An Approximation Algorithm for Cover Inequality Separation

Wasu Glankwamdee

References

- An Fast Algorithm for Cover Inequality Separation by O. Oguz, Department of Industrial Engineering, Bilkent University, Turkey.
- Benchmarking Optimization Software with Performance Profiles by E. D. Dolan and J. J. Moré, Mathematical Programming, 91, 201-213, 2002.
- Performance Profiles Python Script by M. Friedlander, www.cs.ubc.ca/ $\sim m p f /$ pprof.html

Performance Profiles

- We have n_{s} solvers and n_{p} problems.
- $t_{p, s}=$ computing time required to solve problem p by solver s.
- Performance ratio,

$$
r_{p, s}=\frac{t_{p, s}}{\min \left\{t_{p, s}: s \in \mathcal{S}\right\}}
$$

- Probability for solver $s \in \mathcal{S}$ that $r_{p, s}$ is within a factor of $\tau \in R$ of the best possible ratio,

$$
\rho_{s}(\tau)=\frac{1}{n_{p}} \operatorname{size}\left\{p \in \mathcal{P}: r_{p, s} \leq \tau\right\}
$$

Example

	solver1	solver2	$r_{p, s 1}$	$r_{p, s 2}$
p1	-1	4685.71	X	1
p2	2.91	23.66	1	8.13
p3	296.94	113323.79	1	44.87
p4	23.71	107.62	1	4.54

Performance Profile

Cover Inequalities for 0-1 Knapsack

- $X=\left\{x \in B^{n}: \sum_{j=1}^{n} a_{j} x_{j} \leq b\right\}$.
- A set $C \subseteq N$ is a cover if $\sum_{j \in C} a_{j}>b$.
- A cover is minimal if $C \backslash\{j\}$ is not a cover for any $j \in C$.
- If $C \subseteq N$ is a cover for X, the cover inequality $\sum_{j \in C} x_{j} \leq|C|-1$ or $\sum_{j \in C}\left(1-x_{j}\right) \geq 1$ is valid for X.

Performance Profile

- 55 mixed $0-1$ instances from MIPLIB, 8 hours.

Separation Problem

- Given a nonintegral point x^{*} with $0 \leq x_{j}^{*} \leq 1$ for all $j \in N$.
- We wish to know whether x^{*} satisfies all the cover inequalities.
- Does there exists a set $C \subseteq N$ with $\sum_{j \in C} a_{j}>b$ for which $\sum_{j \in C}\left(1-x_{j}^{*}\right)<1 ?$

$$
\zeta=\min \left\{\sum_{j \in N}\left(1-x_{j}^{*}\right) z_{j}: \sum_{j \in N} a_{j} z_{j} \geq b+1, z \in B^{n}\right\}<1 ?
$$

where $z_{j}=1$ if $j \in C$ and $z_{j}=0$ otherwise.

- If $\zeta<1$, there exists a violated cover that cuts off x^{*}.
- Separation problem is $N P$-Complete.

Solving 0-1 Knapsack by DP

- $\max \left\{C x: A x \leq b, x \in B^{n}\right\}$.
- Solve recursion,

$$
f_{r}(\lambda)=\max \left\{f_{r-1}(\lambda), f_{r-1}\left(\lambda-a_{i}\right)+c_{r}\right\}
$$

where $1 \leq r \leq n$ and $0 \leq \lambda \leq b$.

- Record solution pairs $\left(\lambda, f_{r}(\lambda)\right)$.
- Optimal solution $=f_{n}(b)$.
- Complexity: $O(n b)$ in time and $O(n \log b)$ in space.

Scaling Up

- Original

$$
\min \sum_{j=1}^{n}\left(1-x_{j}\right) z_{j}
$$

- Scaled Up

$$
\min \sum_{j=1}^{n} d_{j} z_{j}
$$

where $d_{j}=\left\lfloor 10^{k}\left(1-x_{j}\right)\right\rfloor$

- Subject to

$$
\begin{gathered}
\sum_{j=1}^{n} a_{j} z_{j} \geq b+1 \\
z_{j} \in\{0,1\}
\end{gathered}
$$

Facts About Scaling Up

- Maximum error $R(k)$,

$$
R(k)=\sum_{j=1}^{n}\left(\left(1-x_{j}\right)-\frac{d_{j}}{10^{k}}\right)
$$

- $R(k)>0$ and $\lim _{k \rightarrow \infty} R(k)=0$.

Important Fact

- There exists a violated cut only when the objective function value is less than 10^{k}.
- Consider the objective function as a constraint and the new objective is to maximize the knapsack size.

Inversion

- max

$$
\sum_{j=1}^{n} a_{j} z_{j}
$$

subject to

$$
\begin{gathered}
\sum_{j=1}^{n} d_{j} z_{j} \leq 10^{k} \\
z_{j} \in\{0,1\}
\end{gathered}
$$

- Solve recursion,

$$
f_{j}(y)=\max \left\{f_{j-1}(y), f_{j-1}\left(y-d_{j}\right)+a_{j}\right\}
$$

where $1 \leq j \leq n$ and $0 \leq y \leq 10^{k}$.

Facts About Inversion

- Find $f_{n}(y)>b$, then stop.
- RHS of the constraint is bounded by 10^{k} for every problem instance.
- Complexity is $10^{k} O(n)$.

Expected Error

- Error depends on the number of $z_{j}=1$ in the inversion problem.
- How many $z_{j}=1$ in each violated cut?
- Rewrite the constraint in the inversion as,

$$
\sum_{j=1}^{n} \frac{\left\lfloor 10^{k}\left(1-x_{j}^{*}\right)\right\rfloor}{10^{k}} z_{j} \leq 1
$$

- Let $S=\left\{j \mid z_{j}=1\right\} .|S|$ is a random variable.
- Assume $\frac{\left\lfloor 10^{k}\left(1-x_{j}^{*}\right)\right\rfloor}{10^{k}} z_{j}$ is a random variable with uniform distribution on $[0,1]$ and iid.

Proof by Counting Process

- Count the number of $z_{j}=1$.

$$
N(t)=\max \left\{n \mid \sum_{j=1}^{n} x_{j} \leq t\right\}
$$

where $x_{j}=\frac{\left\lfloor 10^{k}\left(1-x_{j}^{*}\right)\right\rfloor}{10^{k}} z_{j}$.

- $E[N(1)]=e=2.71$.
- For $k=2$, the truncated part has uniform distribution in $[0,0.01]$ with mean $=0.005$.
- Expected error $=2.71 \times 0.005=0.01355$.

Computational Results

- Solve a set of $0-1$ IP problems range between 10 and 1000 constraints, 20 and 2000 variables. $k=2$ or 3 .
- The algorithm generates 15% more cuts than the greedy algorithm.

