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ROBUST OPTIMIZATION OF LARGE-SCALE SYSTEMS
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Mathematical programming models with noisy, erroneouns, or incomplete data are common in operations research applications.
Difficulties with such data are typically dealt with reactively—through sensitivity analysis—or proactively—through stochastic
programming formulations. In this paper, we characterize the desirable properties of a solution to models, when the problem data
are described by a set of scenarios for their value, instead of using point estimates. A solution to an optimization model is defined
as: salution robust if it remains ““close’ to optimal for all scenarios of the input data, and model robust if it remains “almast’’
feasible for all data scenarios. We then develop a general model formulation, called robust optimization (RO), that explicitly
incorporates the conflicting objectives of solution and model robustness. Robust optimization is compared with the traditional
approaches of sensitivity analysis and stochastic linear programming. The classical diet problem illustrates the issues. Robust
optimization models are then developed for several real-world applications: power capacity expansion; matrix balancing and
image reconstruction; air-force airline scheduling; scenario immunization for financial planning; and minimum weight structural
design. We also comment on the suitability of parallel and distributed computer architectures for the solution of robust optimi-

zation models.

henever operations researchers attempt to build a

model of a real-world system, they are faced with
the problem of noisy, incomplete, or erroneous data.
This is true itrespectively of the application domain. In
business applications noisy data are prevalent. Returns
of financial instruments, demand for a firm’s products,
the cost of fuel, consumption of power and other re-
sources, are typical examples of model data that are
usually known with some probabilistic distribution, In
social sciences, data are often incomplete as, for exam-
ple, in partial census surveys that are carried out period-
ically in lien of a complete ¢ensus of the population.
Morgenstern’s (1963) book is devoted to problems arising
in economic modeling from incomplete data. In the phys-
ical sciences and engineering, data are usually subject to
measurement errors. Such is the case, for example, in
models of image restoration from remote sensing experi-
ments and other inverse problems.

In contrast, the world of mathematical programming
maodels is generally assumed to be deterministic. Models
are typically formulated by “‘best guessing’ uncertain
values, or by solving ‘‘worst-case’ problems. The solu-
tions to such “worst-case’ or “mean-value™ problems
are inadequate. Birge (1982) established the large error
bounds that arise when one solves mean value problems.
Worst-case formulations produce very conservative and,
potentially, expensive solutions.

To reconcile the contradictions between the real-world
data, and the realm of mathematical programming, man-
agement scientists employ sensitivity analysis. The goal of

these post-optimality studies is to discover the impact of
data perturbations on the model’s recommendations.
Such post-optimality studies are reactive; they only dis-
cover the impact of data uncertainties on the model’s
recommendations.

We believe that a proactive approach is needed. That
is, we need model formulations that, by design, yield
solutions that are less sensitive to the model data, than
classical mathematical programming formulations. An
approach that introduces probabilistic information about
the problem data is that of stochastic linear program-
ming which dates back to Beale (1955) and Dantzig
(19535); sece also Wets (1966, 1974, 1983).

In this paper we suggest an alternative approach,
which we call robust optimization (RO). This approach
integrates goal programming formulations with a
scenario-based description of problem data. It generates
a series of solutions that are progressively less sensitive
to realizations of the model data from a scenario set.
Robust optimization, while not without limitations, has
some advantages over stochastic linear programming and
is more generally applicable.

The need for robustness has been recognized in a num-
ber of application areas. Paraskevopoulos, Karakitsos
and Rustem (1991) propose a capacity planning model for
the plastics industry. They show it to be effective in con-
trolling the model’s recommendations to the uncertain
data of the application. (Their formulation, developed
independently from our work, can be cast as a special
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case of RO). Sengupta (1991) discusses the notion of ro-
bustness for stochastic programming models. Escudero
et al. (1993) presents an RO formulation for the problem
of outsourcing in manufacturing, and Gutierrez and
Kouvelis {1993) develop RO models for multinational
production scheduling. The last two references are direct
applications of the general framework developed here.

The rest of the paper is organized as follows: Section 1
defines the framewaork of RO and presents an illustrative
example. Subsection 1.4, in particular, compares the RO
framework with existing approaches for dealing with data
uncertainty, i.e., sensitivity analysis and stochastic linear
programming. RO is not a panacea for mathematical pro-
gramming in the face of noisy data. Instead, we show in
Section 2 how to introduce robustness in several real-
world applications. Implementations of the models serve
to illustrate the advantages of the RO formulations. We
illustrate the generality of RO by showing that some well
known mathematical programming formulations can be
obtained as special cases.

The RO formulations are more complex, and computa-
tionally more expensive, than their linear programming
counterparts. In Section 3 we discuss briefly solution
options for the RO models that can be of extremely large
size; parallel and distributed computers provide the re-
quired computational environment for solving RO. Con-
cluding remarks are given in Section 4, where we also
discuss open issues.

1. GENERAL MODELING FRAMEWORK OF
ROBUST OPTIMIZATION

We are dealing with optimization models that have two
distinct components: a structural component that is fixed
and free of any noise in its input data, and a control
component that is subjected to noisy input data. To de-
fine the appropriate model we introduce two sets of
variables:

x € R", denotes the wvector of decision wvariables
whose optimal wvalue is not conditioned on
the realization of the uncertain parameters.
These are the design variables. Variables in
this set cannot be adjusted once a specific
realization of the data is cbserved.

y € R"™ denotes the wvector of conerol decision
variables that are subjected to adjustment
once the uncertain parameters are observed.
Their optimal value depends both on the
realization of uncertain parameters, and on
the aptimal value of the design variables.

The terminology of design and control variables is bor-
rowed from the flexibility analysis of production and dis-
tribution processes (Seider et al. 1991). Design variables
determine the structure of the process and the size of
production modules. Control variables are used to adjust
the mode and level of production in response to
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disruptions in the process, changes in demand or produc-
tion yield, and so on.
The optimization model has the following structure.

LP
Minimize ¢ x+4 7y (1)
x&R" yCR™
subject to Ax =5, (2)
Bx+Cy=e, {3)
x,yz0. {4)

Equation 2 denotes the structural constraints whaose co-
efficients are fixed and free of noise. Equation 3 denotes
the control constraints. The coefficients of this constraint
sct are subject to noise.

To define the robust optimization problem, we now
introduce a set of scenarios 0 = {1, 2, 3, ..., §}. With
each scenario s € ) we associate the set {d,, B,, C,,
e} of realizations for the coefficients of the control con-
straints, and the probability of the scenario p,,
(5., p, = 1). The optimal solution of the mathematical
program (1)~(4) will be robust with respect to optimality
if it remains ““close’ to optimal for any realization of
the scenario s € (1. It is then termed solution robust.
The solution is also robust with respect to feasibility if it
remains ““almost’ feasible for any realization of 5. It is
then termed model robust. The notions of “close’ and
“almost’ are made precise through the choice of norms,
later in this section.

It is unlikely that any solution to program (1)-(4) will
remain both feasible and optimal for all scenario indices
s € ). If the system that is being modeled has substan-
tial redundancies built in, then it might be possible to find
solutions that remain both feasible and optimal. Other-
wise, a model is needed that will allow us to measure the
tradeoff between solution and model robustness. The ro-
bust optimization model proposed next formalizes a way
to measure this tradeoff.

We first introduce a set {y,, ¥,, ..., ¥4} of control
variables for each scenario s € (. We also introduce a
set {zy, z5, ..., zg} of error vectors that will measure
the infeasibility allowed in the control constraints under
scenario . Consider now the following formulation of
the robust optimization model.

