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Formulation

LP IP
P : f (b, c) := max

x∈Ω(b)
c′x ↔ Pd : fd (b, c) := max

x∈Θ(b)
c′x

l l

Integration Summation

I : f̂ (b, c) :=

Z

Ω(b)

ec′x ds ↔ Id : f̂d(b, c) :=
X

x∈Θ(b)

ec′x

where Ω(b) := {x ∈ R
n : Ax = b, x ≥ 0} and Θ(b) := Ω(b) ∩ Z

n.
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The simple relation is that:

ef (b,c) = lim
r→∞

f̂ (b, rc)1/r
, efd (b,c) = lim

r→∞
f̂d(b, rc)1/r

or equivalently

f (b, c) = lim
r→∞

1
r ln f̂ (b, rc), fd(b, c) = lim

r→∞

1
r ln f̂d (b, rc)
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Let P
∗, P

∗
d be some dual problems of P, Pd .

The well-known strong dual P
∗ can be obtained by Legendre-Fenchel

Duality formulation. Let f : R
n → R, then the Fenchel conjugate:

f ∗(y) := sup
x∈Rn

{x ′y − f (x)} ∀y ∈ R
n

If f is convex and lower semi-continuous ⇔ f := f ∗∗.
Then, noting that f (y , c) is concave,

P
∗ : f ∗∗(b, c) := inf

λ∈Rm
{λ′b − f ∗(λ, c)} = min

λ∈Rm
{b′

λ | A′
λ ≥ c}

No available transformation to get a strong P
∗
d (except the subadditive

formulation, see my previous talk...)
Let I

∗, I∗d be the similar transforms of I, Id using Laplace-transform and
Z-transform, respectively.
Lasserre calls I

∗, I∗d the natural duals: we can get closed form equations for
f̂ (b, c) and f̂d (b, c).
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Laplace transform f ∗ : C
m
+ → C of f : R

m
+ → R is

f ∗(λ) :=

Z

R
n
+

e−λ′y f (y)dy

Applying to f̂ (b, c):

F̂ (λ, c) :=

Z

Rm
+

e−λ′y f̂ (y , c)dy

:=

n
Y

k=1

1
(A′λ − c)k
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Note that, F̂ (λ, c) is well defined when <(A′λ − c) > 0. To get I
∗ and hence

a closed form f̂ (b, c), we solve the inverse Laplace transform problem:

I
∗ : f̂ (b, c) :=

1
(2iπ)m

Z γ+i∞

γ−i∞
e−λ′bF̂ (λ, c)dλ

=
1

(2iπ)m

Z γ+i∞

γ−i∞

e−λ′b

n
Y

k=1
(A′

λ − c)k

dλ

where γ is fixed and satisfies (A′γ − c) > 0. This complex integral can be
solved directly by Cauchy residual techniques.
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In fact, the multidimensional poles of F̂ are real and solve pBAB = cB for all
bases of Ω(b). Then:

f̂ (b, c) =
X

x∈b.f .s of Ω(b)

ec′x

det(B)
Y

k∈NB
(−ck + pBAk )

where B is the basis of the corresponding b.f.s.
In other words, f̂ (b, c) is a weighted summation over the vertices of Ω(b).
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Z-transform f ∗ : C
m
+ → C of f : Z

m
+ → R is

f ∗(z) :=
X

y∈Zm
+

z−y f (y)

Applying to f̂d(b, c):

F̂d(z, c) :=
n

Y

k=1

1
1 − eck z−Ak

which is well-defined if |zAk | > eck k = 1, ..., n
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To get I
∗
d and hence a closed form f̂d(b, c), we solve the inverse Z-transform

problem:

I
∗
d : f̂d(b, c) :=

1
(2iπ)m

Z

|z|=γ

F̂d(z, c)zb−1dz

where γ satisfies γAk > eck k = 1, ..., n.
Cauchy residue technique can be used, however, we have complex poles!

Bases of ω(b) provide these poles. Each basis B provides det(B) complex
poles in the form of:

z(k) = epB+2iπ v
det(B) for k = 1, ..., det(B)

where v ∈ {v ∈ Z
m|v ′B = 0 mod det(B)}
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Combining these poles with discrete Brian and Vergne’s formula:

f̂d(b, c) =
X

x∈b.f .s of Ω(b)

ec′x × UB(b, c)
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Then,

fd(b, c) = lim
r→∞

1
r ln f̂d(b, rc)

= max
x∈b.f .s of Ω(b)

{c′x + lim
r→∞

1
r ln UB(b, rc)}

= max
x∈b.f .s of Ω(b)

{c′x +
1
q (deg(Pb) − deg(Qb))}

= c′x∗ + ρ

where q is the l.c.m of det(B): B is a feasible basis , Pb and Qb are some
real valued polynomials.

