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Simple Disjuctive vs. Mixed Int. Gomory(Cont'd)

• if $p \ge 1$, $\pi s_j \ge \pi_0$ can be strengthened by replacing π with $\bar{\pi}$:

$$\bar{\pi} := \begin{cases} \min\{f_{kj}(1 - \bar{a}_{k0}), (1 - f_{kj})\bar{a}_{k0}\} & j \in J \cap \{1, ..., p\} \\ \pi_j & j \in J - \{1, ..., p\} \end{cases}$$

with $f_{kj} := \bar{a}_{kj} - \lfloor \bar{a}_{kj} \rfloor$

 the strengthened version is the same as the Mixed Integer Gomory Cut

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- Juts
- S.Disj. Cuts and M.I.G. Cuts
- Lift-and-Project Cuts

4 Bounds

Algorithm

Ali Pilatin, Mustafa R. Kilinc Correspondance Between Cuts

-31

S.Disj. Cuts and M.I.G. Cuts

Lift-and-Project Cuts

Lift and Project cuts are special disjunctive cuts of the form

$$\left(\begin{array}{ccc} Ax & \geq & b \\ x & \geq & 0 \\ -x_k & \geq & 0 \end{array}\right) \lor \left(\begin{array}{ccc} Ax & \geq & b \\ x & \geq & 0 \\ -x_k & \geq & 1 \end{array}\right)$$

for some $k \in \{1, ..., p\}$ such that $0 < \overline{x}_k < 1$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

problem statement Cuts Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Lift-and-Project [Lift]

Theorem 1([1]): Let the disjunctive constraints be

Introduction

 $\bigvee_{h\in Q} (D^h x \ge d_0^h)$

and let
$$A^h = \begin{pmatrix} A \\ D^h \end{pmatrix}$$
, $a^h_0 = \begin{pmatrix} a_0 \\ d^h_0 \end{pmatrix}$

Let *F* be the feasible set of Disjunctive Program (DP). Then $F = \left\{ x \in \mathbb{R}^n : \bigvee_{h \in Q} (A^h x \ge a_0^h, x \ge 0) \right\}$ Letting $F_h \left\{ x \in \mathbb{R}^n : (A^h x \ge a_0^h, x \ge 0) \right\}$, $\label{eq:constraint} Introduction for the problem statement for the statement of the sta$

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

we note
$$F = \bigcup_{h \in Q} F_h$$
. Let $Q^* = \{h \in Q | F_h \neq \emptyset\}$
claim: If $F \neq \emptyset$,
cloonv $F = \begin{cases} x \in \mathbb{R}^n & x = \sum_{h \in Q^*} \xi^h, \\ A^h \xi^h - a_0^h \xi_0^h \ge 0, & h \in Q^* \\ x = \sum_{h \in Q^*} \xi_0^h = 1 \end{cases}$

Ali Pilatin, Mustafa R. Kilinc Correspondance Between Cuts

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Lift-and-Project [Lift](Cont'd)

proof: Let S denote the RHS in the claim, so that the theorem is F = S. If Q is finite and $F \neq \emptyset$, then $Q^* \neq \emptyset$ and is finite. Moreover,

$$clconv \ F = clconv \left(\bigcup_{h \in Q} F_h\right)$$

(i) $F \subseteq S$: If $x \in convF$, then x is a convex combination of at most $|Q^*|$ points, belonging to a different F_h : $x = \sum_{h \in Q^*} \lambda^h u^h$, $\lambda^h \ge 0, h \in Q^*$ where $\sum_{h \in Q^*} \lambda^h = 1$ and for each $h \in Q^*, A^h u^h \ge a_0^h, u^h \ge 0$

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

Lift-and-Project [Lift](Cont'd)

We immediately note that if x, λ^h, u^h, h ∈ Q* satisfy the above constraints, then
 x ∈ h → h ∈ Ω* satisfies S

 $x, \quad \xi^h_0=\lambda^h, \quad \xi^h=u^h\lambda^h, \quad h\in Q^* \text{ satisfies S}.$

⇒(i)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

Lift-and-Project [Lift](Cont'd)

(ii) $S \subseteq clconvF$:

Let $\bar{x} \in S$ with associated vectors $(\bar{\xi}^h, \bar{\xi}^h_0), h \in Q^*$. Let's divide the index set of nonempty F_h sets, Q^* so that

$$m{Q}_1^* = \{m{h} \in m{Q}^* | m{\xi}_0^{m{h}} > m{0} \}, m{Q}_2^* = \{m{h} \in m{Q}^* | m{\xi}_0^{m{h}} = m{0} \}$$