Model ROBUST

Minimize o(x, y1,---, ¥5) + @p(z;, ..., 25) (5)
subject to: Ax = b, (6)
Bx+Coy, +2, =e,, for all s € ), (7)

x20,y,20, forallse . (8)

With multiple scenarios, the abjective function £ =
¢'x + d"y becomes a random variable taking the value
& = c'x + dy,, with probability p,. Hence, there is
no longer a single choice for an aggregate objective. We
could use the mean value
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a(}= 2 psés, 9)
ef

which is the function used in stochastic linear program-
ming formulations. In worst-case analysis the model min-
imizes the maximum value, and the objective function is
defined by

o) =max . (10)

Both of these choice are special cases of RO, but they
are nevertheless stapdard in the literature. One novelty
of the RO formulation is that it allows the introduction of
higher moments of the distribution of £, in the optimiza-
tion model. For example, we could introduce a utility
function that embodies a tradeoff between mean value
and variability in this mean value. Indeed, the introduc-
tion of higher moments is one of the distingurishing fea-
tures of RO from stochastic linear programming. There
will be mare on this in subsections 1.2 and 1.4. For now,
we summarize all possible choices by calling the aggre-
gate function o(-).

The second term in the objective function p(z,, ...,
zs) is a feasibility penalty function. It is used to penalize
violations of the control constraints under some of the
scenarios. The model proposed above takes a multicrite-
ria objective form. The first term measures optimality
robustness, whereas the penalty term is a measure of
model robustness. The goal programming weight « is
used to derive a spectrum of answers that tradeoff solu-
tion for model robustness.

The introduction of the penalty function distinguishes
the robust optimization model from existing approaches
for dealing with noisy data. In particular, the model rec-
ognizes that it may not always be possible to get a feasi-
ble solution to a problem under all scenarios.
Infeasibilities will inevitably arise; they will be dealt with
outside the optimization model. For example, Prékopa
(1980) suggested possible ways for the treatment of infea-
sibilities in network planning. The RO model will gener-
ate solutions that present the modeler with the least
amount of infeasibilities to be dealt with outside the
model. This use of a penalty function is distinct from
the use of pepalty methods for the solution of con-
strained optimization problems; see, e.g., Bertsekas
(1982). The specific choice of penalty function is problem
dependent, and it also has implications for the accompa-
nying solution algorithm. We consider two alternative
penalty functions:

Py <<y Zs) 2, cab.Zs 2. This quadratic penalty
function is applicable to equality constrained problems
where both positive and negative violations of the con-
trol constraints are equally undesirable. The resulting RO
madel is a quadratic programming problem.

PZys <oy Z5) = Zgeqap, max{l, z}. This exact penalty
function applies to inequality control constraints when
only positive violations are of interest. (Negative values

of z indicate slack in the inequality constraints.} With the
addition of a slack variable this penalty function can be
expressed using linear inequality constraints. Doing so,
however, increases the size of the problem and destroys
the underlying structure of the constraint matrix. An-
other approach is to work directly with the nondifferen-
tiable penalty function. An esmoothing of the exact
penalty function results in a differentiable problem which
is easier to solve, and it preserves the structure of the
constraint matrix of the RO formulation. The smoothed
problem will produce a solution that is within e of the
solution of the nondifferentiable problem; see Pinar and
Zenios (1992) and Zenios, Pinar and Dembao (1994).

1.1. Example: The Diet Problem

We illustrate the RO concepts on the diet problem, first
studied by Stigler (1945) and employed by Dantzig (1963)
as the first test case for the simplex algorithm. This ex-
ample shows the importance of model robustness, which
is particularly novel in the context of optimization formu-
lations: Feasibility is usually overemphasized in optimi-
zatjon models. The importance of solution robustness is
more easily accepted. It also has been addressed, in
other ways, by stochastic linear programeming, and will
be illustrated in the examples of Section 2.

The problem consists of finding a diet of minimum cost
that will satisfy certain nutritional requirements. Stigler
was faced with a problem of robust optimization as he
had recognized in his paper, because the nutritional con-
tent of some food products may not be certain. Dantzig
{1990) was still intrigued by this ambiguity in his article in
Interfaces. He wrote:

When is an apple an apple and what do you mean by its cost
and nutritional content? For example, when you say apple do
you mean a Jonathan, or McIntosh, or Northern Spy, or
Ontario, or Winesap, or Winter Bapana? You see, it can make a
difference, for the amount of ascorbic acid (vitamin C} ean vary
from 2.0 to 2.8 units per 100 grams depending upon the type of

apple,

The standard linear programming formulation will as-
sume some average content for ascorbic acid and pro-
duce a diet. However, as our consumers buy apples of
different ascorbic acid contents, they will soon build a
deficit or surplus of vitamin C. This situation may be
irrelevant for a healthy individual over long periods
of time, or it may require remedial action in the form of
vitamin supplements.

We use the diet model from the GAMS library
(Brooke, Kendrick and Meeraus 1992) to illustrate how the
diet problem can be cast in the framework of robust opti-
mization. {This GAMS madel does not include apples as
part of the food selection, so we analyze the ambiguity on
the calcium content of navybeans.) Let x,denote the dollar
value of food-type f in the diet, let a,, denote the contents
of food fin nutrient » per dollar spent, and let b, be the
required daily allowance of nutrient #. We also use ¢ to



denote calcium from the set of nutrients and N to denote
navybeans, which is the food product with uncertain nutti-
tional content. A point estimate for its calcium content is
ap. = 114 per dollar spent. In our example, we assume
that this coefficient takes values from the set of scenarios
Q={S), e Sgs e85 = 9.5, 9.75, 10, 10.25, 10.5, 11,
11.25, 11.4, 11.5, 11.75, 12, 12.25, 12.5}. All values are
equally likely, and §; denotes the scenario corresponding
to the point estimate.

The robust optimization formulation of the diet prob-
lemn can be stated as follows.

Minimize >, xy
xy f

1 2
+ @ E[seﬂ [bc —ﬁeEN QpeXf — AN XNe (11)
subject to
for all . {12)

2 apmXy = b,“
f

The weight o is used to tradeoff feasibility robustness
with cost. For @ = O we are solving the classical linear
programming formulation of the diet problem. In Figure
1 we plot the deficit/surplus of calcium of this optimal
diet as navybeans of different quality are purchased. We
then solve the robust optimization model. We plot the
deficit/surplus of calcium of the optimal diet obtained
with increasing values of w. For larger values of « we
obtain diets whose nutritional content varies very little as
the quality of navybeans changes. This is also shown in
Figure 1. Figure 2 shows the tradeoff in the cost of the
diet as it becomes more rabust with respect to nutritional
content.

This simple example clarifies the meaning of a robust
solution, and shows that robust solutions are possible,
but at some cost. [t is interesting to observe that a solu-
tion that is less sensitive to uncertainty than the linear
programming solution is possible at very little cost (see
the error curve and the cost function value correspond-
ing to @ = 1.0).

A reasonably good diet is the one obtained with o =
5.0, because it is quite insensitive to uncertainty, and not
much more expensive than the linear programming solu-
tion. For exampie, if an error of +(0.02 units in total
calcium intake is acceptable, no remedial action will be
needed for this RO diet. On the other hand, the linear
programming diet will need remedial treatment for 10 out
of the 13 scenarios. The RO diet is only 4% more expen-
sive than the diet produced by the linear program.'

