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Introduction

Definition 1. An embedded network is a structure appearing within a
problem consisting of a subset of constraints and variables which define a
network flow problem. The remaining constraints are referred to as side

constraints.

e The main goal of the paper is to exploit the embedded network structure
to create an advanced basis via decomposition methods.



Problem Statement
Consider the primal LP

T

min cx
s.t. Axr =0b
[ <z <u

where A € R™*"™ ¢, x,l,u € R", and b € R™.



Network Decompostion

If we assume that we can detect a submatrix of network rows and columns
of A is detected, and let N denote thh pure network structure, we can
rewrite (1) as

min wo="c o+

s.t.  Na'=UV (2)
Sz’ +Tx" =b"
<2 <

l// S LE// S u//

where

3

= M1+ Mz, N = N1+ N2,
N = [n’&J] c Rm1><n1’ S = [S%J] c RmQXn1’T — [tz’j] c RmQXTLQ’
C/, 7! l/7 = Rnl, C//, x//) l”, = an’ = le7 b € R™2
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Solving LPEN with Advanced Basis

Two things we know:

e For large-scale LPs, using an advanced basis improves sparse simplex
performance

e Calculation of the initial basis is very important

= Construct an algorithm which exploits the embedded network structure
to create an advanced basis!



Decomposition Methods

Lagrangean Relaxation

e Creates a pure network flow model by adding the non-network constraints
into the objective function with Lagrangean penalties

e A series of minimum cost NFPs corresponding to different values of
Lagrangean multipliers are solved iteratively

Benders Decomposition
e Decomposes the LP problem in to a master and a subproblem

e Cuts obtained from the subproblem are added to the master problem at
each iteration



The Algorithm

Step 1: Preprocessing and Scaling

Step 2: Network Detection

— Detect the network structure and decompose the problem as in 2
Step 3: Solve the Decomposition Problem and Create a Starting Basis
— Apply Lagrangean Relaxation OR Benders Decomposition

Step 4: Complete Sparse Simplex Solution

— Process the LPEN applying simplex method of choice using starting
basis obtained in Step 3



Lagrangean Relaxation

Relaxing the side constraints Sz’ + Tz = b" vields the Lagrangean
g y g g
relaxation

min 2z = A0+ (c’T — )\TS) x4 (c"T — )\TT) z"

S.t. Nz' =1 (3)

A € R™2 and unrestricted

Note that (3) is a pure NFP and can be solved efficiently using network
simplex.



Lagrangean Relaxation
The dual of the the original LP (2) is given by

ZITO'1 —+ l//TO'Q — ’U,/Tnl — ZNTT]Q

max Vw4 A+
S.t. N'r 4+ STX + oy —m=c (4)
TT)\ —+ 02 — 12 = C//

01,02,11,17)2 Z 0

e This problem is the same as the dual of (3), with different RHS values

e The Lagrangean dual problem of (2) w.r.t. the side constraints is to find
multipliers A* that maximizes zpy)

2Ly = max {(gljcr}/) (C’T — )\TS) x’ + (c”T — )\TT) x”} (5)
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Finding the Multipliers

To determine the Lagrangean multipliers A, we solve the LP

2wy = maxw
S.t. w< fi+AMg, j=1,...,K (6)

(7)

where f; is the objective value of (2), ¢’ is the subgradient of the jth basic
solution

/T g nl g ; 7, 17 75
fi=cd 27+ 2", ¢ =v" — S —Ta"

and K is the number of all basic solutions of the Lagrangean problem.
Note:

° ZZ(A) < zp for all A

o J Lagrangean multipliers A* such that 27 ., = 23 (not true in general)
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Crash Procedures

e Crash procedures are designed to create an initial basis to provide an
advanced starting point

e |t is well known that a starting basis with multiple structural (as opposed
to logical) variables needs fewer iterations an less time to find an optimal
solution

e [riangular crash procedures find a basis matrix which has as many
structural variables as possible in such a way that the resulting basis
matrix has a triangular form with a zero-free diagonal

— The triangularity of the basis matrix ensures that a factored inverse
representation of the basis with a minimum number of non-zeros can
be trivially created
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Network Based Crash Procedures

e For given ) the Lagrangean relaxation is a minimum cost NFP =- feasible
or optimal basis has triangular form

— Leads to a lower triangular crash procedure considering only variables
which are basic in the network optimal solution

e Construct initial basis from basic variables of the network problem
and logical variables of non-network rows, apply network based crash
procedure (i.e. CNET2)
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Benders Motivation

The embedded NFP can be considered as a 2-stage problem in which the
network and non-networks part are the 1st and 2nd stages, respectively.

= Use Benders decomposition to create an advanced basis for solving the
original LPEN problem
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Benders Decomposition

We can split the original problem (2) into a master problem

T

min 2y =c &
s.t. Nz' =1
l/ S QU, S u/
and a subproblem
. T
min 29 =c"" 2"

s.t. Tx" =bv" — Sz'™

1" < o < 2y

where " is an optimal solution of (8).



15

Subproblem Dual
The dual of the subproblem (9) is given by

*
max  m (b — S2') —miu +wil”
st. mT<c"
1 free

m2, T3 Z 0

(10)
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The Cuts

e From duality theory, we have a feasibility cut of the form

i (b —8x”) —mou” + 731" <0

e |f we let 6 denote the smallest value of the upper bound of the objective
function of (10), we have an optimality cut of the form

0—7mi (b — Sz +miu —7m3l" >0
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Creating an Advanced Basis

Let 2% = ((x’)k,(x”)k) denote the solution vector of the master and
subproblem in the kth pass

e This solution may be infeasible, feasible, or feasible and optimal for the
original LPEN problem

e (Create the starting basis as follows

— The variable z¥ for the ith component appears as a basic variable in
the solution of the master or subproblem = basic

— If not = non-basic, analyze the solution values
x xF = [, = non-basic at lower bound

*x TP = u; = non-basic at upper bound

;TAN

~

e The basis factorization procedure INVERT uses this info to create an
initial factorization of this basis as a simplex starting point for the LPEN
problem
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Conclusions and Future Directions

e |t is shown that exploiting the embedded network structure significantly
improves the performance of the simplex algorithm

— See the paper for the computational results and comparisons among
different procedures

e Refinement of decomposition methods will most likely lead to further
improvement of the procedure...