 $\underbrace{ \text{case } h \in Q_1^* \text{: } \bar{\xi}^h / \bar{\xi}_0^h \text{ is a solution to } A^h x \geq a_0^h, x \geq 0 \text{ (see RHS)} }_{ \text{thus } (\bar{\xi}^h / \bar{\xi}_0^h) \in F_h \text{, So} }$

$$(\bar{\xi}^h/\bar{\xi}^h_0) = \sum_{i \in U_h} \mu^{hi} u^{hi} + \sum_{k \in V_h} \nu^{hk} v^{hk}$$

for some $u^{hi} \in vertF_h$, $i \in U_h$ and $v^{hk} \in dirF_h$, $k \in V_h$ with U_h , V_h finite inex sets, mu^{hi} , $v^{hk} \ge 0$, and $\sum_{i \in U_h} \mu^{hi} = 1$

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

Lift-and-Project [Lift](Cont'd)

By setting
$$\mu^{hi}\bar{\xi}_0^h = \theta^{hi}$$
, and $\nu^{hk}\bar{\xi}_0^h = \sigma^{hk}$ we get:

$$\bar{\xi}^h = \sum_{i \in U_h} \theta^{hi} u^{hi} + \sum_{k \in V_h} \sigma^{hk} v^{hk}$$

with
$$\theta^{hi} \ge 0$$
, $i \in U_h$, $\sigma^{hk} \ge 0$, $k \in V_h$ and $\sum_{i \in U_h} \theta^{hi} = \overline{\xi}_0^h$

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

Lift-and-Project [Lift](Cont'd)

case $h \in Q_2^*$: either $\bar{\xi}^h = 0$, or $\bar{\xi}_0^h$ is a solution to $Ax \ge 0, x \ge 0$ (extreme ray) thus

$$ar{\xi}^h = \sum_{k \in V_h} \sigma^{hk} v^{hk}$$

with $\theta^{hi} \ge 0$, $k \in V_h$ for some $v^{hk} \in dirF_h$

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

Lift-and-Project [Lift](Cont'd)

Thus,

$$\bar{\mathbf{X}} = \sum_{h \in Q^*} \bar{\xi}^h$$
$$= \sum_{h \in Q_1^*} \left(\sum_{i \in U_h} \theta^{hi} u^{hi} + \sum_{k \in V_h} \sigma^{hk} v^{hk} \right) + \sum_{h \in Q_2^*} \left(\sum_{k \in V_h} \sigma^{hk} v^{hk} \right)$$

 Noting that Σ_{h∈Q₁^{*}} i∈U_h θ^{hi}u^{hi} = Σ_{h∈Q₁^{*}} ξ₀^h = 1, we realize that x̄ is a convex combination of finitely many points and directions of F.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

Lift-and-Project [Lift](Cont'd)

• So, *conv* $F \subseteq S \subseteq clconv$ F and since clconv F is the smallest closed set containing convF, clconvF = S.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

> 0} 1}

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

٢

Lifting in our special case, $x_j \in \{0, 1\}$

$$P_{j0} := \{x \in \mathbb{R}^n_+ : Ax \ge b, x_j = \ P_{j1} := \{x \in \mathbb{R}^n_+ : Ax \ge b, x_j = \ x - y - z = 0 \ Ay - by_0 \ge 0 \ -y_j \ 0y_0 = 0 \ Az - bz_0 \ge 0 \ z_j - 1z_0 = 0 \ y_0 = 1$$

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Lift-and-Project [Project]

- We want a cut of the form $\alpha x \ge \beta$. To get this from the disjunctive constraint set above, let A^i be A amended with the unit vector row e_j . Let $b^1 = \begin{pmatrix} b \\ 0 \end{pmatrix}$ and $b^2 = \begin{pmatrix} b \\ 1 \end{pmatrix}$.
- Then to satisfy the constraints $A^i x \ge b^i$, we should have $\alpha x \ge A^i x \ge b^i \ge \beta$. In other words, $\alpha \ge u^i A^i$ and $\beta \le u^i b^i$.