1.2. The Chaice of Norms: High Risk Decisions

In this section, we investigate possible choices for the
madel robustness term, (). In low risk situations o( )
can be taken to be the expected value given by (9), which
is the aobjective of stochastic linear programs. This
choice is inappropriate for moderate and high-risk deci-
sions under uncertainty. Most decision makers are risk
averse for important decisions. The expected wvalue

w=10

w=3
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Figure 1. Error (negative for deficit, positive for surplus)
of the dieter’s intake of calcium as navybeans of
different quality are added in the diet. The hori-
zontal axis corresponds to scenarios for calcium
contents of navybeans: S1 corresponds to navy-
beans with low calcium content of 9.5; §13 cor-
responds to high calcium content of 12.50. The
vertical axis corresponds to {absolute) error in
the target calcium level of the dieter. The diet
obtained with the linear programming formula-
tion (i.e., w = 0) is very sensitive to the calcium
content of navybeans, whereas the diets ob-
tained with the robust optimization model (i.e.,
w = 1-10) are much less sensitive.

objective ignores both the risk attribute of the decision
maker, and the distribution of the objective values £,.

Twao popular approaches for handting risk are: mean/
variance models {Markowitz 1991), and von Neumann-
Morgenstern (1953) expected utility models. For the
former, risk is equated with the variance of the out-
comes. A high variance for £ = ¢ x + 4]y, means that
the outcome is much in doubt. Given outcome variance
as a surrogate for risk, we are naturally led to the mini-
mization of the expected outcome for a given level of
risk. An appropriate choice for o -} would be the mean
plus a constant (A) times the variance

U(I:yh)’za "“Jys)
2
= 2 Pséc T A E Ps(‘f; - E p}fs') . (13]
€S sES s'ES
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Figure 2. Tradeoff between cost (i.e., solution robust-
ness) and expected error in the calcium con-
tents (i.e., model robustness) for diets obtained
using increasing weight w in the robust optimi-
zation model.

An efficient frontier can be constructed readily by param-
etrizing the tradeoff between risk and expected outcome,
as shown in Figure 3. This approach requires that the
distribution of the random wvariable £ be symmetric
around its mean. Third and higher moments are ignored.
Still, the mean/variance approach is popular in financial
planning and other areas. In finance, a robust portfolio is
equated with a well diversified and hedged investment
mix. The portfolio should do well under a variety of eco-
nomic circumstances. Identifying the investor’s risk,
however, requires the integration of assets and liabilities
and it is easy to render incorrect decisions (Berger and
Mulvey 1994). The objective function should reflect the
investor’s net wealth:

Wealth = market value of assets

— net present value of liabilities.
Risk is then associated with the variance of “‘wealth,”
sometimes called surplus. The model requires the
Expected
Surplus

EQUITIES

BONDS
+ CASH

Surplus Risk (Standard Deviation)

Figure 3. Efficient frontier for robust optimization {appli-
cation from surplus optimization in asset allo-
cation for financial planning).

computation of the covariances between the asset cate-
gories and the net present value of the liabilities. Figure 3
illustrates an example in which the cash asset poses a
risk to the investor’s wealth. In other applications, the
outcomes for defining risk depend upon problem circum-
stances. For some recent applications of robust optimiza-
tion in financial planning see Berger and Mulvey (1994),
Carino et al. (1994), and Golub et al. {1994).

The derivation of the efficient frontier gives the user an
opportunity to achieve a robust recommendation, which
is not possible by means of traditional sensitivity analy-
gis. The risk-return curve as shown in Figure 3 depicts
the range of possible levels of solution robustness. As A
increases we are lead to solutions that are less sepsitive
to changes in the data as defined by the scenarios.

An alternative and more general approach to handling
risk is based on wvon Neumann-Morgenstern utility
curves (von Neumann and Morgenstern 1953, Keeney
and Raiffa, 1976) via the concept of certainty equiva-
lence. The result is a concave utility function (for risk
averse decision makers — U{-}. A decision maker dis-
plays consistent behavior by maximizing expected util-
ity. In this situation we define:

a(-) = — 2 pUE).
FEL

The primary advantage of the expected utility model
over the mean-variance approach is that asymmetries in
the distribution of outcomes £ are captured. A consis-
tent and repeatable decision process can also be imple-
mented, given a time-invariant utitity function. There is
an additional information burden placed on the user wha
has to decide upon an appropriate level of risk tolerance.

1.3. Stochastic Linear Programming

This section defines the multistage stochastic linear pro-
gramming model. Stochastic linear programs avoid the
use of the penalty terms and generally minimize expected
costs or maximize expected profits. Furthermore, the no-
tion of stabilizing the solution over a period of time does
not arise in stochastic linear programs. In the RO ap-
proach, the variance term, the risk aversion parameter,
or the min-max strategy can be employed to reduced
variability. This aspect is critical in many applications.
Also, robust optimization allows for infeasibilities in the
control constraints by means of the penalties.

To define a stochastic linear program, we assume that
there is some underlying probability space (), @, P), a
measurable objective function f:{} x R* — R, a mea-
surable multivalued mapping X:Q — 2% representing
{event-dependent) constraints, a space ¥ of measurable
decision rules x:{} — R" and a subspace # C & of
implementable decision rules. For each elementary event
@ & Q we denote by X, x,, and £, (x ) the correspond-
ing constraint set, decision and objective wvalues. The
problem is formulated as follows:



Find a decision rule x:{} — R” that minimizes

J fu(x0)P (dw)

subject to x,, € X, with probability 1, and x € M.

A particularly interesting and important case arises when
the decision problem has a dynamic structure with time
stages ¢t = 1, ..., T and

X, = (Xu (1), 2,(2), .., X, (T)).

Typically, we interpret the elementary events o € )
as scenarios and use X, to represent the conditions that
have to be satisfied by the decision sequence x, for each
scenario. Condition M usually represents nonanticipativ-
ity constraints: For each ¢ decisions x ,{f) must be equal
for all scenarios w that have a common past and present.
Formally, this can be stated as a condition of measurabil-
ity of x(¢) with respect to some o-subfield @B(z) & AR,
where @(z), £ = 1, ..., T is an increasing sequence of
o-subfields.

To be more specific, consider stochastic linear pro-

grams in conjunction with a finite probability space (1.
(Continuous distributions cause severe modeling prob-
lems when correlations exist for the random wvariables
and these have been avoided.) Let D, (¢) and H ,(¢), t =
1, ..., T be sequences of random m; X m, matrices
and b, (r) and c ()}, t = 1, ..., T, be sequences of
random vectors in R™ X R™:, respectively. We will call
each sequence

S(ﬂ (r) =(D£n.l (t}7 Hd' (t)) bd.l )(Z}ﬂ C@(Z))7 t = 1’ bR | T!

corresponding to some event @ € {}, a scenario. The
problem is to find a collection x (¢}, t =1, ..., T, @ €
Q) of random vectors in ™~ (a policy), which minimizes
the linear form

T

D P 2 (Cu(e) x, ) (14)

@} p=]

subject to the constraints

dx, (e~ 1)+ H, (Ox, (6} =b,(), ¢=1,..., T,

(15}
and x,(t) 2 0,¢t =1, ..., T, @ € , with x(0) = x4
fixed. The nonanticipativity constraint can be formulated
as follows: For all @, { € Q and any ¢ € {1, ..., T}

x,(8) =x,(2) if 5,(r) =5,(7) forr=1, ..., (16)

In words, decisions corresponding to scenarios that are

indistinguishable up to time ¢ should be identical.
Stochastic linear programs have been studied for four

decades, starting with the early work by Dantzig (1955)

and Beale (1955), and later by Wets (1974) and others. -

Despite these efforts and until recently, there have been
few genuine applications of stochastic linear programs
due to sewveral interrelated factors. First, the models
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rapidly enlarge as a function of the number of time stages
and scenarios. This computational issue has become less
critical since the advent of more powerful computers and
highly efficient solution algorithms. Second, stochastic
linear programs do not handle risk aversion in a direct
fashion. This restriction has excluded many important
domains of application. But, again, the computational
constraints have diminished as algorithms, such as non-
linear interior point methods, have become efficient for
solving larger problems.

