Basis Inverse

Ashutosh Mahajan

Department of Industrial and Systems Engineering Lehigh University

COR@L Seminar Series, Spring 2005

References

Istvan Maros, Computational Techniques of the Simplex Method, Kluwer Academic Publishers, 2003. (Chapter 8)

THE ROAD TO WISDOM

```
The road to wisdom? – Well, it's plain and simple to express:

Err and err again but less and less and less.

–A Grook by Piet Hein.
```

The Basis Inverse

$$ullet$$
 $\hat{f a}_q = B^{-1} {f a}_q$

•
$$\hat{\mathbf{a}}_q = B^{-1} \mathbf{a}_q$$

• $\pi_B^T = \mathbf{c}_B^T B^{-1}$.

Storing Inverse

- Explicitly What is the number of non-zeroes?
- What happens when we update?
- Product Form
- Elimination Form

Product Form of Inverse - PFI

- Start with a given B^{-1} , usually \mathcal{I} .
- Iteratively replace columns of B and update B^{-1} .
- Each update of B^{-1} is just a premultiplier matrix E_i
- $\hat{B}^{-1} = E_k E_{k-1} \dots E_1 \mathcal{I}.$
- Just need to store E_i .

What are the benefits?

Elimination Form of Inverse - EFI

- Do we really need B^{-1} ?
- ullet $\hat{\mathbf{a}_q} = B^{-1} \mathbf{a}_q \Rightarrow B \hat{\mathbf{a}_q} = \mathbf{a}_q$
- $\bullet \ \pi_B^T = \mathbf{c}_B^T B^{-1} \Rightarrow B^T \pi_B = \mathbf{c}_B$
- $\hat{\mathbf{a}}_q$ and π_B^T are merely solutions of systems of linear equations.
- $B = LU \Rightarrow B^{-1} = U^{-1}L^{-1}$

What are the properties of $U^{-1}L^{-1}$? Can we store them easily? How easy are updates?

Elementary Transformation Matrix

- Suppose we have a basis B and its inverse B^{-1} .
- We wish to replace a column of B, b_p with a.
- Let the new basis be Ba.
- Let $\mathbf{a} = \sum_{i=1}^{m} v_i \mathbf{b}_i$. Is $v_p = 0$?
- ullet $\mathbf{b}_{
 ho}=rac{1}{v_{
 ho}}\mathbf{a}-\sum_{i
 eq
 ho}rac{v_{i}}{v_{
 ho}}\mathbf{b}_{i}.$
- $\eta = \left[-\frac{v_1}{v_p}, \dots, -\frac{v_{p-1}}{v_p}, \frac{1}{v_p}, -\frac{v_{p+1}}{v_p}, \dots, -\frac{v_m}{v_p} \right]^T$.
- $E = [\mathbf{e}_1, \dots, \mathbf{e}_{p-1}, \eta, \mathbf{e}_{p+1}, \dots, \mathbf{e}_m].$
- \bullet $B = B_a E$
- $B_a^{-1} = EB^{-1}$.

Updating columns of A

- $v_i = B^{-1} \mathbf{b}_i$.
- $a_p = 0 \Rightarrow Ea = ?$
- What happens if B is lower triangular?
- What happens to E_i if we wish to have e_i in the basis?
- Fillin may happen in the updated columns
 - Difficult to foresee this beyond the next step.
 - Markowitz merit number $m_i^i = (r_i 1)(c_i 1)$.
- Numerical issues.

Triangularization in PFI

- If B can be made nearly triangular, PFI can become really fast.
- This usually differentiates a good implementation from not so good ones.

PFI operations

•
$$B^{-1} = E_k \dots E_1$$
.

• Thus,
$$\hat{\mathbf{a}}_j = E_k \dots E_1 \mathbf{a}_j$$
: FTRAN

•
$$\pi^T = \mathbf{c}_B^T E_k \dots E_1$$
: BTRAN

- Problems with BTRAN.
- Storing E_i
- When to reinvert?

Elimination form of Inverse

- Recall that if B = LU, then $B^{-1} = U^{-1}L^{-1}$.
- Thus, $B^{-1} = U^1 \dots U^m L^m \dots L^1$. A product form!
- What happens on premultiplying by E?
- We need hybrid procedures.

How to maintain sparsity?

- Method of Suhl and Suhl.
- Rearrange (not physically) rows and columns to get a triangular structure.
- Inversion of L and U is easy.
- Inverting kernel is important fillin and numerical stability.
- Implementation can again make a difference.

How to triangularize?

- $\bullet \ \bar{B} = B + (\mathbf{a}_q B\mathbf{e}_p)\mathbf{e}_p^T.$
- or $L^{-1}\bar{B} = U + (L^{-1}\mathbf{a}_q U\mathbf{e}_p)\mathbf{e}_p^T$.
- So we may get a spike in U.
- Permute rows and columns to get upper Hessenberg matrix.
- Apply some E's to restore triangularity.
- \bullet $(L^k)^{-1}B^k = R^k U^k (R^k)^T$.
- Thus, we maintain L^{-1} , and U for each required basis.