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Lift-and-Project [Project]

the resulting feasible set for (α, β) is thus:

α	\geq	$uA - u_0e_j$
α	\geq	$vA + v_0 e_j$
eta	\leq	ub
eta	\leq	$vb + v_0$
<i>u</i> , <i>v</i>	\geq	0
(α,β)	\in	\mathbb{R}^{n+1}

Ali Pilatin, Mustafa R. Kilinc Correspondance Between Cuts

-2

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Lift-and-Project (Cont'd)

 A lift-and-project cut can be obtained solving the program (CGLP)_k

min
$$\alpha \bar{x} - \beta$$

st

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Lift-and-Project (Cont'd)

- this program maximizes the cut off
- α and β are urs, so they can be eliminated and can be retrieved anytime given the solution vector for u, u₀, v, v₀:

$$\beta := ub = vb + v_0$$

$$\alpha := \begin{cases} \max\{ua_j, va_j\} & j \neq k \\ \max\{ua_k - u_0, va_j + v_0\} & j = k \end{cases}$$

・ロ・ ・ 四・ ・ 回・ ・ 日・

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Lift-and-Project (Cont'd)

this also can be strengthened using the integrality of the x_j
 , j ∈ {1,...,p} - {k}:

$$\bar{\alpha} := \begin{cases} \min\{ua_j + u_0 \lceil m_j \rceil, va_j - v_0 \lfloor m_j \rfloor\} & j \in \{1, ..., p\} - \{k\} \\ \alpha_j, & j \in \{k\} \cup \{p+1, ..., n\} \end{cases}$$

$$\text{with } m_j := \frac{va_j - ua_j}{u_0 + v_0}.$$

st

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Correspondance btw. the Unstrengthened Cuts

• introduce surplus variables to $(CGLP)_k$ so that u, v have the surplus variables included:

$$\begin{array}{rcl} \min & \alpha \bar{\mathbf{x}} & -\beta \\ st \\ & \alpha & & -u\mathbf{A} & +u_0\mathbf{e}_k & = & 0 \\ & \alpha & & & -v\mathbf{A} & +v_0\mathbf{e}_k & = & 0 \\ & & -\beta & +u\mathbf{b} & & = & 0 \\ & & -\beta & & & +v\mathbf{b} & +v_0 & = & 0 \\ & & & -\beta & & & +v\mathbf{b} & +v_0 & = & 0 \\ & & & & \sum_{i=1}^{m+p} u_i & +u_0 & +\sum_{i=1}^{m+p} v_i & +v_0 & = & 1 \\ & & & u, u_0, v, v_0 \ge 0 \end{array}$$

・ロ・ ・ 四・ ・ 回・ ・ 日・

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

Correspondance btw. the Unstrengthened Cuts (Cont'd)

Lemma 1: In any basic solution to the constraint set above that gives $\alpha \ge \beta$ not dominated by the constraint set of (LP), $u_0, v_0 > 0$. **proof:**

(日)

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

Correspondance btw. the Unstrengthened Cuts (Cont'd)

Lemma 2: Let $(\bar{\alpha}, \bar{\beta}, \bar{u}, \bar{u}_0, \bar{v}, \bar{v}_0)$ be a basic solution to the above constraint set, $\bar{u}_0, \bar{v}_0 > 0$ $(\bar{\alpha}, \bar{\beta})$ basic.(They are URS). Let the basic components of \bar{u} and \bar{v} be indexed by M_1 and M_2 . Then $M_1 \cap M_2 = \emptyset$, $|M_1 \cup M_2| = n$, and submatrix \hat{A}_{nxn} of \tilde{A} whose rows are indexed by $M_1 \cup M_2$ is nonsingular. **proof:**

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

Correspondance btw. the Unstrengthened Cuts (Cont'd)

- define $J := M_1 \cap M_2$
- replace n inequalities indexed by J in $\tilde{A}x \ge \tilde{b}$ this amounts to setting surplus variables to 0. Since \hat{A}_{nxn} is nonsingular, these equalities define a basic solution.
- The simplex tableau associated with this solution has its *nonbasic* variables indexed by *J*.
- in the (CGLP)_k solution was the index set of basic components of (u, v).

