Basis Inverse

Ashutosh Mahajan

Department of Industrial and Systems Engineering
Lehigh University

COR@L Seminar Series, Spring 2005

References

Istvan Maros, Computational Techniques of the Simplex Method, Kluwer Academic Publishers, 2003. (Chapter 8)

THE ROAD TO WISDOM

The road to wisdom? - Well, it's plain and simple to express:
Err
and err
and err again
but less
and less
and less.
-A Grook by Piet Hein.

The Basis Inverse

- $\hat{\mathbf{a}}_{q}=B^{-1} \mathbf{a}_{q}$
- $\pi_{B}^{T}=\mathbf{c}_{B}^{T} B^{-1}$.

Storing Inverse

- Explicitly - What is the number of non-zeroes?
- What happens when we update?
- Product Form
- Elimination Form

Product Form of Inverse - PFI

- Start with a given B^{-1}, usually \mathcal{I}.
- Iteratively replace columns of B and update B^{-1}.
- Each update of B^{-1} is just a premultiplier matrix E_{i}
- $\hat{B}^{-1}=E_{k} E_{k-1} \ldots E_{1} \mathcal{I}$.
- Just need to store E_{i}.

What are the benefits?

Elimination Form of Inverse - EFI

- Do we really need B^{-1} ?
- $\hat{\mathbf{a}_{q}}=B^{-1} \mathbf{a}_{q} \Rightarrow \hat{\mathbf{a}_{q}}=\mathbf{a}_{q}$
- $\pi_{B}^{T}=\mathbf{c}_{B}^{T} B^{-1} \Rightarrow B^{T} \pi_{B}=\mathbf{c}_{B}$
- $\hat{\mathbf{a}_{q}}$ and π_{B}^{T} are merely solutions of systems of linear equations.
- $B=L U \Rightarrow B^{-1}=U^{-1} L^{-1}$

What are the properties of $U^{-1} L^{-1}$? Can we store them easily? How easy are updates?

Elementary Transformation Matrix

- Suppose we have a basis B and its inverse B^{-1}.
- We wish to replace a column of B, \mathbf{b}_{p} with \mathbf{a}.
- Let the new basis be B_{a}.
- Let $\mathbf{a}=\sum_{i=1}^{m} v_{i} \mathbf{b}_{i}$. Is $v_{p}=0$?
- $\mathbf{b}_{p}=\frac{1}{V_{p}} \mathbf{a}-\sum_{i \neq p} \frac{v_{i}}{V_{p}} \mathbf{b}_{i}$.
- $\eta=\left[-\frac{v_{1}}{v_{p}}, \ldots,-\frac{v_{p-1}}{v_{p}}, \frac{1}{v_{p}},-\frac{v_{p+1}}{v_{p}}, \ldots,-\frac{v_{m}}{v_{p}}\right]^{T}$.
- $E=\left[\mathbf{e}_{1}, \ldots, \mathbf{e}_{p-1}, \eta, \mathbf{e}_{p+1}, \ldots, \mathbf{e}_{m}\right]$.
- $B=B_{a} E$
- $B_{a}^{-1}=E B^{-1}$.

Updating columns of A

- $v_{i}=B^{-1} \mathbf{b}_{i}$.
- $\mathbf{a}_{p}=0 \Rightarrow E a=$?
- What happens if B is lower triangular?
- What happens to E_{i} if we wish to have \mathbf{e}_{i} in the basis?
- Fillin may happen in the updated columns
- Difficult to foresee this beyond the next step.
- Markowitz merit number $m_{j}^{i}=\left(r_{i}-1\right)\left(c_{j}-1\right)$.
- Numerical issues.

Triangularization in PFI

- If B can be made nearly triangular, PFI can become really fast.
- This usually differentiates a good implementation from not so good ones.

PFI operations

- $B^{-1}=E_{k} \ldots E_{1}$.
- Thus, $\hat{\mathbf{a}}_{j}=E_{k} \ldots E_{1} \mathbf{a}_{j}:$ FTRAN
- $\pi^{T}=\mathbf{c}_{B}^{T} E_{k} \ldots E_{1}$: BTRAN
- Problems with BTRAN.
- Storing E_{i}
- When to reinvert?

Elimination form of Inverse

- Recall that if $B=L U$, then $B^{-1}=U^{-1} L^{-1}$.
- Thus, $B^{-1}=U^{1} \ldots U^{m} L^{m} \ldots L^{1}$. A product form!
- What happens on premultiplying by E ?
- We need hybrid procedures.

How to maintain sparsity?

- Method of Suhl and Suhl.
- Rearrange (not physically) rows and columns to get a triangular structure.
- Inversion of L and U is easy.
- Inverting kernel is important - fillin and numerical stability.
- Implementation can again make a difference.

How to triangularize?

- $\bar{B}=B+\left(\mathbf{a}_{q}-B \mathbf{e}_{p}\right) \mathbf{e}_{p}^{T}$.
- or $L^{-1} \bar{B}=U+\left(L^{-1} \mathbf{a}_{q}-U \mathbf{e}_{p}\right) \mathbf{e}_{p}^{T}$.
- So we may get a spike in U.
- Permute rows and columns to get upper Hessenberg matrix.
- Apply some E's to restore triangularity.
- $\left(L^{k}\right)^{-1} B^{k}=R^{k} U^{k}\left(R^{k}\right)^{T}$.
- Thus, we maintain L^{-1}, and U for each required basis.