Next, it is often assumed that the second and subse-
quent decision stages display complete recourse. Thus,
there is no need to worry about feasibility. This simplifi-
cation can be overcome but with added modeling com-
plexity, such as the penalty approach discussed in
Section 1.

1.4. Comparisons With Sensitivity Analysis and
Stochastic Linear Programming

We compare here RO with alternative approaches for
dealing with uncertainty. We will see that RO enjoys
several advantages, while it is not without its
shortcomings.

Sensitivity analysis (8A} is a reactive approach to con-
trolling uncertainty. It just measures the sensitivity of a
solution to changes in the input data. It provides no
mechanism by which this sensitivity can be controlled.
For example, applying SA to the linear programming diet
(subsection 1.1) we estimate a 6% change in the calcium
intake of the dieter, per unit change in the calcium con-
tents of the food products. By comparison, the SA of the
RO diet (for « = 5) indicates a sensitivity of 1%. Using
larger values of @ we can reduce the sensitivity even
further.

Stochastic linear programming (SLP) is, similarly to
robust optimization, a constructive approach. They are
both superior to SA. With stochastic linear programming
madels the decision maker is afforded the flexibility of
recourse variables. These are identical to the control
variables of RO and provide the mechanism with which
the model recommendations can be adjusted to account
for the data realizations.

The SLP model, however, optimizes only the first mo-
ment of the distribution of the objective value £.. It ig-
nores higher moments of the distribution, and the
decision maket’s preferences toward risk. These aspects
are particularly important for asymmetric distributions,
and for risk averse decision makers. Furthermore, aim-
ing at expected value optimization implicitly assumes an
active management style whereby the control (i.e., re-
course) variables are easily adjusted as scenarios unfold.
Large changes in £, may be cbserved among the different
scenarios, but their expected value will be optimal. The
RO model minimizes higher moments as well, e.g., the
variance of the distribution of £,. Hence, it assumes a
more passive management style. Since the value of £
will not differ substantially among different scenarios,
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little or no adjustment of the control variables will be
needed. In this respect RO can be viewed as an SLP,
whereby the recourse decisions are implicitly restricted.

This distinction between RO and SLP is important,
and defines their domain of applicability. Applied to pet-
sonnel planning, for example, an SLP solution will de-
sign a workforce that can be adjusted (by hiring or
layoffs) to meet demand at the least expected cost. The
important consideration of maintaining stability of em-
ployment cannot be captured. The RO madel, on the
other hand, will design a workforce that will need few
adjustments to cope with demand for all scenarics. How-
ever, this cost will be higher than the cost of the SLP
solution. The importance of controlling variability of
the solution {(as opposed to just optimizing its first mo-
ment) is well recognized in portfolic management appli-
cations, due to the work of Markowitz. It has been
ignored in most other applications of mathematical pro-
gramming. The RO framework addresses this issue
directly.

Another important distinction of RO from SLP is the
handling of the constraints. Stochastic linear program-
ming models aim at finding the design variable x such
that for each realized scenario a control variable setting
v, is possible that satisfies the constraints. For systems
with some redundancy such a solution might always be
possible. The SLP literature even allows for the notion of
complete recourse, whereby a feasible solution y, exists
for all scenarios, and for any value of x that satisfies the
control constraints. What happens in cases where no fea-
sible pair (x, y,) is possible for every scenario? The SLP
model is declared infeasible. RQ explicitly allows for this
possibility. In engineering applications (e.g., image resto-
ration) such situations inevitably arise due to measure-
ment errors. Multiple measurements of the same quantity
may be inconsistent with each other. Hence, even if the
underlying physical system has a solution (in this case,
an image does exist!) it will not satisfy all the measure-
ments. The RO model, through the use of error terms
{z;} and the penalty function p(-}, will find a solution
that violates the constraints by the least amount, Such an
approach is standard in medical imaging, see, e.g., the
model of Levitan and Herman (1987), or the models of
Elfving (1989) and Herman et al. {1990}, but has received
little attention in the OR literature.

Other properties of RO vis-g-vis SLP deserve investi-
gation. Of particular interest is the stability of the respec-
tive solutions, see, e.g., Dupacova (1987, 1990), and the
accuracy of the solutions when a limited number of sce-
narios is used (Ermoliev and Wets 1988).

While RO has some distinct advantages over 8A and
SLP, it is not without limitations. First, RO models are
parametric programs and we have no a priori mechanism
for specifying a ““correct’” choice of the parameter w.
This problem is prevalent in multicriteria programming
optimization (Keeney and Raiffa). Second, the scenarios
in £} are just aone possible set of realizations of the

problem data. RO does not provide a means by which
the scenarios can be specified. This problem is prevalent
in SLP models as well. Substantial progress has been
made in recent years in integrating variance reduction
methods, such as importance sampling, into stochastic
linear programming, see Glynn and Iglehart (1989),
Dantzig and Infanger (1991), and Infanger (1992). These
techniques apply to RO,

Despite these potential shortcomings, we emphasize
that working only with expected values (as in the linear
programming formulations} is fundamentally limited for
problems with noisy data. Even going a step further, that
is, working with expected values and hedging against
small changes in these values, is also inappropriate. This
has been argued at length in the context of fixed-income
portfolio management by Hiller and Schaack (1990) and
was demonstrated in the application of Zenios and Kang
(1993). In this respect RO provides a significantly im-
proved modeling framework.

In summary, robust optimization integrates the meth-
ods of multiobjective programming with stochastic pro-
gramming. It also extends SLP with the introduction of
higher moments of the objective value, and with the no-
tion of model robusiness.

2. ROBUST OPTIMIZATION APPLICATIONS

This section describes the application of RO to several
real-world problem domains. Most of these models were
developed by the authors for diverse applications. These
examples illustrate how robustness considerations can be
incorporated in several important problems. They also
show that RO models are solvable, even if they are more
complex than the standard linear programming formula-
tions, and the generated solutions can be robust with
changes in the model data.

2.1. The Power Capacity Expansion Probiem

The power system capacity expansion problem can be
described as follows:

Select the capacities of a set of power plants that mini-
mize the capital and operating cost of the system, meet
customer demand, and satisfy physical constraints.

Demand for electric power is not constant over time: It
changes during periods of the day or with the season of
the year, and it exhibits long-term, yearly trends. Events
like equipment and distribution line failures add to the
complexities of managing such a system. Several authars
have proposed stochastic programming formulations;
see, e.g., Murphy, Sen and Soyster (1982), Sherali et al.
(1984), Sanghvi and Shavel (1986}, and Dantzig et al.
(1989). An RO formulation for this problem was devel-
oped by Malcolm and Zenios (1994). It has some desir-
able properties: First, introducing a wvariance
minimization term produces cost structures that are less
volatile over time, and, hence, are easier to defend in



front of administrative and legislative boards. Second,
temporary shortages from a given plant configuration are
usually met by outsourcing to other utility companies.
Hence, introducing a penalty term that will minimize the
levels of shortage across different scenarios will ease
the arrangements between the collaborating utility cormn-
panies, and also reduce the interperiod variability.

A single-period, deterministic, linear programming
model for power system planning is given by:

minimize 3, ¢:x;, + 2 8; > fivi (17)
el er i=r
subject to x; — > yy; 20, foralli€l, (18)
et
8, > yy;=4d,;, foralljEJ, (19)
ier
x; = 0, yjj 2 0, (20)

forallicl, j&l.