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

Correspondance btw. the Unstrengthened Cuts (Cont'd)

we have

$$\hat{A}x - s_j = \hat{b}$$

, or equivalently

$$x = \hat{A}^{-1}\hat{b} + \hat{A}^{-1}s_j$$

• if we let $\bar{a}_{k0} = e_k \hat{A}^{-1} \hat{b}$ and $\bar{a}_{kj} = (\hat{A}^{-1})_{kj}$, this can be written as

$$x_k = ar{a}_{k0} - \sum_{j \in J} ar{a}_{kj} s_j$$

this is same as the row of (LP) associated with basic variable x_k

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau

Correspondance btw. the Unstrengthened Cuts (Cont'd)

Lemma 3: $0 < \bar{a_{k0}} < 1$. **proof:**

Ali Pilatin, Mustafa R. Kilinc Correspondance Between Cuts

S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Theorem 4A: Let $\alpha x \ge \beta$ be the lift-and-project cut associated with a basic solution $(\alpha, \beta, u, u_0, v, v_0)$ to $(CGLP)_k$, with $u_0, v_0 > 0$ and all components of α, β basic, and the basic components of u and v be indexed by M_1 and M_2 respectively. Let $\pi s_j \ge \pi_0$ be the simple disjunctive cut from the disjunction $x_k < 0 \lor x_k > 1$ applied to $x_k = \bar{a}_{k0} - \sum_{j \in J} \bar{a}_{kj} s_j$ with $J := M_1 \cap M_2$. Then $\pi s_j \ge \pi_0$ is equivalent to $\alpha x \ge \beta$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Bounds on the Number of Essential Cuts Solving $(CGLP)_k$ on the (LP) Simplex Tableau S.Disj. Cuts and M.I.G. Cuts Lift-and-Project Cuts

Correspondance btw. the Unstrengthened Cuts (Cont'd)

sketch of proof:

Remember that $x_k < 0 \lor x_k > 1$ applied to $x_k = \bar{a}_{k0} - \sum_{i \in J} \bar{a}_{ki} s_i$

was defined by

$$\pi_0 := ar{a}_{k0}(\mathbf{1} - ar{a}_{k0})$$

and

$$\pi_j := max\{\pi_j^1, \pi_j^2\}$$

where

$$\pi_j^1 := \bar{a}_{k0}(1 - \bar{a}_{k0}), \quad \pi_j^2 := -\bar{a}_{kj}\bar{a}_{k0} = (\hat{A}^{-1})_{kj}\bar{a}_{k0}$$

(日)

 $\label{eq:constraint} Introduction for the statement of the statement of$

Bounds on the Number of Essential Cuts

- Every valid inequality for{x ∈ P : (x_k ≤ 0) ∨ (x_k ≥ 1)} is dominated by some lift-and-project cut corresponds to a basic solution of a basic solution of (CGLP)_k
- The number of undominated valid inequalities is bounded by

$$\left(\begin{array}{c}2(m+p+n+1)+n+1\\2n+3\end{array}\right)$$

 By using Theorem 4A/4B, the number of bases in a simplex tableau where x_k is basic, that is, the number of subsets J of cardinality n is

$$\left(\begin{array}{c}m+p+n-1\\n\end{array}\right)$$

Bounds on the Number of Essential Cuts

 Thus the elementary closure ∩^p_{k=1} P_k of P with respect to the lift-and-project operation has at most

$$p\left(\begin{array}{c}m+p+n-1\\n\end{array}\right)$$

facets.

- Can we extend these bounds for strengthened lift-and-project cuts?
 - That is OK for strengthened cuts derived from basic solutions
 - But a strengthened cut derived from a nonbasic solution may not be dominated by any strengthened cut derived from a basic solution

The Rank of P With Respect to Diffrent Cuts

- The rank of P with respect to each of the following families is at most p
 - unstrengthened lift-and-project cuts
 - simple disjunction cuts
 - strengthened lift-and-project cuts
 - mixed integer Gomory cuts

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

The Rank of P With Respect to Diffrent Cuts

Proof:

•
$$P := \{x \in R^n : \tilde{A}x \ge \tilde{b}\}$$

•
$$P_0 := P$$

•
$$P_D := conv\{x \in P : x_j \in \{0, 1\}, j = 1, ..., p\}$$

•
$$P^{j} := conv\{P^{j-1} \cap \{x_{j} \in R^{n} : x_{j} \in \{0, 1\}\}$$

• then
$$P^p = P_D$$

-31

Solving $(CGLP)_k$ on the (LP) Simplex Tableau

- A basic solution to (LP) associated with set J corresponds to a set of basic solutions to (CGLP)_k.
- The various solutions to $(CGLP)_k$ differ among themselves by the partition of J into M_1 and M_2 .
- These solutions can be obtained by degenerate pivots in (CGLP)_k
- A single pivot in (LP) differs J with some element with together shifting one ore more elements from *M*₁ to *M*₂ vice-versa

