Exploiting orbits in symmetric II

A review of François Margot's pap

Jim Ostrowski Lehigh University

15 September 2005

September 15, 2005

Preliminaries

- Let Π^n be the set of all permutations of $I^n = \{1, ...\}$
- Π^n is the symmetric group o I^n
- $\pi \in \Pi$ is an n-vector
- $\pi[i]$ is the image of i under π :
- let w be the vector obtained by permuting v accord

 $w[\pi[i]] = v[i] \text{ for all } i \in I^n$

September 15, 2005

Preliminaries

• Consider the following ILP

$$\min c^T x$$

s.t. $Ax \ge b$,
 $x \in \{0, 1\}^n$,

- WLOG we can assume A, b, and c are all integers
- Let π be a permutation of n variable, σ a permutation
- Let A(π, σ) be the matrix obtained from A by perm and columns
- let $G = \{\pi | \pi(c) = c \text{ and } \exists \sigma \text{ s.t. } \sigma(b) = b, A(\pi, \sigma) = b \}$

September 15, 2005

Preliminaries

• Definition: The orbit of S under G is

 $orb(S,G) = \{S' \subseteq I^n | S' = g(S) \text{ for some }$

• Definition: the stabilizer of S in G is:

 $stab(S,G)=\{g\in G|g(S)=S\}$

- Denote F_k^a to be the set of variables fixed to k at n
- N^a the set of variables not fixed at node a

September 15, 2005

Ranked Branching Rule

- Subproblems are isomorphic if ∃ a permutation g
 g(F_k^a) = F_k^b for k = 0, 1
- Using this definition is difficult
 - ★ How do you find g for given nodes a and b?
 - ★ This will have to be done a lot

September 15, 2005

Ranked Branching Rule

- Goal: evaluate a single node, not pairs of nodes
- Let R be a rank vector, indicating the order in which have been used for branching
- The rule to select the branching variable x_f at a is

(i) If $\exists j \in N^a with R[j] < n+1$, then f = arg mi

(ii) Else, choose $f \in N^a$

September 15, 2005

Ranked Branching Rule

- Let $J = \{j_1, \dots, j_p\}$ be unordered multiset of I^{n+1}
- Let *J*^{*} be the ordered multiset formed by listing J non-decreasing order
- Given set J_i , J_j , $J_i \preceq J_j$ if J_i is lexicographically s
- For a given R, J is a representative of the sets in its min. under G:

 $R(j) \preceq R(g(J)) \; \forall g \in G$

September 15, 2005

Lemma 1

- Let R_1 and R_2 be two rank vectors obtained durin cut, assume R_2 is obtained after R_1 , then:
- ◊ (i) If J is not a representative w.r.t. R₁, then J is not representative w.r.t. R₂
- ◊ (ii) If J is a rep. w.r.t. R₁ and all entries in R(j) are
 J is the unique rep. to R₁
- (iii) if J is a rep w.r.t. R₁ and all entries in R(j) are then J is a rep w.r.t. R₂

September 15, 2005

Let $J \subseteq I^n$ be a rep under G w.r.t. R. Let j' := J - j w $j \in arg \max\{R[i] | i \in J\}$. Then J' is also a rep w.r.t. R.

• Isomorphism Pruning: If F_1^a is not a representative prune node a.

September 15, 2005

Variable Setting

- At node a, all variables in the orbit of stab(F₁^a) can soon as we know any variable can be set to k
- standard setting algorithms let you set a variable t can show ∃ an optimal solution with that variable that does not work, that solution can be pruned by pruning
- If you are able to set x_i = k, then for any g ∈ G, w to k

September 15, 2005