Aggregation and Mixed Integer Rounding to Solve MILPs (Marchand and Wolsey)

Matthew Galati
SAS Institute - Analytical Solutions
Lehigh University - Department of Industrial and Systems Engineering

$$
\text { July 7, } 2005
$$

Classical Cutting Planes for MILP

- Special Structures (valid for certain relaxations of MILPs)
- Knapsack / Gub Cover, Pack (many applications)
- Flow Cover / Path (fixed charge network flow, lot-sizing, ...)
- Cliques / Odd-Hole (set partitioning, covering, packing)
- Implied Bound (logical implications between binary variables)
- Generic Cuts (valid for any MILP)
- Gomory Mixed Integer
- Mixed Integer Rounding

Mixed Integer Rounding-MIR

- Almost everything comes from considering the following very simple set, and very simple observation.

$$
X=\left\{(x, y) \in \mathbb{R}_{+} \times \mathbb{Z} \mid y \leq b+x\right\}
$$

- Let $f=b-\lfloor b\rfloor$. Then a valid inequality for X is:

$$
y \leq\lfloor b\rfloor+\frac{1}{1-f} x
$$

(Simple) Extension of MIR

$$
X=\left\{(x, y) \in \mathbb{R}_{+}^{2} \times \mathbb{Z}_{+}^{|N|} \mid \sum_{j \in N} a_{j} y_{j}+x^{+} \leq b+x^{-}\right\}
$$

- $f=b-\lfloor b\rfloor$
- $f_{j}=a_{j}-\left\lfloor a_{j}\right\rfloor$
- The inequality

$$
\sum_{j \in N}\left(\left\lfloor a_{j}\right\rfloor+\frac{\left(f_{j}-f\right)^{+}}{1-f}\right) y_{j} \leq\lfloor b\rfloor+\frac{x^{-}}{1-f}
$$

is valid for X.

- X is a one-row relaxation of a general mixed integer program, where all of the continuous variables have been aggregated into two variables (one with positive coefficients, one with negative coefficients).

Gomory Cuts are special cases of MIRs

- Consider the set
$X^{=}=\left\{\left(x, y_{0}, y\right) \in \mathbb{R}_{+}^{2} \times \mathbb{Z} \times \mathbb{Z}_{+}^{|N|} \mid y_{0}+\sum_{j \in N} a_{j} y_{j}+x^{+}-x^{-}=b\right\}$
which is essentially the row of an LP tableau with y_{0} the basic variable and x^{+}, x^{-}the sum of the continuous variables with positive and negative coefficients.
- Relax the equality to an inequality and apply MIR.

Proof.

$$
\begin{align*}
y_{0}+\sum_{j \in N}\left(\left\lfloor a_{j}\right\rfloor+\frac{\left(f_{j}-f\right)^{+}}{1-f}\right) y_{j} & \leq\lfloor b\rfloor+\frac{x^{-}}{1-f} \tag{1}\\
b-\sum_{j \in N} a_{j} y_{j}-x^{+}+x^{-}+\sum_{j \in N}\left(\left\lfloor a_{j}\right\rfloor+\frac{\left(f_{j}-f\right)^{+}}{1-f}\right) y_{j} & \leq\lfloor b\rfloor+\frac{x^{-}}{1-f} \tag{2}\\
-b+\sum_{j \in N} a_{j} y_{j}+x^{+}-x^{-}-\sum_{j \in N}\left(\left\lfloor a_{j}\right\rfloor+\frac{\left(f_{j}-f\right)^{+}}{1-f}\right) y_{j} & \geq-\lfloor b\rfloor-\frac{x^{-}}{1-f} \tag{3}\\
\sum_{j \in N} f_{j} y_{j}+x^{+}-x^{-}-\sum_{j \in N} \frac{\left(f_{j}-f\right)^{+}}{1-f} y_{j} & \geq f-\frac{x^{-}}{1-f} \tag{4}\\
\sum_{j \in N} f_{j} y_{j}+x^{+}+\frac{f}{1-f} x^{-}-\sum_{j \in N_{2}} \frac{f_{j}-f}{1-f} y_{j} & \geq f \tag{5}\\
\sum_{j \in N_{1}} f_{j} y_{j}+x^{+}+\frac{f}{1-f} x^{-}+\sum_{j \in N_{2}}\left(f_{j}-\frac{f_{j}-f}{1-f}\right) y_{j} & \geq f \tag{6}
\end{align*}
$$

- (6) is the Gomory Mixed Integer Cut.