Solving $(CGLP)_k$ on the (LP) Simplex Tableau

• The simple disjunction cut is defined by $\pi x_J \ge \pi_0$, where $\pi_0 = \bar{a}_{k0}(1 - \bar{a}_{k0})$ and

$$\pi_j := \{ \max\{ar{a}_{kj}(1-ar{a}_{k0}), -ar{a}_{kj}ar{a}_{k0}\} \mid j \in J \}$$

 We want to pivot on ā_{ij}, i ≠ k then row k becomes

$$x_k = \bar{a}_{k0} + \gamma_j \bar{a}_{i0} - \sum_{h \in J \setminus \{j\}} (\bar{a}_{kh} + \gamma_j \bar{a}_{ih}) s_h - \gamma_j x_i$$

where

$$\gamma_j = -\frac{\bar{a}_{kj}}{\bar{a}_{ij}}.$$

 Note that we can pivot on any nonzero a
_{ij} since we do not restrict ourselves to feasible bases.

Solving $(CGLP)_k$ on the (LP) Simplex Tableau

- Pivoting the variable x_i out of basis corresponds to pivoting into the basis one of the variables u_i or v_i on (CGLP)_k
- Such a pivot is improving on (CGLP)_k only if either u_i or v_i have a negative reduced cost
- First, we choose a row i, some multiple of which is to be added to row k, second, we choose a column in row i, which sets the sign and size of the multiplier

Solving $(CGLP)_k$ on the (LP) Simplex Tableau

The sketch of the algorithm:

- Step 0. Solve (LP). Let \bar{x} be an optimal solution and let k be such that $0 < \bar{x}_k < 1$
- Step 1. Let J index the nonbasic variables in the current basis. Compute the reduced costs $r_{u_i} < 0$ with $M_1 = \{j \in J : \bar{a}_{kj} < 0 \lor (\bar{a}_{kj} = 0 \land \bar{a}_{ij} > 0)\}$, and $M_2 = J \backslash M_1$ and $r_{v_i} < 0$ with $M_1 = \{j \in J : \bar{a}_{kj} < 0 \lor (\bar{a}_{kj} = 0 \land \bar{a}_{ij} < 0)\}$, and $M_2 = J \backslash M_1$ of u_i, v_i corresponding to each row $i \neq j$ of the simplex tableau of LP.
- Step 2. Let *i*_{*} be a row with *r*_{ui*} < 0 or *r*_{vi*} < 0. If no such row exists, go to step 5.

Solving $(CGLP)_k$ on the (LP) Simplex Tableau

- Step 3. Identify the most improving pivot column *j*_{*} in row *i*_{*} by minimizing *f*⁺(*γ_j*) over all *j* ∈ *J* with *γ_j* > 0 and *f*⁻(*γ_j*) over all *j* ∈ *J* with *γ_j* < 0 and choosing the more negative of these two values.
- Step 4. Pivot on $\bar{a}_{i_*j_*}$ and go to Step 1.
- Step 5. If row k has no 0 entries, stop.Otherwise perturb row k by replacing every 0 entry by ξ^t for some small ξ and t = 1, 2, ... (different for each entry).Go to step 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Solving $(CGLP)_k$ on the (LP) Simplex Tableau

Let $(\alpha, \beta, u, u_0, v, v_0)$ be a basic feasible solution to CGLP with $u_0, v_0 > 0$, all components of α and β basic, and the basic components of u and v indexed by M_1 and M_2 , respectively. Let \bar{s} be surplus variables of $\tilde{A}x \ge \tilde{b}$ corresponding to the solution \bar{x} . Then the reduced costs of u_i and v_i , for $i \notin J \cup \{k\}$ in this basic solution are, respectively

$$egin{aligned} r_{u_i} &= \sigma(-\sum_{j\in M_1}ar{a}_{ij} + \sum_{j\in M_2}ar{a}_{ij} - 1) - \sum_{j\in M_2}ar{a}_{ij}ar{s}_j + ar{a}_{i0}(1 - ar{x}_k) \ r_{v_i} &= \sigma(+\sum_{j\in M_1}ar{a}_{ij} - \sum_{j\in M_2}ar{a}_{ij} - 1) - \sum_{j\in M_1}ar{a}_{ij}ar{s}_j + ar{a}_{i0}ar{x}_k \end{aligned}$$

where

$$\sigma = \frac{\sum_{j \in M_2} \bar{a}_{kj} \bar{s}_j - \bar{a}_{k0} (1 - \bar{x}_k)}{1 + \sum_{j \in J} |\bar{a}_{kj}|}$$

