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Classical Cutting Planes for MILP

Special Structures (valid for certain relaxations of MILPs)

Knapsack / Gub Cover, Pack (many applications)
Flow Cover / Path (fixed charge network flow, lot-sizing, ...)
Cliques / Odd-Hole (set partitioning, covering, packing)
Implied Bound (logical implications between binary variables)

Generic Cuts (valid for any MILP)

Gomory Mixed Integer
Mixed Integer Rounding
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Mixed Integer Rounding—MIR

Almost everything comes from considering the following very
simple set, and very simple observation.

X = {(x, y) ∈ R+ × Z | y ≤ b + x}

Let f = b− bbc. Then a valid inequality for X is:

y ≤ bbc+
1

1− f
x
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(Simple) Extension of MIR

X = {(x, y) ∈ R2
+ × Z|N |

+ |
∑
j∈N

ajyj + x+ ≤ b + x−}

f = b− bbc
fj = aj − bajc
The inequality∑

j∈N

(
bajc+

(fj − f)+

1− f

)
yj ≤ bbc+

x−

1− f

is valid for X.

X is a one-row relaxation of a general mixed integer program, where
all of the continuous variables have been aggregated into two
variables (one with positive coefficients, one with negative
coefficients).
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Gomory Cuts are special cases of MIRs

Consider the set

X= = {(x, y0, y) ∈ R2
+ × Z × Z|N |

+ | y0 +
∑
j∈N

ajyj + x+ − x− = b}

which is essentially the row of an LP tableau with y0 the basic
variable and x+, x− the sum of the continuous variables with
positive and negative coefficients.

Relax the equality to an inequality and apply MIR.
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Proof.

y0 +
X

j∈N

 
bajc +

(fj − f)+

1 − f

!
yj ≤ bbc +

x−

1 − f
(1)

b −
X

j∈N

ajyj − x
+ + x

− +
X

j∈N

 
bajc +

(fj − f)+

1 − f

!
yj ≤ bbc +

x−

1 − f
(2)

−b +
X

j∈N

ajyj + x
+ − x

− −
X

j∈N

 
bajc +

(fj − f)+

1 − f

!
yj ≥ −bbc −

x−

1 − f
(3)

X
j∈N

fjyj + x
+ − x

− −
X

j∈N

(fj − f)+

1 − f
yj ≥ f −

x−

1 − f
(4)

X
j∈N

fjyj + x
+ +

f

1 − f
x
− −

X
j∈N2

fj − f

1 − f
yj ≥ f (5)

X
j∈N1

fjyj + x
+ +

f

1 − f
x
− +

X
j∈N2

(fj −
fj − f

1 − f
)yj ≥ f (6)

(6) is the Gomory Mixed Integer Cut.
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Residual Capacity Cuts are special cases of MIRs

XF = {(x, y) ∈ R+ × Z+ | x ≤ Cy, x ≤ d}

XF is a structure common to many network design models.

The Residual Capacity Inequality for XF is a MIR Inequality.

x ≤ d− (d− C(η − 1))(η − y)

with η = d d
C e
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Mixed Cover Cuts are special cases of MIRs

XB = {(s, y) ∈ R+ × B|N | |
∑
j∈N

ajyj ≤ b + s}

XB is the mixed 0-1 knapsack set, and is common in many
applications.

The Mixed Cover Inequality for XB is a MIR Inequality.∑
j∈E(C)

min(aj , λ)yj ≤ −λ +
∑
j∈C

min(aj , λ) + s

where C ⊆ N with
∑

j∈C aj = b + λ, maxj∈C aj > λ > 0, and
E(C) = C ∪ {j ∈ N \ C | aj ≥ maxj∈C aj}.
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Weight Inequalities are special cases of MIRs

XW = {(x, y) ∈ R|P |
+ × Z|N |

+ |
∑
j∈P

ajxj +
∑
j∈N

ajyj ≤ b,

xj ≤ uj for j ∈ P ,

yj ≤ hj for j ∈ N}

XW is a general mixed knapsack set.