Here P; and 8, denote demand and duration for oper-
ating mode f; see Figure 4. Let J denote the set of plant
types (¢.g., hydro, coal, etc.), J is the set of operation
mades (e.g., base, peak), and ¢; and f; are the annualized
fixed cost ($/MW) and operating cost ($/MWh), respec-
tively, for plant { € J. The level of demand in (19) is
obtained from the load duration curve by:

d!' ={P_; _Pj—l)ej‘

Decision variables x,; denote the total capacity installed
at plant i € I. These are the design variables. Variable
vy denotes the allocation of capacity from plant ¢ to sup-
ply operating mode j. For example, it determines what
fraction of the capacity of a coal plant is used to supply
peak load. The y’s are the control variables. The alloca-
tion of plant capacity to different modes of operation is
determined after the plant capacities (x;) have been de-
termined, and the demand levels for different modes (d;)
have been observed.

The RO formulation of the power system planning
model introduces a set of scenarios s € (} for the uncer-
tain energy demands {d;}. (Scenarios can be introduced
for other forms of uncertainty, such as the fraction of
plant capacity that will be available under each scenario
due to equipment outages, etc.). The control variables
are then scenario dependent and are denoted by y;;. The
linear programming model given above is reformulated in
the following RO model:

Min 3 psés+ A % ps(és — 2 poés)?
SEN s'en

s€0
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8, 8, 8,

Figure 4. Piecewise linear load duration curve. The hor-
izontal axis denotes duration for different lev-
els of demand; these levels are indicated on the
vertical axis.

to 3 po( T @1+ 3 o)) 1)
sEQ il =

subject to:

X~ S yb=2z%, foralli€l, s €Q, (22)
jes

8, S yi+zy=4df, foralljet, s€q, (23)

ier
x 20,y 20, (24)

foralliel, jel, s .
The function & is defined by

Es= 2 cxi+ 2 0; 2 fiy
i€l jer et

The objective function of this RO formulation has three
terms. The first term is the expected cost of the operation
(in the traditional formulation of stochastic linear pro-
grams). The second term is the variance of the cost,
weighted by the goal programming parameter A. The
third term penalizes a norm of the infeasibilities,
weighted by parameter w. Table I summarizes compara-
tive statistics between the solution of a stochastic pro-
gramming formulation of this model, with the RO
solution obtained for a particular setting of the parame-
ters. (The parameters were set as A = 0.01 and @ = 128.
Those values were determined as appropriate given the
various tradeoffs between solution and model robusiness
analyzed in Malcolm and Zenjos. Other parameters may
be more appropriate depending on the goals of the deci-
sion makers.} Figure 5 illustrates the tradeoffs between
the mean and variance of the solution for different values

Table 1
Comparison of RO and Stochastic Linear Programming Solutions for the
Power System Capacity Expansion Problem

Cost Expected Variance Excess
Scenario 1 2 3 4 Cost of Cost Capacity
RO Model 7,824 7,464 7,579 7,446 7,578 100 5.6
Stochastic Programring 7,560 7,320 7,620 7,380 7,470 124 73
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Fipgure 5. Tradeoff hetween the mean and variance of the
solution in the RO formulation of the power
capacity expansion model. The x on the verti-
cal axis indicates the solution of a stochastic
linear programming formulation. The o de-
notes the RO solution obtained for A = 0.01
and w = 128, The RO solution has higher
expected cost than the stochastic linear pro-
gramming solution, but it has substantially
lower standard deviation.

of A. The mean and variance of the stochastic program-
ming formulation of the same model are shown with an x
on the same diagram.

2,2, Reconciliation of Data: The Matrix
Balancing Problem

The problem of adjusting the entries of a large matrix of
observed data to satisfy prior consistency requirements
occurs in many diverse areas of application (see
Schneider and Zenios 1990). A generic statement of this
problem is as follows,

Given an m X n nonnegative matrix A and positive vec-
tors # and v of dimensions m and n, respeciively, deier-
mine a “‘nearby’” nonnegative matrix X = (x;;) (of the
same dimensions) such that its entries satisfy a set of
linear restrictions that are consistent with the observa-
tion vectors & and v. Such restrictions take, for example,
the form:

S xy = u, (25)
J=1
2 X5 =v;. - (26)

i
X

The following specific models fall under this frame-
work: Estimation of migration patterns in regional plan-
ning, estimation of social accounting matrices for
development planning, estimation of origin/destination
matrices for transportation or telecommunications traffic,
updating input/output tables for econometric modeling,
reconciling census observations, and several others.
Typically, the problem is one of adjusting the entries of
the matrix such that row totals {i.e., the total inrcome of a
sector) are equal to observed values. Column totals {i.e.,
total expenditure of a sector) are also equal to observed
values.

Under the requirement of biproportional adjustments?
a suitable formulation of the matrix balancing problem is:

minimize Y, » x; log (27)
i=1j=1

x =0 i

H

subjectto X xy =u;, fori=1,2,...,m, (28)
i=1

M
I}){x,}- =v;, forj=1,2,...,n  (29)

The observation vectors u and v are often subject to
error. It is then possible that the problem of balancing
the mairix 4 has no solution. {Clearly, if Y2, u;, =
21 vy, then the optimization problem has no feasible
solution.) Several suggestions appeared in the literature
to overcome this problem. Folklore suggests that the
vectors i and v are first scaled so that feasibility is en-
sured. Zenios, Drud and Mulvey (1989) suggested the
updating of the vectors u and v based on a least-squares
or entropy approximation. Jornsten and Wallace {1990)
also suggested a least-squares update of the observation
vectors. Censor and Zenios (1991) suggested that a range
of permissible values be specified for the vectors « and
v, and the problem be solved as an interval-constrained
entropy optimization model.

The RO formulation of matrix estimation problems can
be written as:

ML n o m N
minimize Y, ¥ x; In (xi) + E[E yi+ > zf] (30
i=t j=1 if i=1

x20 if 2 i=1

subject to:



-4

Xy —Yi=u;, fori=1,2,..., m, (31)

i

1]
—

[z

Xy —z;=v;, forj=1,2,...,n (32)

i
—~

This formulation, derived here as a direct application
of the RO framework, can be derived from statistical
arguments {Elfving 1989, Zenios and Zenios 1992). The
entropy term estimates the matrix which is the least bi-
ased {or maximally uncommitted} with respect to missing
information, conditioned on the observations {a;}. An
axiomatic characterization of entropy maximization solu-
tions for matrix balancing problems is due to Balinski
and Demange (1989). The quadratic terms are the loga-
rithms of the probability distribution function of the error
(i-e., noise} term, conditioned on the matrix {x;;}. Here it
is assumed that the errors are normally distributed with
mean zero and standard deviations that are identical for
all observations. The model maximizes (the logarithm) of
the probability of the matrix {x;}, conditional on the
noisy observations {x,, v;}, assuming a uniform prior
distribution of x,;, and normally distributed observation
vectors. This is a Bayesian estimate of the matrix. The
argumnents that lead to this formulation can be found in
Elfving for the problem of medical imaging, and Zenios
and Zenios for the matrix balancing problem.

This RO model is a mixed entropy/quadratic optimiza-
tion problem subject to network flow (transportation}
constraints. For small sized problems it can be solved
with off-the-shelf nonlinear optimizers, like MINQOS. For
medium to large sized problems it can be solved using
state-of-the-art nonlinear network optimization codes,
such as GENOS (Mulvey and Zenios 1987). As matrix
balancing applications tend to be of very large size
{1,000 x 1,000 matrices with several hundred thousand
entries to be estirmated are common), there is a tendency
in the literature to develop special purpose algorithms for
these problems. The references mentioned above
(Zenios, Drud and Mulvey 1989, Elfving 1989, Schneider
and Zemios 1990, Censor and Zenios 1991) develop spe-
cialized algorithms for different formulations of the
prablem.