Residual Capacity Cuts are special cases of MIRs

$$
X^{F}=\left\{(x, y) \in \mathbb{R}_{+} \times \mathbb{Z}_{+} \mid x \leq C y, x \leq d\right\}
$$

- X^{F} is a structure common to many network design models.
- The Residual Capacity Inequality for X^{F} is a MIR Inequality.

$$
x \leq d-(d-C(\eta-1))(\eta-y)
$$

with $\eta=\left\lceil\frac{d}{C}\right\rceil$

Mixed Cover Cuts are special cases of MIRs

$$
X^{B}=\left\{(s, y) \in \mathbb{R}_{+} \times \mathbb{B}^{|N|} \mid \sum_{j \in N} a_{j} y_{j} \leq b+s\right\}
$$

- X^{B} is the mixed 0-1 knapsack set, and is common in many applications.
- The Mixed Cover Inequality for X^{B} is a MIR Inequality.

$$
\sum_{j \in E(C)} \min \left(a_{j}, \lambda\right) y_{j} \leq-\lambda+\sum_{j \in C} \min \left(a_{j}, \lambda\right)+s
$$

where $C \subseteq N$ with $\sum_{j \in C} a_{j}=b+\lambda, \max _{j \in C} a_{j}>\lambda>0$, and $E(C)=C \cup\left\{j \in N \backslash C \mid a_{j} \geq \max _{j \in C} a_{j}\right\}$.

Weight Inequalities are special cases of MIRs

$$
\begin{aligned}
X^{W}=\left\{(x, y) \in \mathbb{R}_{+}^{|P|} \times \mathbb{Z}_{+}^{|N|} \mid \sum_{j \in P} a_{j} x_{j}+\sum_{j \in N} a_{j} y_{j}\right. & \leq b \\
x_{j} & \leq u_{j} \text { for } j \in P \\
y_{j} & \left.\leq h_{j} \text { for } j \in N\right\}
\end{aligned}
$$

- X^{W} is a general mixed knapsack set.
- The Weight Inequality for X^{W} is a MIR Inequality.

$$
\sum_{j \in Q} a_{j} x_{j}+\sum_{j \in T} a_{j} y_{j}+\sum_{j \in N \backslash T}\left(a_{j}-\mu\right)^{+} y+j \leq b-\mu
$$

where $T \subseteq N, Q \subseteq P$ with $\mu=b-\sum_{j \in Q} a_{j} u_{j}-\sum_{j \in T} a_{j} h_{j}>0$ and $\max _{j \in N \backslash T} a_{j}>\mu$.

Mixed Knapsack Set and c-MIR Inequalities

$$
X^{M K}=\left\{(s, y) \in \mathbb{R}_{+} \times \mathbb{Z}_{+}^{|N|} \mid \sum_{j \in N} a_{j} y_{j} \leq b+s, y_{j} \leq u_{j} \text { for } j \in N\right\}
$$

- $X^{M K}$ is called a Mixed Knapsack Set.
- $X^{M K}$ is a one-row relaxation of a general mixed integer program, where all of the continuous variables have been aggregated into two variables (one with positive coefficients s^{+}, one with negative coefficients s^{-}. Then, the row is relaxed more by removing s^{+}and setting $s=s^{-}$.
- Let (T, C) be some partition of N and $\delta>0$. To form a complemented MIR (c-MIR) inequality for $X^{M K}$.
(1) Complement the variables in C with their upper bounds.
(2) Divide through by some scale factor $\delta>0$.
(3) Apply mixed integer rounding to the resulting set.

Mixed Knapsack Set and c-MIR Inequalities

- Let $\beta=\left(b-\sum_{j \in C} a_{j} u_{j}\right) / \delta$.
- For a given partition (T, C) and scale factor δ, this results in the following set

$$
X_{(T, C), \delta}^{M K}=\left\{(s, y) \in \mathbb{R}_{+} \times \mathbb{Z}_{+}^{|N|} \left\lvert\, \sum_{j \in T} \frac{a_{j}}{\delta} y_{j}+\sum_{j \in C} \frac{-a_{j}}{\delta} y_{j} \leq \beta+\frac{s}{\delta}\right.\right\}
$$

with the following c-MIR inequality

$$
\sum_{j \in T} G\left(\frac{a_{j}}{\delta}\right) y_{j}+\sum_{j \in C} G\left(\frac{-a_{j}}{\delta}\right)\left(u_{j}-y_{j}\right) \leq \beta+\frac{s}{\delta(1-f)}
$$

where $f=\beta-\lfloor\beta\rfloor$, and $G(d)=\lfloor d\rfloor+\frac{\left(f_{d}-f\right)^{+}}{1-f}$, with $f_{d}=d-\lfloor d\rfloor$.