The Weight Inequality for XW is a MIR Inequality.∑
j∈Q

ajxj +
∑
j∈T

ajyj +
∑

j∈N\T

(aj − µ)+y + j ≤ b− µ

where T ⊆ N,Q ⊆ P with µ = b−
∑

j∈Q ajuj −
∑

j∈T ajhj > 0
and maxj∈N\T aj > µ.
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Mixed Knapsack Set and c-MIR Inequalities

XMK = {(s, y) ∈ R+ × Z|N |
+ |

∑
j∈N

ajyj ≤ b + s, yj ≤ uj for j ∈ N}

XMK is called a Mixed Knapsack Set.

XMK is a one-row relaxation of a general mixed integer program,
where all of the continuous variables have been aggregated into two
variables (one with positive coefficients s+, one with negative
coefficients s−. Then, the row is relaxed more by removing s+ and
setting s = s−.

Let (T,C) be some partition of N and δ > 0. To form a
complemented MIR (c-MIR) inequality for XMK .

1 Complement the variables in C with their upper bounds.
2 Divide through by some scale factor δ > 0.
3 Apply mixed integer rounding to the resulting set.
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Mixed Knapsack Set and c-MIR Inequalities

Let β = (b−
∑

j∈C ajuj)/δ.

For a given partition (T,C) and scale factor δ, this results in
the following set

XMK
(T,C),δ = {(s, y) ∈ R+ × Z|N |

+ |
∑
j∈T

aj

δ
yj +

∑
j∈C

−aj

δ
yj ≤ β +

s

δ
}

with the following c-MIR inequality∑
j∈T

G(
aj

δ
)yj +

∑
j∈C

G(
−aj

δ
)(uj − yj) ≤ β +

s

δ(1− f)

where f = β − bβc, and G(d) = bdc+ (fd−f)+

1−f , with fd = d− bdc.
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Separation Procedure for MILPs

Classify the original constraints into mixed integer rows M , and
add slacks to get equalities.∑

j∈P

ai
jxj +

∑
j∈N

gi
jyj = bi for i ∈ M

1 Aggregation: Combine rows S ⊆ M to obtain a single mixed integer
constraint.

2 Bound Substitution: Introduce slack variables for the simple or
variable bounds to form a mixed knapsack set XMK .

3 c-MIR Separation: Look for violated c-MIRs for the set XMK .

4 If no violated inequality is found, and |S| < MAXAGGR, return to
Step 1, else Stop.

Question: What is a good choice for MAXAGGR?
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Step 1 Aggregation
Suppose a set of rows S ⊆ M has been combined∑

j∈P

αjxj +
∑
j∈N

γjyj = β

1 Choose a list of variables that creates a link to a new constraint.

P ∗ = {k ∈ P | αk 6= 0, lky∗k < x∗k < uky∗k and ∃r ∈ M \ S with ar
k 6= 0}

2 Choose the variable furthest from its bounds.

κ = argk∈P∗ max{min{x∗k − lky∗k, uky∗k − x∗k}}

3 Choose a row r ∈ M \ S with nonzero linkage ar
κ 6= 0.

4 Aggregate the row r and the original row so that the coefficient of
xκ becomes 0, that is, add −ακ

ar
κ

times row r.
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Step 2 Bound Substitution

1 Substitute either xj = ljyj + tj or yj = ujyj − tj , leading to
the new constraint ∑

j∈P

δ′jtj +
∑
j∈N

γ′jyj = β′

2 Let s =
∑

j∈P : δ′j<0(−δ′j)tj ≥ 0, to obtain

XMK = {(s, y) ∈ R+ × Z|N |
+ |

∑
j∈N

γ′jyj ≤ β′ + s, yj ≤ uj for j ∈ N}

Question: How do we decide which bound to substitute?
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Step 2 Bound Substitution

The authors suggest 3 heuristic suggestions:

Minimize the difference between each continuous variable and
its bound. That is, take the one that is currently the tightest.

Minimize the value of s∗ =
∑

j∈P : δ′j<0(−δ′j)t
∗
j

Minimize the value of
∑

j∈P : δ′j>0(δ
′
j)t

∗
j
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Step 3 c-MIR Separation

Given XMK and a fractional point (s∗, y∗), find a violated c-MIR
inequality, if one exists.

XMK = {(s, y) ∈ R+ × Z|N |
+ |

∑
j∈N

γ′
jyj ≤ β′ + s, yj ≤ uj for j ∈ N}

1 Choose C = {j ∈ N | y∗
j ≥

uj

2 } and T = N \ C.