A primal/dual row-action algorithm for the RO formu-
lation of the matrix estimation problem is given in Zenios
and Zenios. The algorithm was used to solve problems of
size 1,000 x 1,000 with up to 800,000 coefficients within
3-5 minutes on an Alliant FX/8. The algorithm is also
well suited for vector and parallel implementations.
When these architectural features of the Alliant FX/8
were properly exploited the test problems were solved
within 10-15 seconds.

2.2.1. Image Reconstruction

A problem closely related to matrix balancing is that of
image reconstruction. The reconstruction of images from
partial and, perhaps, incomplete observations appears in
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numerous areas of application. In medical imaging prob-
lems, for example, one has to reconstruct an image of a
cross-section of the human body by observing the ab-
sarption of x-rays along different views (i.e., directions)
of the cross-section. In emission computerized tomogra-
phy, images are reconstructed by cbserving the emis-
sions of positrons from material that has been injected in
the blood stream.

Similar techniques are applied in nondestructive mate-
rial testing: Identify imperfections in a structure by ob-
serving the deflection of some radiation pattern, as
opposed to subjecting the structure to stress or strain
tests. In seismic data analysis researchers try to under-
stand the subsurface earth structure by cbserving the
deflection of seismic waves. These, and several other
applications, are discussed in the book by Herman
(1980). Matrix balancing can be viewed as a problem of
image reconstruction from two orthogonal projections.

A typical approach for image reconstruction is to dis-
cretize the cross-section of the image, and assume that
its demsity is uniformn within each picture element (i.e.,
pixel) and given by a vector x. The geometry of the
cross section and the directions along which the image
was observed, together with the numerical values of the
observations, specifies a set of linear restrictions of
the form Ax = b. Here x; denotes the density of the jth
pixel, a; is the length of intersection of the jth pixel by
the ith x-ray, and b; denotes the observed intensity of the
ith ray. Statistical or physical considerations, depending
on the application, fead to an entropy optimization for-
mulation of the form:

. (33)

minimize — ent(x) = > x; log
x =0 i |
subject to Ax = b. {34)

Here, m,; denotes an a priori estimate for the density of
the jth pixel.

While the matrix A is usually well specified from the
geometry of the problem, the vector of observations b is
noisy. For example, in emission computerized tomogra-
phy, b is a Poisson random variable with an unknown
mean B. A popular approximation vsed to model noisy
b’s is to assume that the deviation from the mean is
normally distributed with mean zero and some known
standard deviation; i.e., b := 8 + r, where » is a mean
zero noise vector. Detailed justification for this model of
medical image reconstruction from noisy data is given in
Elfving; see also Herman (1980), Minerbo (1981), and
Smith and Grandy (1985).

This problem can be formulated as a special case of
robust optimization: It consists only of design variables
x and the matrices {B,, B,, ..., B} are identical. Only
the right-hand side vectors {e,, e,, ..., €4} are subject
to naise. The model is written as:

minir{}lize — ent(x) + %z Tz (35)
x=
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subject to z =Ax — b. (36)

The parameter g > 0 reflects the relative importance
between the data term (i.e., minimum entropy solution)
and the noise-smoothing term. In our terminology,
the entropy term measures solution robustness, while the
quadratic term measures model robustness. This formu-
lation for image reconstruction problems was first pro-
posed by Elfving. He also proposed the use of Wahba’s
{1977), cross-validation technique for picking p. This for-
mulation has been used in several image reconstruction
problems. See O'Sullivan and Wahba (1985) for applica-
tions in remote sensing experiments, Elfving for x-ray
medical imaging, and Herman et al. for emission comput-
erized tomography.

2.3. Airline Allocation far the Air Force:
The STORM Madel

This example involves the scheduling of aircraft to routes
for U.S. military operations worldwide. The responsibil-
ity for these decisions lies with the Air Mobility Command
(AMC), previously the Military Airlift Command or MAC.
A large deterministic linear program is used to make these
assignments to minimize total costs to supply the aircraft.
This system played an important role in operations such as
the 1991 Iraqi conflict and the 1993 incidents in Somalia.

Fach month the various services (Army, Navy, Air
Force, and Marines) send to AMC their projections for
the amount of cargo to be sent across various routes
worldwide, for instance, from California to Saudi Arabia.
These estimates then become point forecasts for the
number of aircraft to be supplied over the military trans-
portation network. Unfortunately, at least for the Air
Force planners, the estimates must be modified as condi-
tions change during the month as the services adjust their
needs. As an additional condition, the load of an aircraft
may be event-dependent provided that it does not exceed
its maximum capacity. The military sorties, however,
must be determined before the actual demands will be
known. At times, demand can be handled by leasing air-
craft from commercial airlines.

There are several alternative model formulations for
STORM, depending upon the needs of the Air Force
planners. The most compact and commonly used in-
volves decision wvariables representing the overall
number of flights by each aircraft type over the
transportation network. This leads to the following cate-
gory of decision variables:

X - the number of sorties on each route in the network
(by aircraft type);

v - the amount of undelivered cargae using military
aircraft.

The deterministic version of the aircraft allocation prob-
lem is defined as follows.

Problem STORM

minimize f(x, v) {37)
subject to Ax = b, (38)
Bx +Cv=e, (39)

x, vz (40)

Simply speaking, the model minimizes total costs
f(+), while satisfying a variety of flow balance (structur-
al), and other constraints (structural and control). For
instance, there must be a balance of landings and take-
offs, the cargo must fit within the capacity of the air type,
and the total aircraft flying hours must stay within the
design specifications. Cargo can be moved directly from
location to location or via transshipment links in the
network.

The model was designed to meet the cargo and other
transportation needs of the services by employing mili-
tary planes, or by leasing space or equipment from com-
mercial carriers. The later strategy is generally more
expensive and avoided if possible. The basic model is a
deterministic linear program of the form shown above.
All model coefficients represent the best estimates of the
planners.

In 1991, AMC became interested in robust optimiza-
tion for several reasons. First, the deep reductions in
overall force size led to a large reduction in the need for
STORM capacity. In the past, the Air Force provided a
level of service that would meet or exceed most de-
mands—a worsi-case plan. The cost of providing this
service, however, grew as the cost of excess capacity
(overage) became recognized. Both overage and under-
age costs are included in the RO model. Next, the plan-
ners were searching for a systematic method for reducing
the variability of the solution from month to month. Each
scheduling change requires a cascading set of aperational
modifications. RO provides the approach for smoothing
out the changes over time by using a conservative, risk
averse utility function.

To accomplish the transformation of the STORM
model, we developed a forecasting system for projecting
traffic based on scenarios. As before, a scenario provides
a single plausible and coherent set of parameters for
STORM. Letting Q represent the set of scenarios we
expand the basic model as follows.

Probiem RO-STORM
s

Minimize 3. p,U[ fx, v} + plcq(v)8 H(v)
s=1

t e, (v)8 " (v)]
subject to Ax=b,
Bx+Cv, =e, +87(v) - 8 (v),
for all s € (3,

x, 87wy, 8 (v), v, 20, for all s € ),



where ¢q(v) and ¢, (v) depict the costs for overage and
underage, U[ + ] is the von Neumann-Morgenstern utility
function, and 87(v) and 8§ (v) are the deviations for vio-
lations of the control constraints. The overage and un-
derage costs are determined by the military planners
based on their priorities. The utility function is chosen in
a way to reduce the variations in the schedule over time.
A highly risk averse function displays much less varia-
tion, especially with regard to the military planes. The
actual degree of rabustness accepted by the planners is a
decision that is based on the efficient frontier of expected
costs versus the anticipated number of likely scheduling
changes. An interactive procedure is under development
for assistance with these tradeoff decisions.

