Problem Definition Reformulation Solution Approach

Network Interdiction Stochastic Network Interdiction

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem

UDOM JANJARASSUK JEFF LINDEROTH

> ISE Department COR@L Lab Lehigh University jtl3@lehigh.edu

INFORMS Annual Meeting San Francisco, CA November 15, 2005

Network Interdiction Stochastic Network Interdiction

Network Interdiction

Problem Elements

Capacitated network, good guys, bad guys

Good Guy:

Network Interdiction Stochastic Network Interdiction

Network Interdiction

Problem Elements

Capacitated network, good guys, bad guys

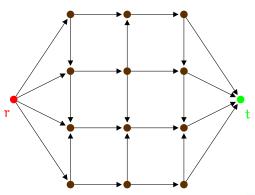
Bad Guy:

Network Interdiction Stochastic Network Interdiction

Network Interdiction

Bad Guy Says:

"I want to flow as much as possible from r to t"

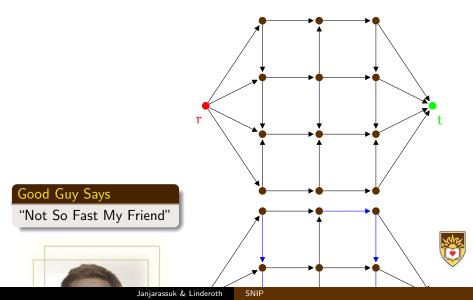


• Drugs, Enemy Supplies, Nuclear Material

Problem Definition Reformulation Solution Approach

Network Interdiction Stochastic Network Interdiction

Network Interdiction



Mathematical Formulation

• Interdiction is a binary decision:

$$x_{ij} = \left\{ \begin{array}{ll} 1 & \text{if interdiction occurs on arc } (i,j) \in A, \\ 0 & \text{otherwise.} \end{array} \right.$$

- $\bullet \ f(x):$ maximum flow in network if I intervene on arcs x
- Budget Constraint:

$$X = \left\{ x \in \{0,1\}^{|A|} \mid \sum_{(i,j) \in A} h_{ij} x_{ij} \leq K \right\}$$

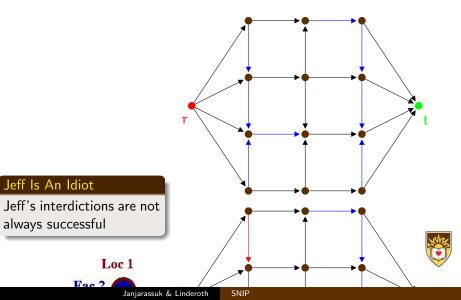
Network Interdiction Problem

$$\min_{\mathbf{x}\in \mathbf{X}}\mathsf{f}(\mathbf{x})$$

Problem Definition Reformulation Solution Approach

Network Interdiction Stochastic Network Interdiction

Stochastic Network Interdiction



Stochastic Network Interdiction

- S: Set of scenarios
- ξ_{ijs} : Bernoulli random variable if interdiction on arc (i,j) would be successful in scenario s
- $f_s(x)$: maximum flow if Dudley intervenes on arcs x and scenario $s \in S$ occurs

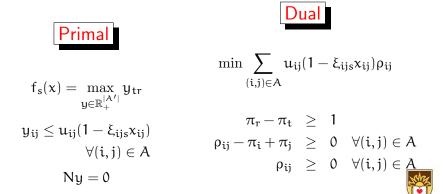
Stochastic Network Interdiction Problem (SNIP)

$$\min_{\mathbf{x}\in \mathbf{X}} \mathbb{E}f_{s}(\mathbf{x}) = \min_{\mathbf{x}\in \mathbf{X}} \sum_{s\in \mathbf{S}} p_{s}f_{s}(\mathbf{x})$$

Duality Linearization

Max Flow

 \bullet Formulate Max Flow $f_s(x)$ as an LP: $A' = A \cup \{(t,r)\}$



Duality Linearization

Strong Duality

• For fixed \hat{x} , if Dudley can find (primal) feasible y^* and (dual) feasible (π^*,ρ^*) such that

$$\mathbf{y}_{tr}^{*} = \sum_{(i,j)\in A} \mathbf{u}_{ij} (1 - \xi_{ijs} \hat{\mathbf{x}}_{ij}) \rho_{ij}$$
(1)

then max flow
$$f_s(\boldsymbol{\hat{x}}) = \boldsymbol{y}_{tr}^*$$

Formulation Idea

- $\textcircled{\ } \textbf{Duplicate (primal and dual) flow variables } (\mathfrak{y}, \pi, \rho) \text{ for each scenario}$
- Enforce primal feasibility, dual feasibility, and equality (1) for each scenario