Ali Pilatin, Mustafa R. Kilinc

Correspondance Between Cuts

Solving $(CGLP)_k$ on the (LP) Simplex Tableau

- Write the objective function, αx̄ β, of (CGLP)_k in terms of u_i and v_i
- Then substitute u_i and v_i in terms of ā_{ij}
- During this calculation, they pointed:

$$u_j = -(u_0 + v_0)\bar{a}_{kj} + (u_i - v_i)\bar{a}_{ij}$$
 for $j \in M_1$
 $v_j = (u_0 + v_0)\bar{a}_{kj} - (u_i - v_i)\bar{a}_{ij}$ for $j \in M_2$

The pivot column in row i of the (LP) simplex tableau that is most improving with respect to the cut from row k, is indexed by that $I^* \in J$ that minimizes $f^+(\gamma_I)$ if $\bar{a}_{kl}\bar{a}_{il} < 0$ or $f^-(\gamma_I)$ if $\bar{a}_{kl}\bar{a}_{il} > 0$, over all $l \in J$ that satisfies $\frac{-\bar{a}_{k0}}{\bar{a}_{i0}} < \gamma_I < \frac{1-\bar{a}_{k0}}{\bar{a}_{i0}}$, where $\gamma_I := -\frac{\bar{a}_{kl}}{\bar{a}_{il}}$ and for $0 \le \gamma < \frac{1-\bar{a}_{k0}}{\bar{a}_{i0}}$ $f^+(\gamma) :=$

 $\frac{\sum_{j\in J}(-(\bar{a}_{k0}+\gamma\bar{a}_{i0})\bar{a}_{kj}+\max\{\bar{a}_{kj},-\gamma\bar{a}_{ij})\bar{x}_j-(1-\bar{a}_{k0}-\gamma\bar{a}_{i0}\})\bar{a}_{k0}}{1+|\gamma|+\sum_{j\in J}|\bar{a}_{kj}+\gamma\bar{a}_{ij}|}$

and for $\frac{-a_{k0}}{\bar{a}_{i0}} < \gamma_l \le 0$ $f^-(\gamma) :=$ $\frac{\sum_{j \in J} (-(\bar{a}_{k0} + \gamma \bar{a}_{i0}) \bar{a}_{kj} + max \{ \bar{a}_{kj} + \gamma \bar{a}_{ij}, 0 \}) \bar{x}_j - (1 - \bar{a}_{k0}) (\bar{a}_{k0} + \gamma \bar{a}_{i0})}{1 + |\gamma| + \sum_{j \in J} |\bar{a}_{kj} + \gamma \bar{a}_{ij}|}$

- At termination, the simple disjuntive cut from row k is an optimal lift-and-project cut; the mixed-integer Gomory cut from row k is an optimal strengthened lift-and-project cut.
- When the algorithm comes to a point where Step 2 finds no row with negative reduced costs, we can not conclude the solution is optimal if there is entries of 0's in row k
- In this case, partition (M_1, M_2) of set *J* is not unique, so different partition of (M_1, M_2) may lead to a basis change where *J*^{\cdot} differs from *J* in one element.
- Perturbation in Step 5 eliminates the 0 entries in row k, thus (M_1, M_2) will be unique for set *J*.

(日)

Using Lift-and-Project to Strengthen Mixed Integer Gomory Cuts

- Steiner triple problem with 15 variables and 35 constraints
- LP with five fractional variables is 35.
- Generating mixed integer Gomory cut for each fractional variables yields a solution of value 39
- Using improved cuts in place of original ones we get a solution of value 41.41
- Iterating this procedure for 10 times yields a value of 42.73 for mixed integer Gomory cuts and a value of 44.85 for strengthened cuts.
- IP optimum is 45.
- Intermediate cuts resulting from the procedure are dominated by the final improved ones for the first iteration.

Concluding Remarks

- There are numerous attempts to improve mixed integer Gomory cuts but none of these attempts has succeeded in defining a procedure that is guaranteed to find an improved cuts.
- The lift-and-project approach has done that
- Does the gain in the quality of the cuts justify the computation effort for improving them?