A non-standart approach to Duality

Menal Guzelsoy

Department of Industrial and Systems Engineering
Lehigh University

COR@L Seminar Series, 2005 10/27/2005

Outline

(9) Duality

- Integration \& Counting
- Duality for Integration
- Brion and Vergne's continuous formula
- Duality for Summation
(2) Discrete Farkas Lemma
- Continuous Case
- Discrete Case
- LP formulation
- Superadditive Dual

References:

- Jean B. Lasserre, Duality and a Farkas lemma for integer programs. in: Optimization: Structure and Applications (E. Hunt and C.E.M. Pearce, Editors), Kluwer Academic Publishers (2004)
- Jean B. Lasserre, Integer programming duality and superadditive functions. Contemporary Mathematics 374, pp. 139-150. (2005)

Formulation

where $\Omega(b):=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\}$ and $\Theta(b):=\Omega(b) \cap \mathbb{Z}^{n}$.

The simple relation is that:

$$
e^{f(b, c)}=\lim _{r \rightarrow \infty} \hat{f}(b, r c)^{1 / r}, \quad e^{f_{d}(b, c)}=\lim _{r \rightarrow \infty} \hat{f}_{d}(b, r c)^{1 / r}
$$

or equivalently

$$
f(b, c)=\lim _{r \rightarrow \infty} \frac{1}{r} \ln \hat{f}(b, r c), \quad f_{d}(b, c)=\lim _{r \rightarrow \infty} \frac{1}{r} \ln \hat{f}_{d}(b, r c)
$$

Let $\mathbb{P}^{*}, \mathbb{P}_{d}^{*}$ be some dual problems of $\mathbb{P}, \mathbb{P}_{d}$.

- The well-known strong dual \mathbb{P}^{*} can be obtained by Legendre-Fenchel Duality formulation. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then the Fenchel conjugate:

$$
f^{*}(y):=\sup _{x \in \mathbb{R}^{n}}\left\{x^{\prime} y-f(x)\right\} \quad \forall y \in \mathbb{R}^{n}
$$

If f is convex and lower semi-continuous $\Leftrightarrow f:=f^{* *}$.
Then, noting that $f(y, c)$ is concave,

$$
\mathbb{P}^{*}: f^{* *}(b, c):=\inf _{\lambda \in \mathbb{R}^{m}}\left\{\lambda^{\prime} b-f^{*}(\lambda, c)\right\}=\min _{\lambda \in \mathbb{R}^{m}}\left\{b^{\prime} \lambda \mid A^{\prime} \lambda \geq c\right\}
$$

- No available transformation to get a strong \mathbb{P}_{d}^{*} (except the subadditive formulation, see my previous talk...)
Let $\mathbb{I}^{*}, \mathbb{I}_{d}^{*}$ be the similar transforms of $\mathbb{I}, \mathbb{I}_{d}$ using Laplace-transform and Z-transform, respectively.
Lasserre calls $\mathbb{I}^{*}, \mathbb{I}_{d}^{*}$ the natural duals: we can get closed form equations for $\hat{f}(b, c)$ and $\hat{f_{d}}(b, c)$.

Laplace transform $f^{*}: \mathbb{C}_{+}^{m} \rightarrow \mathbb{C}$ of $f: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ is

$$
f^{*}(\lambda):=\int_{\mathbb{R}_{+}^{n}} e^{-\lambda^{\prime} y} f(y) d y
$$

Applying to $\hat{f}(b, c)$:

$$
\begin{aligned}
\hat{F}(\lambda, c) & :=\int_{\mathbb{R}_{+}^{m}} e^{-\lambda^{\prime} y} \hat{f}(y, c) d y \\
& :=\prod_{k=1}^{n} \frac{1}{\left(A^{\prime} \lambda-c\right)_{k}}
\end{aligned}
$$