The ideal solution from the standpoint of model robust-
ness is to identify groups of aircraft flights that are constant
across time. This group of fights is called the core. Vari-
ables outside of the core are allowed ta change as demand
for cargo services increases or decreases. The robust
models are used in conjunction with a routine which se-
lects the core variables. Additional constraints are imposed
on total transportation costs during these runs. Qur tests
show that the varability of costs can be reduced by over
409 on a monthly basis with only a 5% increase in ex-
pected cost.

The size of a typical transcontinental version of
the deterministic formulation of STORM (e.g., U.S. and
Europe) is approximately 3585 rows, 1,380 variables,
and 3,799 nonzero coefficients. Thus, by adding multiple
scenarios, we gencrate large optimization problems, as
shown in Table IL. In our computational tests, the qua-
dratic interior point code LOQO (Vanderbei 1992) has
been able to solve up to 20 scenarios of STORM on an
8GI Indige workstation. Results are shown in the same
table. Much larger problems can be solved by employing
distribuied and parallel computers, as discussed in
Section 3; see, e.g., Berger, Mulvey and Ruszezynski
(1994), and Jessup, Yang and Zenijos (1994).

2.4. Scenario Immunization
Dembo (1992) introduced the notion of scenario immuni-
zation for the management of fixed income portfolios un-

der uncertain interest rate scenarios. A portfolio is
termed imemunized if the present value of the assets in the
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porifolio matches the present value of the liabilities that
the portfolio is expected to fund. However, a difficulty is
encountered when deciding what interest rates to use for
discounting both assets and liabilities to their present
value. If interest rates are fixed, and known a priori, then
by matching present values of both sides of the balance
sheet we are guaranteed that assets and liabilities will
grow in the same way, and the liabilities will be fully
funded. Hence, assuming some scenario s for discount
rates we can write the portfolio immunization problem as:

Mi}r}gig(l}izc cs' X (41)
subject ta X Vyx, = Vi, (42)
Fi=t

We use J to denote the set of available instruments
with market price vector ¢; and present value I, =
(V,;). The present value of the liabilities under the as-
sumed scenario is V;, and x, denotes the composition
of the optimized portfolio. Let the optimal value of this
problem be v,. Dembo proposed to solve the portfolio
immunization when the scenarios s takes values from a
set {} by solving the following tracking prablem:

minimize D, p, [{c,Tx -—v, )+ (jgj(Vﬂ-xj ~ Vo }2) ]

x =0 sEN .
(43)

This model is a special case of the robust optimization
framework when only design variables and structural
constraints are present.® The second term of the objec-
tive function corresponds to a quadratic penalty function
on feasibility robustness. (Just define z, = ¥, Vi x; —
V.. in the scenario immunization model and the relation
with the rabust optimization model (5)-(8) follows.) The
first term of the abjective function is a quadratic penalty

function for feasibility robustness of the constraints:

> cyx; =vy forall s €,
Jer

These constraints are imposed to enforce optimality ro-
bustness. The optimal robust solution x* will have an
objective that remains close to the optimal value v, for
any one of the realized scenarios.

Tahle IT
Size of the Robust Optimization Problem as a Function of the Number of STORM Scenarios
and Solution Times Using LOQO

Scenarios Rows Colurmns Nonzeros CPU(s) Elapsed(s)
1 583 1,380 3,799 32 4
3 1,755 4,140 11,397 27.4 31
5 3,530 6,900 20,205 84.1 91
8 4,680 11,040 30,392 270.6 282
10 5,850 13,800 37,900 491.4 519
12 7,020 16,560 45,588 909.6 929
20 11,700 27,600 75,980 3815.7 3935
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2.5. Minimum Weight Structural Design

This subsection describes an example of robust optimiza-
tion in which the selection of scenarios is carefully done
to cover the largest number of events possible. This topic
will become important as applications become more
common.

The minimum weight structural design problem can be
described as follows. Given a collection of admissible
joints (some of which are designated as anchor joints)
and a corresponding collection of admissible members
(i.e., beams) connecting pairs of joints, find the cross-
sectional area of each member so that the resulting struc-
ture has minimal weight and can accommodate a given
load at each joint. The constraint that the design be ca-
pable of supporting a given load can be expressed as a
set of linear equations that must be satisfied:

Af = ~A, (44)

where each row of this system of equations represents
the balancing of either an x or a y component of force at
one of the nonanchored joints (assuming the problem is
formulated in swo dimensions). Each component of the
vector A appearing on the right-hand side contains a cor-
responding x or y component of the given load and the
vector f represents the forces in each admissible member
{positive forces represent tension and negative forces
represent compression). The optimization criterion is to
choose the design having minimal weight. The weight of
a member is proportional to its length times its cross-
sectional area and we assume that the cross-sectional
area is proportional to the amount of force in the mem-
ber. Hence, the total weight of the structure is propor-
tional to :

? 41£ls (45)

where I; denotes the length of member j. Assuming that
the proportionality constant is equal to one, the problem
is to minimize (45) subject to (44).

To convert this problem to an equivalent linear pro-
gramming problem each variable f; is replaced by the
difference between its positive and its negative parts f; =
fi7 — f7 . Then the problem can be rewritten as

minimize [ Tf* +17f" (46)
subject to  Af* — Af” = -4, (47
ffreof =0, (48)

Figure 6 shows an example of a structure designed in this
manner. See Ho (1975) for a further discussion of the opti-
mal design problem. In this example, the two nodes on the
bottom level are the anchor nodes. Most of the other nodes
have no applied loads. The only exceptions are the three
nodes on the top row, the three inner nodes two rows
down from the top, and the three inner nodes four
rows down from the top. At these nine nodes there is a
vertical load representing the weight due to gravity of an
external load applied at these points. Hence, the structure

is a tower that must support weight on three different
levels.

There are drawbacks to the optimal structural design
problem as formulated above. First, structures must al-
ways be designed to accommodate a variety of load sce-
narios. For example, the effects of wind must be
considered. However, wind is wvariable. One could con-
sider applying just a wind of a fixed intensity from a fixed
direction, say the left. Figure 7 illustrates the optimal struc-
ture obtained from such a model with wind included. Sud-
denly the optimal design is entirely unreasonable because
part of the structure is standing on a point. Given the
maodel, this structure is correct since the wind is consid-
ered to be constant and so it exactly counterbalances the
tendency for the leaning portion of the structure to tip
over. (Even using only vertical loads, it is possible to ob-
tain optimal structures that are simifarly unreasonable.) To
remedy this situation we must consider at least two scenar-
i0s, one with a fixed wind coming from the left and another
with a fixed wind coming from the right. By choosing a
reasonably large fixed wind velocity, it is clear that these
two scenarios yield a structure that can withstand a wide
range of wind directions and intensities.

é%%
A

Figure 6. An optimal structural design based on a single
scenario. {The figure on the left illustrates all
admissible joints from which the joints of the
right figure, and their cross sections, have been
selected.)
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Figure 7. Difficutty of optimizing a structural design over
a single scenario. (The figure on the left illus-
trates all admissible joints from which the
joints of the right figure, and their cross sec-
tions, have been selected.}
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Hence, for the optimal structural design problem, we are
naturally ted to consider a “‘robust” version. Indeed, sup-
pose that there are two load scenarios A' and A%, If we let
¥ denote the forces in the members under the kth scenario
and let ¢ denote the vector of cross-sectional areas of the
members, then the robust formulation can be written as:

minimize / T ¢

. 17
A 0 0 fzﬂﬂ)tl
OAO_);_ 22
~I 0 1) g [0
I 0 I 0
o —r 1| |20
o I 1l ¢ |o
d =0

The first two sets of nonnegativity constraints simply say
that | f!| < ¢, and the second two sets say that | f?| < ¢.