Separation Procedure for MILPs

Classify the original constraints into mixed integer rows M, and add slacks to get equalities.

$$
\sum_{j \in P} a_{j}^{i} x_{j}+\sum_{j \in N} g_{j}^{i} y_{j}=b_{i} \text { for } i \in M
$$

(1) Aggregation: Combine rows $S \subseteq M$ to obtain a single mixed integer constraint.
(2) Bound Substitution: Introduce slack variables for the simple or variable bounds to form a mixed knapsack set $X^{M K}$.
(3) c-MIR Separation: Look for violated c-MIRs for the set $X^{M K}$.
(9) If no violated inequality is found, and $|S|<M A X A G G R$, return to Step 1, else Stop.

Question: What is a good choice for MAXAGGR?

Step 1 Aggregation

Suppose a set of rows $S \subseteq M$ has been combined

$$
\sum_{j \in P} \alpha_{j} x_{j}+\sum_{j \in N} \gamma_{j} y_{j}=\beta
$$

(1) Choose a list of variables that creates a link to a new constraint.

$$
P^{*}=\left\{k \in P \mid \alpha_{k} \neq 0, l_{k} y_{k}^{*}<x_{k}^{*}<u_{k} y_{k}^{*} \text { and } \exists r \in M \backslash S \text { with } a_{k}^{r} \neq 0\right\}
$$

(2) Choose the variable furthest from its bounds.

$$
\kappa=\arg _{k \in P^{*}} \max \left\{\min \left\{x_{k}^{*}-l_{k} y_{k}^{*}, u_{k} y_{k}^{*}-x_{k}^{*}\right\}\right\}
$$

(3) Choose a row $r \in M \backslash S$ with nonzero linkage $a_{\kappa}^{r} \neq 0$.
(9) Aggregate the row r and the original row so that the coefficient of x_{κ} becomes 0 , that is, add $\frac{-\alpha_{\kappa}}{a_{\kappa}^{\kappa}}$ times row r.

Step 2 Bound Substitution

(1) Substitute either $x_{j}=l_{j} y_{j}+t_{j}$ or $y_{j}=u_{j} y_{j}-t_{j}$, leading to the new constraint

$$
\sum_{j \in P} \delta_{j}^{\prime} t_{j}+\sum_{j \in N} \gamma_{j}^{\prime} y_{j}=\beta^{\prime}
$$

(2) Let $s=\sum_{j \in P: \delta_{j}^{\prime}<0}\left(-\delta_{j}^{\prime}\right) t_{j} \geq 0$, to obtain

$$
X^{M K}=\left\{(s, y) \in \mathbb{R}_{+} \times \mathbb{Z}_{+}^{|N|} \mid \sum_{j \in N} \gamma_{j}^{\prime} y_{j} \leq \beta^{\prime}+s, y_{j} \leq u_{j} \text { for } j \in N\right\}
$$

Question: How do we decide which bound to substitute?

Step 2 Bound Substitution

The authors suggest 3 heuristic suggestions:

- Minimize the difference between each continuous variable and its bound. That is, take the one that is currently the tightest.
- Minimize the value of $s^{*}=\sum_{j \in P: \delta_{j}^{\prime}<0}\left(-\delta_{j}^{\prime}\right) t_{j}^{*}$
- Minimize the value of $\sum_{j \in P: \delta_{j}^{\prime}>0}\left(\delta_{j}^{\prime}\right) t_{j}^{*}$

Step 3 c-MIR Separation

Given $X^{M K}$ and a fractional point ($s *, y *$), find a violated c-MIR inequality, if one exists.
$X^{M K}=\left\{(s, y) \in \mathbb{R}_{+} \times \mathbb{Z}_{+}^{|N|} \mid \sum_{j \in N} \gamma_{j}^{\prime} y_{j} \leq \beta^{\prime}+s, y_{j} \leq u_{j}\right.$ for $\left.j \in N\right\}$
(1) Choose $C=\left\{j \in N \left\lvert\, y_{j}^{*} \geq \frac{u_{j}}{2}\right.\right\}$ and $T=N \backslash C$.
(2) Choose $\delta \in D=\left\{a_{j} \mid j \in N\right.$ and $\left.0 \leq y_{j}^{*}<u_{j}\right\}$. Let $\delta^{*} \in D$ be the value which generates the most violated c-MIR inequality.
(Try to increase the violation by dividing δ^{*} by $2,4,8$.
(- Try to increase the violation by successively complementing (switch from C to T) each variable between its bounds, ordered nondecreasing $\left|y_{j}^{*}-\frac{u_{j}}{2}\right|$.

