An Approximation Algorithm for Cover Inequality Separation

Wasu Glankwamdee

- An Fast Algorithm for Cover Inequality Separation by O.
 Oguz, Department of Industrial Engineering, Bilkent University, Turkey.
- Benchmarking Optimization Software with Performance Profiles by E. D. Dolan and J. J. Moré, Mathematical Programming, 91, 201-213, 2002.
- Performance Profiles Python Script by M. Friedlander, www.cs.ubc.ca/~mpf/pprof.html

Performance Profiles

- We have n_s solvers and n_p problems.
- $t_{p,s}$ = computing time required to solve problem p by solver s.
- Performance ratio,

$$r_{p,s} = \frac{t_{p,s}}{\min\{t_{p,s} : s \in \mathcal{S}\}}.$$

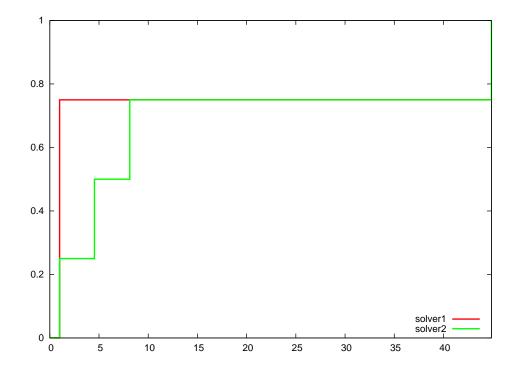
• Probability for solver $s \in S$ that $r_{p,s}$ is within a factor of $\tau \in R$ of the best possible ratio,

$$\rho_s(\tau) = \frac{1}{n_p} \operatorname{size} \{ p \in \mathcal{P} : r_{p,s} \le \tau \}.$$

Example

	solver1	solver2	$r_{p,s1}$	$r_{p,s2}$
p1	-1	4685.71	Х	1
p2	2.91	23.66	1	8.13
p3	296.94	113323.79	1	44.87
p4	23.71	107.62	1	4.54

Performance Profile



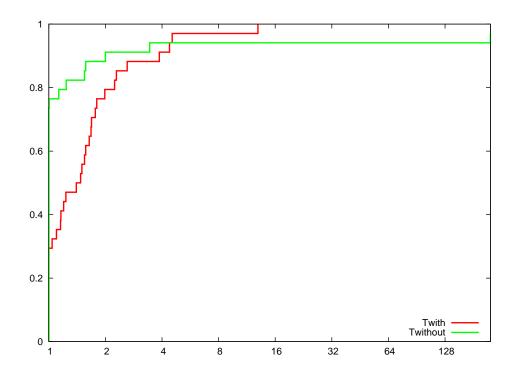
Cover Inequalities for 0 - 1 Knapsack

•
$$X = \{x \in B^n : \sum_{j=1}^n a_j x_j \le b\}.$$

- A set $C \subseteq N$ is a cover if $\sum_{j \in C} a_j > b$.
- A cover is minimal if $C \setminus \{j\}$ is not a cover for any $j \in C$.
- If $C \subseteq N$ is a cover for X, the cover inequality $\sum_{j \in C} x_j \leq |C| - 1$ or $\sum_{j \in C} (1 - x_j) \geq 1$ is valid for X.

Performance Profile

• 55 mixed 0 - 1 instances from MIPLIB, 8 hours.



Separation Problem

- Given a nonintegral point x^* with $0 \le x_j^* \le 1$ for all $j \in N$.
- We wish to know whether x^* satisfies all the cover inequalities.
- Does there exists a set $C \subseteq N$ with $\sum_{j \in C} a_j > b$ for which $\sum_{j \in C} (1 x_j^*) < 1$?

$$\zeta = \min\{\sum_{j \in N} (1 - x_j^*) z_j : \sum_{j \in N} a_j z_j \ge b + 1, z \in B^n\} < 1?$$

where $z_j = 1$ if $j \in C$ and $z_j = 0$ otherwise.

- If $\zeta < 1$, there exists a violated cover that cuts off x^* .
- Separation problem is *NP*-Complete.

Solving 0 - 1 Knapsack by DP

- $\max\{Cx : Ax \le b, x \in B^n\}.$
- Solve recursion,

$$f_r(\lambda) = \max\{f_{r-1}(\lambda), f_{r-1}(\lambda - a_i) + c_r\}$$

where $1 \leq r \leq n$ and $0 \leq \lambda \leq b$.

- Record solution pairs $(\lambda, f_r(\lambda))$.
- Optimal solution = $f_n(b)$.
- Complexity: O(nb) in time and $O(n \log b)$ in space.

Scaling Up

• Original

$$\min\sum_{j=1}^n (1-x_j)z_j$$

• Scaled Up

$$\min\sum_{j=1}^n d_j z_j$$

where $d_j = \lfloor 10^k (1 - x_j) \rfloor$

• Subject to

$$\sum_{j=1}^{n} a_j z_j \ge b+1$$
$$z_j \in \{0,1\}$$

Facts About Scaling Up

• Maximum error R(k),

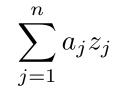
$$R(k) = \sum_{j=1}^{n} \left((1 - x_j) - \frac{d_j}{10^k} \right).$$

•
$$R(k) > 0$$
 and $\lim_{k \to \infty} R(k) = 0$.

- There exists a violated cut only when the objective function value is less than 10^k .
- Consider the objective function as a constraint and the new objective is to maximize the knapsack size.

Inversion

• max



subject to

$$\sum_{j=1}^{n} d_j z_j \le 10^k$$
$$z_j \in \{0, 1\}$$

• Solve recursion,

$$f_j(y) = \max\{f_{j-1}(y), f_{j-1}(y-d_j) + a_j\}$$

where $1 \le j \le n$ and $0 \le y \le 10^k$.

Facts About Inversion

- Find $f_n(y) > b$, then stop.
- RHS of the constraint is bounded by 10^k for every problem instance.
- Complexity is $10^k O(n)$.

Expected Error

- Error depends on the number of $z_j = 1$ in the inversion problem.
- How many $z_j = 1$ in each violated cut?
- Rewrite the constraint in the inversion as,

$$\sum_{j=1}^{n} \frac{\lfloor 10^k (1 - x_j^*) \rfloor}{10^k} z_j \le 1$$

- Let $S = \{j | z_j = 1\}$. |S| is a random variable.
- Assume $\frac{\lfloor 10^k(1-x_j^*) \rfloor}{10^k} z_j$ is a random variable with uniform distribution on [0, 1] and iid.

Proof by Counting Process

• Count the number of $z_j = 1$.

$$N(t) = \max\{n | \sum_{j=1}^{n} x_j \le t\}$$

where
$$x_j = \frac{\lfloor 10^k (1 - x_j^*) \rfloor}{10^k} z_j$$
.

•
$$E[N(1)] = e = 2.71.$$

- For k = 2, the truncated part has uniform distribution in [0, 0.01] with mean = 0.005.
- Expected error = $2.71 \times 0.005 = 0.01355$.

Computational Results

- Solve a set of 0 1 IP problems range between 10 and 1000 constraints, 20 and 2000 variables. k = 2 or 3.
- The algorithm generates 15% more cuts than the greedy algorithm.