A $\min\min$ SNIP Formulation

$$\begin{split} \min\sum_{s\in S} p_s y_{trs} \\ \text{subject to} \\ y_{trs} &- \sum_{(i,j)\in A} u_{ij} (1 - \xi_{ijs} x_{ij}) \rho_{ijs} = 0 \quad \forall s \in S \\ \sum_{(i,j)\in A} h_{ij} x_{ij} &\leq K \\ y_{ijs} &- u_{ij} (1 - \xi_{ijs} x_{ij}) &\leq 0 \quad \forall (i,j) \in A, \forall s \in S \\ & Ny_s = 0 \quad \forall s \in S \\ & \pi_{rs} - \pi_{ts} \geq 1 \quad \forall s \in S \\ & \rho_{ijs} - \pi_{is} + \pi_{js} \geq 0 \quad \forall (i,j) \in A, \forall s \in S \\ & (x, y, \pi, \rho) \in \mathbb{B}^{|A|} \times \mathbb{R}^{|A'||S|}_+ \times \mathbb{R}^{|N||S|} \times \mathbb{R}^{|A|}_+ \end{split}$$

Good and Bad

Some nice things about the formulation

- It's a pure minimization problem
- \bullet There are not "too many" integer variables: $(x\in \mathbb{B}^{|A|})$
- If x is fixed, it is decomposible by scenario
- Integer variables appear only in the first stage!

A BAD thing about the formulation

$$y_{\text{trs}} - \sum_{(i,j) \in A} u_{ij} (1 - \xi_{ijs} \boldsymbol{x}_{ij}) \rho_{ijs} = 0$$

• $x_{ij}\rho_{ijs}$ are nonlinear terms

Linearization Trick

- Introduce auxiliary variables z_{ijs}
- \bullet Let M be an upper bound on ρ_{ijs}
- Then $z_{ijs} = x_{ij} \rho_{ijs}$ if and only if

1
$$z_{ijs} \leq Mx_{ij}$$

2 $z_{ijs} \leq \rho_{ijs}$

$$z_{ijs} \geq \rho_{ijs} + M(x_{ij} - 1)$$

Lemma

In any optimal solution to the dual max flow problem,

```
\rho_{\mathfrak{i}\mathfrak{j}\mathfrak{s}}\leq 1,\ \forall (\mathfrak{i},\mathfrak{j})\in A.
```


SNIP: MILP Formulation

$$\min \sum_{s \in S} p_s y_{trs}$$

subject to

$$\begin{split} y_{trs} - \sum_{(i,j)\in A} u_{ij}\rho_{ijs} + \sum_{(i,j)\in A} u_{ij}\xi_{ijs}z_{ijs} &= 0 \quad \forall s \in S \\ z_{ijs} - x_{ij} &\leq 0 \quad \forall (i,j) \in A, \forall s \in S \\ z_{ijs} - \rho_{ijs} &\leq 0 \quad \forall (i,j) \in A, \forall s \in S \\ \rho_{ijs} - z_{ijs} + x_{ij} &\leq 1 \quad \forall (i,j) \in A, \forall s \in S \\ \text{Primal Feasibility} \\ \text{Dual Feasibility} \\ (x, y, \pi, \rho, z) \in \mathbb{B}^{|A|} \times \mathbb{R}^{|A'||S|}_{+} \times \mathbb{R}^{|N||S|}_{+} \times \mathbb{R}^{|A||S|}_{+} \times \mathbb{R}^{|A||S|}_{+} \end{split}$$

Good News and Bad News

- Problem is "just" an IP
- But it's big

Name	К	N	A	$ \mathbf{B} $	S
SNIP4x4	4	18	32	9	512
SNIP7x5	6	37	72	22	4.2×10^{6}
SNIP4×9	6	38	67	24	1.7×10^{7}
SNIP10x10	10	102	200	65	3.7×10^{19}
SNIP20×20	20	402	800	253	1.4×10^{76}

SNIP10x10 has a mere XX variables and XX constraints

Monte Carlo Methods

$$\min_{\mathbf{x}\in S} \{f(\mathbf{x}) \equiv \mathbb{E}_{\mathsf{P}} g(\mathbf{x}; \xi) \equiv \int_{\Omega} g(\mathbf{x}; \xi) d\mathsf{P}(\xi) \}$$

• Draw
$$\xi^1, \xi^2, \dots \xi^N$$
 from P

• Sample Average Approximation:

$$\widehat{f}_N(x)\equiv N^{-1}\sum_{j=1}^N g(x,\xi^j)$$

• $\widehat{f}_N(x)$ is an unbiased estimator of f(x) ($\mathbb{E}[\widehat{f}_N(x)] = f(x)$).