Note that, ρ is the value of the Gomory group/asymptotic problem!
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Continuous Case

Note that a polynomial Q ⊂ R[λ1, ..., λm] can be written

Q(λ) =
X

α∈S
Qα

λ
α =

X

α∈S
Qα

λ
α1
1 ...λ

αm
m

where S ⊂ N
m and Qα are real coefficients ∀α ∈ S.

Let A ∈ R
m×n, b ∈ R

m. Then the folllowing two statements are equivalent:
(a) The linear system Ax = b has a nonnegative solution x ∈ R

n.
(b) The polynomial b′λ can be written

b′
λ =

n
X

j=1
Qj (λ)(A′

jλ), λ ∈ R
m

for some polynomials Qj ⊂ R[λ1, ..., λm], j = 1, ..., n, all with nonnegative
coefficients.

Proof:
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Discrete Case

Let, wlog (as long as the feasible region is compact), A ∈ N
m×n, b ∈ N

m.
Then the folllowing two statements are equivalent:
(a) The linear system Ax = b has a solution x ∈ N

n.
(b) The polynomial zb − 1 can be written

zb − 1 =
n

X

j=1
Qj (z)(zAj − 1), z ∈ R

m

for some polynomials Qj ⊂ R[z1, ..., zm], j = 1, ..., n, all with nonnegative
coefficients. Moreover, the total degree of each polynomial Qj can be

bounded by b∗ =
Pm

j=1 bj − min
k=1,...,n

m
X

i=1
Aik .

Proof:
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Discrete Case

Let q ≥ 0 be the vector of nonnegative coefficients of all polynomials Qj ’s. If

D := {Mq = r , q ≥ 0} 6= ∅

then, there exist such polynomials. Note that Mq = r state that the

polynomials zb − 1 and
n

X

j=1
Qj(z)(zAj − 1) are identical by equating the

respective coefficients.
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Discrete Case

Each Qj may be restricted to contain only monomials

{zα : α ≤ b − Aj , α ∈ N
m}

Hence, in D, q ∈ R
s and M ∈ R

p×s where

p =
m

Y

i=1
(bi + 1)

s =
n

X

j=1
sj with sj =

m
Y

i=1
(bi − Aij + 1), j = 1, ..., n

Note that,
p is the number of monomials zα with α ≤ b and
sj is the number of monomials zα with α − Aj ≤ b.
Example:
Note that M is totally unimodular.
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An LP equivalent to Pd

Let esj = (1, ..., 1) ∈ R
sj , j = 1, ..., n and let E ∈ N

n×s be the n-block
diagonal matrix, whose each diagonal block is a row vector esj . Then,

1 fd(b, c) = max{c′Eq | Mq = r , q ≥ 0}
2 If q∗ is an optimal solution, then x∗ := Eq∗ is the associated optimal

solution of Pd .

Proof:
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A class of superadditive functions

Let
D ⊂ N

m be a finite set s.t 0 ∈ D and if α ∈ D ⇒ β ∈ D, ∀β ≤ α.
∆D be the set of functions π : N

m → R ∪ {+∞} s.t. π(0) = 0 and
π(α) < +∞ if α ∈ D, or π(α) = +∞, otherwise.
Given π ∈ ∆D, fπ : N

m → R ∪ {+∞} is defined as

fπ(x) := inf
α∈D

{π(α + x) − π(α)}, x ∈ N
m

Lemma: For every π ∈ ∆D :

1 fπ ∈ ∆D

2 fπ ≤ π, and fπ is superadditive
3 if π is superadditive, then π = fπ.

Proof:
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Superadditive Dual

Let D := {α ∈ N
m | α ≤ b}. Then the dual of max{c′Eq | Mq = r , q ≥ 0} is

min
γ

γ(b) − γ(0)

s.t γ(α + Aj ) − γ(α) ≥ cj , α + Aj ∈ D, j = 1, ..., n

Letting π(α) = γ(α) − γ(0), ∀α ∈ D and extending π to N
m, the dual

becomes

ρ1 = min
π∈∆D

π(b)

s.t π(α + Aj) − π(α) ≥ cj , α ∈ D, j = 1, ..., n
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Superadditive Dual

Now, assume that fd (b, c) > −∞ and consider the following problem

ρ2 = inf
π∈∆D

fπ(b)

s.t fπ(Aj ) ≥ cj , j = 1, ..., n

where fπ : N
m → R defined as before for every π ∈ ∆D. Then,

fd(b, c) = ρ1 = ρ2 = fπ∗(b) for some π
∗ ∈ ∆D

Proof:
Example:
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Superadditive Dual

Note the similar dual formulation of Wolsey

min
π

π(b)

s.t π(λ) + π(µ) ≤ π(λ + µ), 0 ≤ λ + µ ≤ b
π(Aj) ≥ cj , j = 1, ..., n
π(0) = 0

where the first constraint set state that π : D → R is superadditive.
The number of variables are the same, however, this one has O(p2)
constraints whereas the introduced one has O(np).
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