Note that, $\hat{F}(\lambda, c)$ is well defined when $\Re\left(A^{\prime} \lambda-c\right)>0$. To get \mathbb{I}^{*} and hence a closed form $\hat{f}(b, c)$, we solve the inverse Laplace transform problem:

$$
\begin{aligned}
\mathbb{I}^{*}: \hat{f}(b, c) & :=\frac{1}{(2 i \pi)^{m}} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{-\lambda^{\prime} b} \hat{F}(\lambda, c) d \lambda \\
& =\frac{1}{(2 \dot{\pi})^{m}} \int_{\gamma-i \infty}^{\gamma+i \infty} \frac{e^{-\lambda^{\prime} b}}{\prod_{k=1}^{n}\left(A^{\prime} \lambda-c\right)_{k}} d \lambda
\end{aligned}
$$

where γ is fixed and satisfies $\left(A^{\prime} \gamma-c\right)>0$. This complex integral can be solved directly by Cauchy residual techniques.

In fact, the multidimensional poles of \hat{F} are real and solve $p_{B} A_{B}=c_{B}$ for all bases of $\Omega(b)$. Then:

$$
\hat{f}(b, c)=\sum_{x \in \text { b.f.s of } \Omega(b)} \frac{e^{c^{\prime} x}}{\operatorname{det}(B) \prod_{k \in N B}\left(-c_{k}+p^{B} A_{k}\right)}
$$

where B is the basis of the corresponding b.f.s. In other words, $\hat{f}(b, c)$ is a weighted summation over the vertices of $\Omega(b)$.
\mathbb{Z}-transform $f^{*}: \mathbb{C}_{+}^{m} \rightarrow \mathbb{C}$ of $f: \mathbb{Z}_{+}^{m} \rightarrow \mathbb{R}$ is

$$
f^{*}(z):=\sum_{y \in \mathbb{Z}_{+}^{m}} z^{-y} f(y)
$$

Applying to $\hat{f}_{d}(b, c)$:

$$
\hat{F}_{d}(z, c):=\prod_{k=1}^{n} \frac{1}{1-e^{c_{k} z^{-A_{k}}}}
$$

which is well-defined if $\left|z^{A_{k}}\right|>e^{c_{k}} k=1, \ldots, n$

To get \mathbb{I}_{d}^{*} and hence a closed form $\hat{f}_{d}(b, c)$, we solve the inverse \mathbb{Z}-transform problem:

$$
\mathbb{I}_{d}^{*}: \hat{f}_{d}(b, c):=\frac{1}{(2 i \pi)^{m}} \int_{|z|=\gamma} \hat{F}_{d}(z, c) z^{b-1} d z
$$

where γ satisfies $\gamma^{A_{k}}>e^{c_{k}} k=1, \ldots, n$.
Cauchy residue technique can be used, however, we have complex poles!
Bases of $\omega(b)$ provide these poles. Each basis B provides $\operatorname{det}(B)$ complex poles in the form of:

$$
z(k)=e^{p_{B}+2 i \pi \frac{v}{\operatorname{det}(B)}} \text { for } k=1, \ldots, \operatorname{det}(B)
$$

where $v \in\left\{v \in \mathbb{Z}^{m} \mid v^{\prime} B=0 \bmod \operatorname{det}(B)\right\}$

Combining these poles with discrete Brian and Vergne's formula:

$$
\hat{f}_{d}(b, c)=\sum_{x \in \text { b.f.s of } \Omega(b)} e^{c^{\prime} x} \times U_{B}(b, c)
$$

Then,

$$
\begin{aligned}
f_{d}(b, c) & =\lim _{r \rightarrow \infty} \frac{1}{r} \ln \hat{f}_{d}(b, r c) \\
& =\max _{x \in b . f . s \text { of } \Omega(b)}\left\{c^{\prime} x+\lim _{r \rightarrow \infty} \frac{1}{r} \ln U_{B}(b, r c)\right\} \\
& =\max _{x \in b . f . s \text { of } \Omega(b)}\left\{c^{\prime} x+\frac{1}{q}\left(\operatorname{deg}\left(P_{b}\right)-\operatorname{deg}\left(Q_{b}\right)\right)\right\} \\
& =c^{\prime} x^{*}+\rho
\end{aligned}
$$

where q is the I.c.m of $\operatorname{det}(B)$: B is a feasible basis, P_{b} and Q_{b} are some real valued polynomials.