• We instead minimize the Sample Average Approximation:

$$\min_{x \in S} \{ \widehat{f}_N(x) \}$$

Problem Definition Reformulation Solution Approach Computational Resu

Lower Bound on the Optimal Objective Function Value

$$v^* = \min_{x \in S} \{f(x)\}$$

$$\hat{\nu}_N = \min_{x \in S} \{ \widehat{f}_N(x) \}$$

Thm:

$$\mathbb{E}[\hat{\nu}_N] \leq \nu^*$$

• The expected optimal solution value for a sampled problem of size N is \leq the optimal solution value.

Estimating $\mathbb{E}[\boldsymbol{\hat{\nu}}_N]$

- Generate M independent SAA problems of size N.
- \bullet Solve each to get $\widehat{\nu}_N^j$

$$L_{N,M} \equiv \frac{1}{M} \sum_{j=1}^{M} \widehat{v}_{N}^{j}$$

 \bullet The estimate $L_{N,M}$ is an unbiased estimate of $\mathbb{E}[\widehat{\nu}_N].$

$$\sqrt{M}\left[L_{N,M} - \mathbb{E}(\widehat{\nu}_N)\right] \to \mathcal{N}(\mathbf{0},\sigma_L^2)$$

- $\bullet \ \sigma_L^2 \equiv \mathsf{Var}(\widehat{\nu}_N)$
- This variance depends on the sample!

Confidence Interval

$$s_{\rm L}^2(M) \equiv \frac{1}{M-1} \sum_{j=1}^{M} \left(\widehat{\nu}_{\rm N}^{j} - L_{{\rm N},M} \right)^2$$
$$\left[L_{{\rm N},M} - \frac{z_{\alpha} s_{\rm L}(M)}{\sqrt{M}}, L_{{\rm N},M} + \frac{z_{\alpha} s_{\rm L}(M)}{\sqrt{M}} \right]$$

• These only apply if the $\widehat{\nu}_N^{\,j}$ are i.i.d. random variables.

Upper Bounds

$$\mathsf{f}(\hat{x}) \geq \nu^* \quad \forall \hat{x} \in S$$

 \bullet Generate T independent batches of samples of size \bar{N}

$$\begin{split} \mathbb{E}\left[\widehat{f}_{\bar{N}}^{j}(x) &:= \bar{N}^{-1}\sum_{i=1}^{\bar{N}}g(x,\xi^{i,j})\right] &= f(x), \ \, \mathrm{for \ all} \ x \in X.\\ U_{\bar{N},T}(\hat{x}) &:= T^{-1}\sum_{j=1}^{T}\widehat{f}_{\bar{N}}^{j}(\hat{x}) \end{split}$$

More Confidence Intervals

$$\sqrt{T} \, [\boldsymbol{U}_{\bar{N},T}(\boldsymbol{\hat{x}}) - \boldsymbol{f}(\boldsymbol{\hat{x}})] \Rightarrow \mathsf{N}(\boldsymbol{0}, \sigma_{U}^{2}(\boldsymbol{\hat{x}})), \;\; \text{as} \; T \rightarrow \infty,$$

•
$$\sigma_{U}^{2}(\hat{x}) \equiv \text{Var}\left[\widehat{f}_{\bar{N}}(\hat{x})\right]$$

 \bullet Estimate $\sigma^2_U(\hat{x})$ by the sample variance estimator $s^2_U(\hat{x},T)$

$$s_{\mathrm{U}}^{2}(\hat{\mathbf{x}},\mathsf{T}) \equiv \frac{1}{\mathsf{T}-1} \sum_{j=1}^{\mathsf{T}} \left[\widehat{f}_{\bar{\mathbf{N}}}^{j}(\hat{\mathbf{x}}) - \mathbf{U}_{\bar{\mathbf{N}},\mathsf{T}}(\hat{\mathbf{x}}) \right]^{2}.$$
$$\left[\mathbf{U}_{\bar{\mathbf{N}},\mathsf{T}}(\hat{\mathbf{x}}) - \frac{\mathbf{z}_{\alpha} \mathbf{s}_{\mathrm{U}}(\hat{\mathbf{x}};\mathsf{T})}{\sqrt{\mathsf{T}}}, \mathbf{U}_{\bar{\mathbf{N}},\mathsf{T}}(\hat{\mathbf{x}}) + \frac{\mathbf{z}_{\alpha} \mathbf{s}_{\mathrm{U}}(\hat{\mathbf{x}};\mathsf{T})}{\sqrt{\mathsf{T}}} \right]$$

