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Bad Guy Says:

“I want to flow as much
as possible from r to t”
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Drugs, Enemy Supplies, Nuclear Material
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Good Guy Says

“Not So Fast My Friend”

r t

r t

r t

Jeff can remove certain arcs from the network
Jeff has a budget of K to stop Snidely
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Mathematical Formulation

Interdiction is a binary decision:

xij =

{
1 if interdiction occurs on arc (i, j) ∈ A,

0 otherwise.

f(x): maximum flow in network if I intervene on arcs x

Budget Constraint:

X =

x ∈ {0, 1}|A| |
∑

(i,j)∈A

hijxij ≤ K


Network Interdiction Problem

min
x∈X

f(x)
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Stochastic Network Interdiction

Jeff Is An Idiot

Jeff’s interdictions are not
always successful

r t

r t

r t

Dudley chooses to interdict on arcs
With certain probability, he is successful
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Stochastic Network Interdiction

S: Set of scenarios

ξijs: Bernoulli random variable if interdiction on arc (i, j)

would be successful in scenario s

fs(x): maximum flow if Dudley intervenes on arcs x and
scenario s ∈ S occurs

Stochastic Network Interdiction Problem (SNIP)

min
x∈X

Efs(x) = min
x∈X

∑
s∈S

psfs(x)
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Max Flow

Formulate Max Flow fs(x) as an LP: A′ = A ∪ {(t, r)}

Primal

fs(x) = max
y∈R|A′|

+

ytr

yij ≤ uij(1 − ξijsxij)

∀(i, j) ∈ A

Ny = 0

Dual

min
∑

(i,j)∈A

uij(1 − ξijsxij)ρij

πr − πt ≥ 1

ρij − πi + πj ≥ 0 ∀(i, j) ∈ A

ρij ≥ 0 ∀(i, j) ∈ A
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Strong Duality

For fixed x̂, if Dudley can find (primal) feasible y∗ and (dual)
feasible (π∗, ρ∗) such that

y∗
tr =

∑
(i,j)∈A

uij(1 − ξijsx̂ij)ρij (1)

then max flow fs(x̂) = y∗
tr

Formulation Idea

1 Duplicate (primal and dual) flow variables (y, π, ρ) for each
scenario

2 Enforce primal feasibility, dual feasibility, and equality (1)
for each scenario
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A min min SNIP Formulation

min
∑
s∈S

psytrs

subject to

ytrs −
∑

(i,j)∈A

uij(1 − ξijsxij)ρijs = 0 ∀s ∈ S

∑
(i,j)∈A

hijxij ≤ K

yijs − uij(1 − ξijsxij) ≤ 0 ∀(i, j) ∈ A,∀s ∈ S

Nys = 0 ∀s ∈ S

πrs − πts ≥ 1 ∀s ∈ S

ρijs − πis + πjs ≥ 0 ∀(i, j) ∈ A,∀s ∈ S

(x, y, π, ρ) ∈ B|A| × R|A′||S|
+ × R|N||S| × R|A||S|

+
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Good and Bad

Some nice things about the formulation

It’s a pure minimization problem

There are not “too many” integer variables: (x ∈ B|A|)

If x is fixed, it is decomposible by scenario

Integer variables appear only in the first stage!

A BAD thing about the formulation

ytrs −
∑

(i,j)∈A

uij(1 − ξijsxij)ρijs = 0

xijρijs are nonlinear terms
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Linearization Trick

Introduce auxiliary variables zijs

Let M be an upper bound on ρijs

Then zijs = xijρijs if and only if
1 zijs ≤ Mxij

2 zijs ≤ ρijs

3 zijs ≥ ρijs + M(xij − 1)

Lemma

In any optimal solution to the dual max flow problem,

ρijs ≤ 1, ∀(i, j) ∈ A.
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SNIP: MILP Formulation

min
∑
s∈S

psytrs

subject to

ytrs −
∑

(i,j)∈A

uijρijs +
∑

(i,j)∈A

uijξijszijs = 0 ∀s ∈ S

zijs − xij ≤ 0 ∀(i, j) ∈ A,∀s ∈ S

zijs − ρijs ≤ 0 ∀(i, j) ∈ A,∀s ∈ S

ρijs − zijs + xij ≤ 1 ∀(i, j) ∈ A,∀s ∈ S

Primal Feasibility

Dual Feasibility

(x, y, π, ρ, z) ∈ B|A| × R|A′||S|
+ × R|N||S| × R|A||S|

+ × R|A||S|
+
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Good News and Bad News

Problem is “just” an IP

But it’s big

Name K |N| |A| |B| |S|

SNIP4x4 4 18 32 9 512
SNIP7x5 6 37 72 22 4.2× 106

SNIP4x9 6 38 67 24 1.7× 107

SNIP10x10 10 102 200 65 3.7× 1019

SNIP20x20 20 402 800 253 1.4× 1076

SNIP10x10 has a mere XX variables and XX constraints
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Monte Carlo Methods

min
x∈S

{f(x) ≡ EPg(x; ξ) ≡
∫
Ω

g(x; ξ)dP(ξ)}

Draw ξ1, ξ2, . . . ξN from P

Sample Average Approximation:

f̂N(x) ≡ N−1
N∑

j=1

g(x, ξj)

f̂N(x) is an unbiased estimator of f(x) (E[f̂N(x)] = f(x)).