One might argue that we have only considered two
scenarios and that the varieties in real life are much
broader. However, we observe that any scenario that is a
subconvex combination of the given scenarios is auto-
matically covered. To see this, suppose that a new load
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scenario « is given as a subconvex combination of A* and
AZ:

a=pAl+gi?

where p and g are nonnegative real numbers satisfying p
+q < 1. Let f = pf' + gf> Then

Af:PAfl + fIQJd =-a,
and

|11 =lpf* + qf? = max(| £], [f7]) < &.

Hence, ¢ is big enough to handle the load given by o.
Therefore, for problems in two dimensions, two scenar-
ios can cover a pretty wide set of scenarios, whereas in
three dimensions one would probably use four scenarios.
Figure 8 illustrates the design obtained using an RO for-
mulation of the problem.

2.6. Applications to NETLIB Madels

The robust optimization concepts can be applied to a
general linear program in which very small perturbations
are made to the data coefficients. In effect, this approach
corresponds to a formal method for minimizing the sotu-
tion perturbations in the context of forward error
analysis.

To demonstrate the ideas, we set up tests with selected
NETLIB linear programs. A generator was designed to
modify the test problems in a very small way, specifically
the coefficients: (A4;, b;, and ¢;}. Random perturbations
in these coefficients were made using a uniform density
function with range equal to xx. (The structural ete-
ments—all coefficients with 0, +1, and —1—remained
unchanged). Similar ranges were established for the b,
and the c¢; coefficients.

The combined objective function ({expected value) -
1/« (variance)) was solved for various values of a, as
depicted in Figure 9. This example is for the AFIRO
problem using ten scenarios. The resulting efficient fron-
tier is also shown in this figure. This experiment illus-
trates how the RO formulation can reduce the variance
of the solution at the expense of its expected value.

The solution time of the RO model increases with the
number of scenarios. However, a small number of sce-
narios could be solved with 1.OQO (Vanderbei) in sotu-
tion times comparable to those required to solve the
linear programming model. As the number of scenarios
becomes large the solution times grow substantially. For
example, AFIRO was solved in 0.3 seconds as a linear
programming model, in 3.0 seconds as a robust optimiza-
tion model with 10 scenarios, in 28.5 seconds with 40
scenarios, and in 16,200 seconds with 300 scenarios.

3. DATA PARALLEL COMPUTATION OF
ROBUST SOLUTIONS

We turn. now our attention ta the solution of robust opti-
mization problems. For a large number of scenarios we
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need to design special purpose algorithms. Such algo-
rithms have heen designed for general nonlinear pro-
grams (Mulvey and Ruszezyriski 1992, Berger, Mulvey and
Ruszezyriski 1994, Jessup, Yang and Zenios 19%94) and for
network problems (Mulvey and Vladimirou 1991 and
Nielsen and Zenios 1993a, b).

When applying algorithms such as those developed in
the above references one can exploit the novel architec-
tures of high-performance computers. One of the primary
motivating factors for the development of the RO frame-
work has been the recent developments with paraliel and
distributed computing.

Within the context of parallel computing the notion of
data-level parallelism is particularly suitable for solving
robust optimization problems. This model of program-
ming parallel machines, introduced in Hillis (1987), pos-
tulates that parallelism is achieved by operating
simultaneously, and with homogeneous operations, on
multiple copies of the problem data. This form of
parallelism has been embodied in the Connection
Machine CM-2 and other SIMD architectures (MassPar
and Active Memory Technologies DAP}, and, more re-
cently, in the Connection Machine CM-5, which is based

Figure 8. Improved structural design with multiple sce-
narios. (The figure on the left illustrates all ad-
missible joints from which the joints of the
right figure, and their cross sections, have been
selected.)
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Figure 9. Robust efficient frontier for AFIRO.

on an MIMD architecture. The robust optimization prob-
lers have a natural mapping to data-level parallel archi-
tectures. The optimization problem remains structurally
unchanged for different realizations of the scenarios.
Only (some of) the problem data change. Hence, with the
suitable use of decomposition algorithms we have to
solve a series of problems that are structurally identical,
while they differ in some of the coefficients. This is pre-
cisely the mode of operation of data-level parallel archi-
tectures. A survey of data-level parallel algorithms for
large-scale optimization is given in Zenios (1994}.

Another important development in computer architec-
tures involves the notion of distributed heterogeneous
computing, whereby a group of computers are linked via
high-speed communications for the purpose of solving
problems which are too large for any single machine.
This concept has gotten attention due to the recent im-
provements in telecommunication capabilities. Berger,
Mulvey and Ruszczyiski (1994) describe a decomposi-
tion method which does not need a master controller for
coordinating the informational flows, and is therefore
well suited for distributed architectures.

4. CONCLUSIONS

This paper argues that robustness ought to be included in
the development of mathematical programming models,
It is extremely rare that real-world data is known within
machine precision. Thus, noisy data is a fact of life and
should be handled directly, rather than as part of
ex poste sensitivity analysis. (Situations in which para-
metric analysis indicates that the results are relatively
insensitive to data perturbations are automatically taken
care of.)

We have developed a general framework for achieving
robustness. We have discussed the relative merits of RO
over sensitivity analysis and stochastic programming.
We have also seen how RO models would indeed gener-
ate robust solutions for several applications. The RO
framework also embodies as special cases several other



approaches that have been proposed in the past for
handling noisy and incomplete data.

To make robustness a part of an optimization model
requires high performance computers. We must be able
to solve hundreds or even thousands of optimization pro-
grams simultaneously with some degree of coordination.
Sequential computers are unable to handle this tagk ex-
cept for a small number of scenarios. We have pointed
out some promising directions for future work in the area
of paralle]l and distributed algorithms.

Several open issues deserve further investigation. One
is the issue of designing and implementing suitable de-
composition algorithms. Another is the development of
modeling environments where problems with noisy data
can be specified easily. Existing modeling languages, like
GAMS or AMPL, lack such capabilities, but they could
be extended. Finally, additional work is needed in speci-
fying effective procedures for selecting scenarios and
specifying the multiobjective programming weights. In-
teractive and visual-based systems should help in this
regard. These issues arise in other applications of math-
ematical programming as well. We expect that the topic
of robust optimization will receive increasing attention as
its importance is realized.

NOTES

1. This model, and its implications, are admittedly artifi-
cial. However, it was brought to our attention at the
1991 TIMS/ORSA National Meeting (Roush et al.
1992) that controlling the contents of the diet for ani-
mal feeding is a problem of practice significance: Corn
delivered to cattle from different parts of a field will
have different nutritional properties. Deviations of the
animals’ diet from preset targets may have adverse
effects on the quality and quantity of produced milk.

2. Biproportional adjustments (Bacharach 1970) require
that entries of the matrix A should be adjusted to
obtain the balanced matrix X in such a way that the
adjustments are proportional to the magnitude of
the entries. That is, larger values of a;; are adjusted
maore than smaller values.

3. This is, indeed, the major limitation of the scenario
immunization model: It ignores the possibility of re-
balancing the portfolio which could be captured by
the use of controls variables. Nevertheless, the model
is easy to salve and has been proven successful in
several applications.
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