Problem Definition Reformulation Solution Approach Sampling Decomposition Computational Results

Solution Times

Table of sizes

Table of CPLEX times

Use a Decomposition Approach

- ATR: A parallel solver for two-stage stochastic linear programs, engineered to run a collection of (Condor provided) non-dedicated CPUs
- Uses MW: Master-Worker framework for parallelization
- Master: Solves master problem (to determine \hat{x})
- Workers: Evaluate ${\sf f}_s(\hat{x} \; \forall s \in S \text{ by solving (indepedent) linear programs}$
- Since f_s(x) is still convex in x, the same cutting plane-based decomposition approach works to solve the problem, but we need just solve the master problem as an integer program
- For many small SNIP instances, the solution of the linear relaxation comes out to be nearly integer

Solution Approach

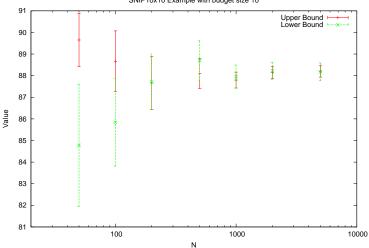
- Solve LP Relaxation of SNIP (using ATR)
- Ø Round (or keep track of relaxed iterations) to get an UB
- 8 Remove all (most) inactive optimality cuts
- Solve IP using ATR

Computational Details

- Run an very small configuration of < 50 workstations in COR@L lab and Grid lab at Lehigh
- Run each instance M = 10 times
- Upper Bound: N' = ?
- Did not use any variance reduction techniques in the sampling, which can greatly speed the convergence rate!

Problem Definition Sampling Reformulation Decomposition Solution Approach Computational Results

SNIP10x10 K = 10



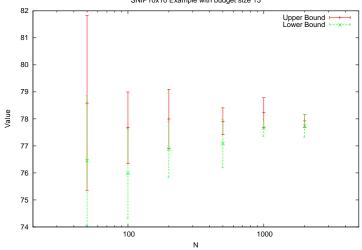
SNIP10x10 Example with budget size 10

Janjarassuk & Linderoth

SNIP

Problem Definition Sampling Reformulation Decomposition Solution Approach Computational Results

SNIP10x10 K = 15

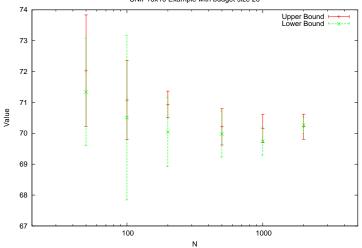


SNIP10x10 Example with budget size 15

Janjarassuk & Linderoth SNIP

Problem Definition Sampling Reformulation Decomposition Solution Approach Computational Results

$SNIP10 \times 10 K = 20$



SNIP

Janjarassuk & Linderoth

SNIP10x10 Example with budget size 20

Problem Definition Reformulation Solution Approach Sampling Decomposition Computational Results

CPU Times: SNIP10x10, K = 10

Sample size	Master (avg)	Stdev	Wall Clk	Stdev
50	6.76	7.00	133.44	96.90
100	12.04	17.50	140.34	29.78
200	8.92	1.12	141.34	6.00
500	43.82	8.09	210.54	22.22
1000	140.09	9.19	362.42	13.71
2000	636.77	120.50	960.40	142.62

Problem Definition Reformulation Solution Approach Computat

Sampling Decomposition Computational Results

Solution Times: SNIP10x10 K = 15

Sample size	Master avg	Stdev	Wall Clk	Stdev
50	14.27	9.85	120.63	16.02
100	41.97	27.80	192.32	95.78
200	94.87	38.54	219.90	38.66
500	461.90	289.87	658.39	289.67
1000	2758.29	1572.40	3023.90	1560.25
2000	22882.00	9674.37	23587.25	9502.51

Problem Definition Reformulation Solution Approach

Sampling Decomposition Computational Results

Solution Times: SNIP10x10 K = 20

Sample size	Master avrg	Stdev	Wall Clk	Stdev
50	4.19	5.79	84.50	4.63
100	10.39	7.50	102.87	8.44
200	20.38	12.24	129.07	17.34
500	79.90	37.77	222.20	40.32
1000	232.96	59.24	445.44	72.14
2000	1615.82	531.72	2044.28	559.89

Conclusions

- Jeff didn't finish
- Continuing work: Solve bigger instances!
- Parallelize (grid-ify) IP master solve
- Thanks to XPRESS-SP
- Instances available
- Acknowledge grants