2 Choose δ ∈ D = {aj | j ∈ N and 0 ≤ y∗
j < uj}. Let δ∗ ∈ D

be the value which generates the most violated c-MIR
inequality.

3 Try to increase the violation by dividing δ∗ by 2, 4, 8.

4 Try to increase the violation by successively complementing
(switch from C to T ) each variable between its bounds,
ordered nondecreasing |y∗

j −
uj

2 |.
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Branch and Cut - Computational Tradeoffs

Cutting Planes

Recognizing special structure. Generic cuts are usually weaker
than structured cuts.

The more (good) cuts, the better the bound, the smaller the
search tree, the slower the LP solve.

So, restrict the number of cuts allowed. How?
If we restrict, then in what order should we generate them?

How much time should we spend in the cut generation phase?
(versus LP, branching, etc)

How many cut passes should we attempt in root/leaf nodes?

When do we stop cutting and start branching? Tail off.

How often should we look for cuts? Every node? Every n
nodes? Should this be different for different classes of cuts?
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Branch and Cut - Computational Tradeoffs

Cutting Planes (Cont.)

Density of cuts? The more dense, the harder LP factorize gets.

Stability (max/min coefficients) of cuts? Can cause
ill-conditioning, numerical issues, roundoff in LP.

Can we share cuts across nodes (when is a cut globally valid?)

What denotes a good cut?

Should we keep all of our generated cuts in the LP?

Maybe we should remove slack ones each iteration?
Can the removed cuts ever come back into play? Should we
keep them around? Cut pools.

Branching - many more considerations (see Jeff Linderoth’s thesis)
Heuristics - many more considerations (see ?? - wide open area)
LP - many more considerations (see Ilog/Cplex)

Matthew Galati Aggregation and MIRs to Solve MILPs



Mixed Integer Rounding
XXX Cuts are special cases of MIRs

c-MIR Inequalities
Computational Experiments

Other Simple Ideas - MIRs

Joao Goncalves - Informs04 - Produce additional candidate
sets XMK by multiplying the aggregated row by −1.

Some Weird Guy at SAS - In the step where we aggregate
constraints, after constructing a variable link, we might have a
choice of several rows. The authors choose arbitrarily (the
first one). What if we choose the tightest given the current
fractional point?

What else?? There are many possible variations to consider.
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Computational Experiments MIRs

Some variants we consider:

Looking at additional candidates (multiply by -1).

Choose the tightest row when aggregating.

How many rows should we consider to aggregate?

Which bound substitution heuristic gives the best results?

Experiment:

27 MIPLIB instances (those with some violated MIR)
600s time cutoff, all other defaults
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Computational Experiments MIRs

Looking at additional candidates (multiply by -1).

Run Settings NumSolve AveCPU-M
mir0 NegOne, Tight, Agg=3, Sub=A 11 1.0%
mir1 NoNegOne, Tight, Agg=3, Sub=A 10 0.7%
mir2 no MIRs 8
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Computational Experiments MIRs

Choose the tightest row when aggregating.

Run Settings NumSolve AveCPU-M
mir0 NegOne, Tight, Agg=3, Sub=A 11 1.0%
mir1 NegOne, NoTight, Agg=3, Sub=A 10 1.4%
mir2 no MIRs 8
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Computational Experiments MIRs
How many rows should we consider to aggregate?

Run Settings NumSolve AveCPU-M
mir0 NegOne, Tight, Agg=1, Sub=A 10 0.8%
mir1 NegOne, Tight, Agg=2, Sub=A 10 0.9%
mir2 NegOne, Tight, Agg=3, Sub=A 11 1.0%
mir3 NegOne, Tight, Agg=4, Sub=A 10 1.3%
mir4 NegOne, Tight, Agg=5, Sub=A 10 1.3%
mir5 no MIRs 8
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Computational Experiments MIRs
Which bound substitution heuristic gives the best results?

Run Settings NumSolve AveCPU-M
mir0 NegOne, Tight, Agg=3, Sub=A 11 1.0%
mir1 NegOne, Tight, Agg=3, Sub=B 10 1.2%
mir2 NegOne, Tight, Agg=3, Sub=C 11 2.3%
mir3 no MIRs 8
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