Note that, ρ is the value of the Gomory group/asymptotic problem!

Continuous Case

Note that a polynomial $Q \subset \mathbb{R}\left[\lambda_{1}, \ldots, \lambda_{m}\right]$ can be written

$$
Q(\lambda)=\sum_{\alpha \in S} Q^{\alpha} \lambda^{\alpha}=\sum_{\alpha \in S} Q^{\alpha} \lambda_{1}^{\alpha_{1}} \ldots \lambda_{m}^{\alpha_{m}}
$$

where $S \subset \mathbb{N}^{m}$ and Q^{α} are real coefficients $\forall \alpha \in S$.
Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$. Then the folllowing two statements are equivalent:
(a) The linear system $A x=b$ has a nonnegative solution $x \in \mathbb{R}^{n}$.
(b) The polynomial $b^{\prime} \lambda$ can be written

$$
b^{\prime} \lambda=\sum_{j=1}^{n} Q_{j}(\lambda)\left(A_{j}^{\prime} \lambda\right), \lambda \in \mathbb{R}^{m}
$$

for some polynomials $Q_{j} \subset \mathbb{R}\left[\lambda_{1}, \ldots, \lambda_{m}\right], j=1, \ldots, n$, all with nonnegative coefficients.

Proof:

Discrete Case

Let, wlog (as long as the feasible region is compact), $A \in \mathbb{N}^{m \times n}, b \in \mathbb{N}^{m}$. Then the folllowing two statements are equivalent:
(a) The linear system $A x=b$ has a solution $x \in \mathbb{N}^{n}$.
(b) The polynomial $z^{b}-1$ can be written

$$
z^{b}-1=\sum_{j=1}^{n} Q_{j}(z)\left(z^{A_{j}}-1\right), \quad z \in \mathbb{R}^{m}
$$

for some polynomials $Q_{j} \subset \mathbb{R}\left[z_{1}, \ldots, z_{m}\right], j=1, \ldots, n$, all with nonnegative coefficients. Moreover, the total degree of each polynomial Q_{j} can be bounded by $b^{*}=\sum_{j=1}^{m} b_{j}-\min _{k=1, \ldots, n} \sum_{i=1}^{m} A_{i k}$.

Proof:

Discrete Case

Let $q \geq 0$ be the vector of nonnegative coefficients of all polynomials Q_{j} 's. If

$$
D:=\{M q=r, \quad q \geq 0\} \neq \emptyset
$$

then, there exist such polynomials. Note that $M q=r$ state that the polynomials $z^{b}-1$ and $\sum_{j=1}^{n} Q_{j}(z)\left(z^{A_{j}}-1\right)$ are identical by equating the respective coefficients.

Discrete Case

- Each Q_{j} may be restricted to contain only monomials

$$
\left\{z^{\alpha}: \alpha \leq b-A_{j}, \alpha \in \mathbb{N}^{m}\right\}
$$

- Hence, in $D, q \in \mathbb{R}^{s}$ and $M \in \mathbb{R}^{p \times s}$ where

$$
\begin{aligned}
p & =\prod_{i=1}^{m}\left(b_{i}+1\right) \\
s & =\sum_{j=1}^{n} s_{j} \text { with } s_{j}=\prod_{i=1}^{m}\left(b_{i}-A_{i j}+1\right), \quad j=1, \ldots, n
\end{aligned}
$$

Note that, p is the number of monomials z^{α} with $\alpha \leq b$ and s_{j} is the number of monomials z^{α} with $\alpha-A_{j} \leq b$.

- Example:
- Note that M is totally unimodular.

An LP equivalent to \mathbb{P}_{d}

Let $e_{s_{j}}=(1, \ldots, 1) \in \mathbb{R}^{s_{j}}, j=1, \ldots, n$ and let $E \in \mathbb{N}^{n \times s}$ be the n-block diagonal matrix, whose each diagonal block is a row vector $e_{s_{j}}$. Then,
(1) $f_{d}(b, c)=\max \left\{c^{\prime} E q \mid M q=r, \quad q \geq 0\right\}$
(2) If q^{*} is an optimal solution, then $x^{*}:=E q^{*}$ is the associated optimal solution of \mathbb{P}_{d}.