We instead minimize the Sample Average Approximation:

min
x∈S

{f̂N(x)}
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Lower Bound on the Optimal Objective Function
Value

v∗ = min
x∈S

{f(x)}

v̂N = min
x∈S

{f̂N(x)}

Thm:

E[v̂N] ≤ v∗

The expected optimal solution value for a sampled problem of
size N is ≤ the optimal solution value.
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Estimating E[v̂N]

Generate M independent SAA problems of size N.

Solve each to get v̂
j
N

LN,M ≡ 1

M

M∑
j=1

v̂
j
N

The estimate LN,M is an unbiased estimate of E[v̂N].

√
M [LN,M − E(v̂N)] → N (0, σ2

L)

σ2
L ≡ Var(v̂N)

This variance depends on the sample!
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Confidence Interval

s2
L(M) ≡ 1

M − 1

M∑
j=1

(
v̂

j
N − LN,M

)2

[
LN,M −

zαsL(M)√
M

,LN,M +
zαsL(M)√

M

]
These only apply if the v̂

j
N are i.i.d. random variables.
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Upper Bounds

f(x̂) ≥ v∗ ∀x̂ ∈ S

Generate T independent batches of samples of size N̄

E

f̂
j
N̄

(x) := N̄−1
N̄∑

i=1

g(x, ξi,j)

 = f(x), for all x ∈ X.

UN̄,T (x̂) := T−1
T∑

j=1

f̂
j
N̄

(x̂)
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More Confidence Intervals

√
T [UN̄,T (x̂) − f(x̂)] ⇒ N(0, σ2

U(x̂)), as T → ∞,

σ2
U(x̂) ≡ Var

[
f̂N̄(x̂)

]
Estimate σ2

U(x̂) by the sample variance estimator s2
U(x̂, T)

s2
U(x̂, T) ≡ 1

T − 1

T∑
j=1

[
f̂

j
N̄

(x̂) − UN̄,T (x̂)
]2

.

[
UN̄,T (x̂) −

zαsU(x̂; T)√
T

,UN̄,T (x̂) +
zαsU(x̂; T)√

T

]
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Solution Times

Table of sizes Table of CPLEX times
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Use a Decomposition Approach

ATR: A parallel solver for two-stage stochastic linear
programs, engineered to run a collection of (Condor provided)
non-dedicated CPUs

Uses MW: Master-Worker framework for parallelization

Master: Solves master problem (to determine x̂)

Workers: Evaluate fs(x̂ ∀s ∈ S by solving (indepedent) linear
programs

Since fs(x) is still convex in x, the same cutting plane-based
decomposition approach works to solve the problem, but we
need just solve the master problem as an integer program

For many small SNIP instances, the solution of the linear
relaxation comes out to be nearly integer
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Solution Approach

1 Solve LP Relaxation of SNIP (using ATR)

2 Round (or keep track of relaxed iterations) to get an UB

3 Remove all (most) inactive optimality cuts

4 Solve IP using ATR
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Computational Details

Run an very small configuration of < 50 workstations in
COR@L lab and Grid lab at Lehigh

Run each instance M = 10 times

Upper Bound: N′ = ?

Did not use any variance reduction techniques in the
sampling, which can greatly speed the convergence rate!
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SNIP10x10 K = 10
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SNIP10x10 Example with budget size 10
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SNIP10x10 K = 15
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SNIP10x10 Example with budget size 15
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SNIP10x10 K = 20
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SNIP10x10 Example with budget size 20
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CPU Times: SNIP10x10, K = 10

Sample size Master (avg) Stdev Wall Clk Stdev

50 6.76 7.00 133.44 96.90
100 12.04 17.50 140.34 29.78
200 8.92 1.12 141.34 6.00
500 43.82 8.09 210.54 22.22

1000 140.09 9.19 362.42 13.71
2000 636.77 120.50 960.40 142.62
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Solution Times: SNIP10x10 K = 15

Sample size Master avg Stdev Wall Clk Stdev

50 14.27 9.85 120.63 16.02
100 41.97 27.80 192.32 95.78
200 94.87 38.54 219.90 38.66
500 461.90 289.87 658.39 289.67

1000 2758.29 1572.40 3023.90 1560.25
2000 22882.00 9674.37 23587.25 9502.51
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Solution Times: SNIP10x10 K = 20

Sample size Master avrg Stdev Wall Clk Stdev

50 4.19 5.79 84.50 4.63
100 10.39 7.50 102.87 8.44
200 20.38 12.24 129.07 17.34
500 79.90 37.77 222.20 40.32

1000 232.96 59.24 445.44 72.14
2000 1615.82 531.72 2044.28 559.89
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Conclusions

Jeff didn’t finish

Continuing work: Solve bigger instances!

Parallelize (grid-ify) IP master solve

Thanks to XPRESS-SP

Instances available

Acknowledge grants
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