Branch and Cut - Computational Tradeoffs

Cutting Planes

- Recognizing special structure. Generic cuts are usually weaker than structured cuts.
- The more (good) cuts, the better the bound, the smaller the search tree, the slower the LP solve.
- So, restrict the number of cuts allowed. How?
- If we restrict, then in what order should we generate them?
- How much time should we spend in the cut generation phase? (versus LP, branching, etc)
- How many cut passes should we attempt in root/leaf nodes?
- When do we stop cutting and start branching? Tail off.
- How often should we look for cuts? Every node? Every n nodes? Should this be different for different classes of cuts?

Branch and Cut - Computational Tradeoffs

Cutting Planes (Cont.)

- Density of cuts? The more dense, the harder LP factorize gets.
- Stability (max/min coefficients) of cuts? Can cause ill-conditioning, numerical issues, roundoff in LP.
- Can we share cuts across nodes (when is a cut globally valid?)
- What denotes a good cut?
- Should we keep all of our generated cuts in the LP?
- Maybe we should remove slack ones each iteration?
- Can the removed cuts ever come back into play? Should we keep them around? Cut pools.
Branching - many more considerations (see Jeff Linderoth's thesis) Heuristics - many more considerations (see ?? - wide open area)
LP - many more considerations (see Ilog/Cplex)

Other Simple Ideas - MIRs

- Joao Goncalves - Informs04 - Produce additional candidate sets $X^{M K}$ by multiplying the aggregated row by -1 .
- Some Weird Guy at SAS - In the step where we aggregate constraints, after constructing a variable link, we might have a choice of several rows. The authors choose arbitrarily (the first one). What if we choose the tightest given the current fractional point?
- What else?? There are many possible variations to consider.

Computational Experiments MIRs

Some variants we consider:

- Looking at additional candidates (multiply by -1).
- Choose the tightest row when aggregating.
- How many rows should we consider to aggregate?
- Which bound substitution heuristic gives the best results?
- Experiment:
- 27 MIPLIB instances (those with some violated MIR)
- 600s time cutoff, all other defaults

Computational Experiments MIRs

Looking at additional candidates (multiply by -1).

Run Settings
mir0 NegOne, Tight, Agg=3, Sub=A
mir1 NoNegOne, Tight, Agg=3, Sub=A mir2 no MIRs

NumSolve AveCPU-M
11
10
8
1.0\%
0.7\%

Best Upper Bound

Computational Experiments MIRs

Choose the tightest row when aggregating.

Run Settings
mir0 NegOne, Tight, Agg=3, Sub=A
mir1 NegOne, NoTight, Agg=3, Sub=A mir2 no MIRs

NumSolve AveCPU-M
11
10 1.0\% 1.4\% 8

Time To Solve

Best Upper Bound

Computational Experiments MIRs

How many rows should we consider to aggregate?

Run Settings
mir0 NegOne, Tight, Agg=1, Sub=A
mir1 NegOne, Tight, Agg=2, Sub=A
mir2 NegOne, Tight, Agg=3, Sub=A
mir3 NegOne, Tight, Agg=4, Sub=A
mir4 NegOne, Tight, Agg=5, Sub=A mir5 no MIRs

Time To Solve

NumSolve AveCPU-M
0.8\%
0.9\%
1.0\%
1.3\%
1.3\%

Computational Experiments MIRs

Which bound substitution heuristic gives the best results?

Run Settings
mir0 NegOne, Tight, Agg=3, Sub=A mir1 NegOne, Tight, Agg=3, Sub=B
mir2 NegOne, Tight, Agg=3, Sub=C mir3 no MIRs

Time To Solve

NumSolve AveCPU-M
11 1.0\%
10
1.2\%
2.3\%

8

Best Upper Bound