Proof:

A class of superadditive functions

Let

- $\mathcal{D} \subset \mathbb{N}^{m}$ be a finite set s.t $0 \in \mathcal{D}$ and if $\alpha \in \mathcal{D} \Rightarrow \beta \in \mathcal{D}, \forall \beta \leq \alpha$.
- $\Delta_{\mathcal{D}}$ be the set of functions $\pi: \mathbb{N}^{m} \rightarrow \mathbb{R} \cup\{+\infty\}$ s.t. $\pi(0)=0$ and $\pi(\alpha)<+\infty$ if $\alpha \in \mathcal{D}$, or $\pi(\alpha)=+\infty$, otherwise.
- Given $\pi \in \Delta_{\mathcal{D}}, f_{\pi}: \mathbb{N}^{m} \rightarrow \mathbb{R} \cup\{+\infty\}$ is defined as

$$
f_{\pi}(x):=\inf _{\alpha \in \mathcal{D}}\{\pi(\alpha+x)-\pi(\alpha)\}, \quad x \in \mathbb{N}^{m}
$$

Lemma: For every $\pi \in \Delta_{\mathcal{D}}$:
(1) $f_{\pi} \in \Delta_{\mathcal{D}}$
(2) $f_{\pi} \leq \pi$, and f_{π} is superadditive
(3) if π is superadditive, then $\pi=f_{\pi}$.

Proof:

Superadditive Dual

Let $\mathcal{D}:=\left\{\alpha \in \mathbb{N}^{m} \mid \alpha \leq b\right\}$. Then the dual of $\max \left\{c^{\prime} E q \mid M q=r, \quad q \geq 0\right\}$ is

$$
\begin{array}{cl}
\min _{\gamma} & \gamma(b)-\gamma(0) \\
\text { s.t } & \gamma\left(\alpha+A_{j}\right)-\gamma(\alpha) \geq c_{j}, \alpha+A_{j} \in \mathcal{D}, j=1, \ldots, n
\end{array}
$$

Letting $\pi(\alpha)=\gamma(\alpha)-\gamma(0), \forall \alpha \in \mathcal{D}$ and extending π to \mathbb{N}^{m}, the dual becomes

$$
\begin{aligned}
\rho_{1}=\min _{\pi \in \Delta_{\mathcal{D}}} & \pi(b) \\
\text { s.t } & \pi\left(\alpha+A_{j}\right)-\pi(\alpha) \geq c_{j}, \quad \alpha \in \mathcal{D}, \quad j=1, \ldots, n
\end{aligned}
$$

Superadditive Dual

Now, assume that $f_{d}(b, c)>-\infty$ and consider the following problem

$$
\begin{aligned}
\rho_{2}=\inf _{\pi \in \Delta_{\mathcal{D}}} & f_{\pi}(b) \\
\text { s.t } & f_{\pi}\left(A_{j}\right) \geq c_{j}, j=1, \ldots, n
\end{aligned}
$$

where $f_{\pi}: \mathbb{N}^{m} \rightarrow \mathbb{R}$ defined as before for every $\pi \in \Delta_{\mathcal{D}}$. Then,

$$
f_{d}(b, c)=\rho_{1}=\rho_{2}=f_{\pi^{*}}(b) \text { for some } \pi^{*} \in \Delta_{\mathcal{D}}
$$

Proof:

Example:

Superadditive Dual

Note the similar dual formulation of Wolsey

$$
\begin{array}{ll}
\min _{\pi} & \pi(b) \\
\text { s.t } & \pi(\lambda)+\pi(\mu) \leq \pi(\lambda+\mu), \quad 0 \leq \lambda+\mu \leq b \\
& \pi\left(A_{j}\right) \geq c_{j}, \quad j=1, \ldots, n \\
& \pi(0)=0
\end{array}
$$

where the first constraint set state that $\pi: \mathcal{D} \rightarrow \mathbb{R}$ is superadditive. The number of variables are the same, however, this one has $\mathcal{O}\left(p^{2}\right)$ constraints whereas the introduced one has $\mathcal{O}(n p)$.

