Multi-Echelon Inventory Management

Prof. Larry Snyder
Lehigh University
Dept. of Industrial & Systems Engineering
OR Roundtable, June 15, 2006
Outline

- Introduction
 - Overview
 - Network topology
 - Assumptions
 - Deterministic models
- Stochastic models
- Decentralized systems
Overview

- System is composed of **stages** (nodes, sites, …)
- Stages are grouped into **echelons**
- Stages can represent
 - Physical locations
 - BOM
 - Processing activities
Overview

- Stages to the left are *upstream*
- Those to the right are *downstream*
- Downstream stages face customer demand
Network Topology

- Serial system:
Network Topology

Assembly system:
Network Topology

- Distribution system:
Network Topology

- Mixed system:
Assumptions

- **Periodic review**
 - Period = week, month, ...

- **Centralized decision making**
 - Can optimize system globally
 - Later, I will talk about decentralized systems

- **Costs**
 - Holding cost
 - Fixed order cost
 - Stockout cost (vs. service level)
Deterministic Models

- Suppose everything in the system is **deterministic** (not random)
 - Demands, lead times, …
 - Possible to achieve 100% service
- If no fixed costs, explode BOM every period
- If fixed costs are non-negligible, key tradeoff is between fixed and holding costs
 - Multi-echelon version of EOQ
 - MRP systems (optimization component)
Outline

- Introduction
- **Stochastic models**
 - Base-stock model
 - Stochastic multi-echelon systems
 - Strategic safety stock placement
 - Supply uncertainty
- Decentralized systems
Stochastic Models

- Suppose now that demand is stochastic (random)
 - Still assume supply is deterministic
 - Including lead time, yield, …
- I’ll assume:
 - No fixed cost
 - Normally distributed demand: $N(\mu, \sigma^2)$
- Key tradeoff is between holding and stockout costs
The Base-Stock Model

- Single stage (and echelon)
- Excess inventory incurs holding cost of h per unit per period
- Unmet demand is backordered at a cost of p per unit per period
- Stage follows base-stock policy
 - Each period, “order up to” base-stock level, y
 - aka order-up-to policy
 - Similar to days-of-supply policy: y / μ DOS
The Base-Stock Model

- Optimal base-stock level:
 \[y^* = \mu + z_\alpha \sigma \]

 where \(z_\alpha \) comes from normal distribution and

 \[\alpha = \frac{p}{p + h} \]

- \(\alpha \) is sometimes called the “newsboy ratio”
Interpretation

\[y^* = \mu + z_\alpha \sigma \]

- In other words, base-stock level = mean demand + some # of SD’s worth of demand
- # of SD’s depends on relationship between \(h \) and \(p \)
 - As \(h \uparrow \Rightarrow z_\alpha \downarrow \Rightarrow y^* \downarrow \)
 - As \(p \uparrow \Rightarrow z_\alpha \uparrow \Rightarrow y^* \uparrow \)
- If lead time = \(L \):
 \[y^* = \mu L + z_\alpha \sigma \sqrt{L} \]
Stochastic Multi-Echelon Systems

- Need to set \(y \) at each stage
- Could use base-stock formula
 - But how to quantify lead time?
 - Lead time is stochastic
 - Depends on upstream base-stock level and stochastic demand
- For serial systems, exact algorithms exist
 - Clark-Scarf (1960)
 - But they are cumbersome
An Approximate Method

- Assume that each stage carries sufficient inventory to deliver product within S periods “most of the time”
 - Definition of “most” depends on service level constant, z_α
 - S is called the committed service time (CST)
- We simply ignore the times that the stage does not meet its CST
 - For the purposes of the optimization
 - Allows us to pretend LT is deterministic
Net Lead Time

- Each stage has a processing time T and a CST S
- Net lead time at stage $i = S_{i+1} + T_i - S_i$

“bad” LT “good” LT
Net Lead Time vs. Inventory

- Suppose $S_i = S_{i+1} + T_i$
 - e.g., inbound CST = 4, proc time = 2, outbound CST = 6
 - Don’t need to hold any inventory
 - Operate entirely as pull (make-to-order, JIT) system

- Suppose $S_i = 0$
 - Promise immediate order fulfillment
 - Make-to-stock system
Net Lead Time vs. Inventory

- Precise relationship between NLT and inventory:
 \[y^* = \mu \times NLT + z_\alpha \sigma \sqrt{NLT} \]

- NLT replaces LT in earlier formula
- So, choosing inventory levels is equivalent to choosing NLTs, i.e., choosing \(S \) at each stage
- Efficient algorithms exist for finding optimal \(S \) values to minimize expected holding cost while meeting end-customer service requirement
Key Insight

- It is usually optimal for only a few stages to hold inventory
 - Other stages operate as pull systems
- In a serial system, every stage either:
 - holds zero inventory (and quotes maximum CST)
 - or quotes CST of zero (and holds maximum inventory)
Case Study

- # below stage = processing time
- # in white box = CST
- In this solution, inventory is held of finished product and its raw materials
A Pure Pull System

- Produce to order
- Long CST to customer
- No inventory held in system
A Pure Push System

- Produce to forecast
- Zero CST to customer
- Hold lots of finished goods inventory
A Hybrid Push-Pull System

- Part of system operated produce-to-stock, part produce-to-order
- Moderate lead time to customer
CST vs. Inventory Cost

![Graph showing inventory cost ($/year) versus committed lead time to customer (days). The graph compares Push System, Push-Pull System, and Pull System. The Push System has a higher inventory cost compared to the Push-Pull and Pull Systems. The Push-Pull System shows a moderate inventory cost, while the Pull System has the lowest inventory cost.](image-url)
Optimization Shifts the Tradeoff Curve

![Graph showing the shift in the tradeoff curve between committed lead time to customer and inventory cost.](image)
Supply Uncertainty

- Types of supply uncertainty:
 - Lead-time uncertainty
 - Yield uncertainty
 - Disruptions

- Strategies for dealing with demand and supply uncertainty are similar
 - Safety stock inventory
 - Dual sourcing
 - Improved forecasts

- But the two are not the same
Risk Pooling

- One warehouse, several retailers
 - Who should hold inventory?
- If demand is uncertain:
 - Smaller inventory req’t if warehouse holds inv.
 - Consolidation is better
- If supply is uncertain (but demand is not):
 - Disruption risk is minimized if retailers hold inv.
 - Diversification is better
Inventory Placement

Hold inventory upstream or downstream?

Conventional wisdom:
- Hold inventory **upstream**
- Holding cost is smaller

Under supply uncertainty:
- Hold inventory **downstream**
- Protects against stockouts anywhere in system
Outline

- Introduction
- Stochastic models
- Decentralized systems
 - Suboptimality
 - Contracting
 - The bullwhip effect
Decentralized Systems

- So far, we have assumed the system is centralized
 - Can optimize at all stages globally
 - One stage may incur higher costs to benefit the system as a whole
- What if each stage acts independently to minimize its own cost / maximize its own profit?
Suboptimality

- Optimizing locally is likely to result in some degree of suboptimality
- Example: upstream stages want to operate make-to-order
 - Results in too much inventory downstream
- Another example:
 - Wholesaler chooses wholesale price
 - Retailer chooses order quantity
 - Optimizing independently, the two parties will always leave money on the table
Contracting

- One solution is for the parties to impose a contracting mechanism
 - Splits the costs / profits / risks / rewards
 - Still allows each party to act in its own best interest
 - If structured correctly, system achieves optimal cost / profit, even with parties acting selfishly

- There is a large body of literature on contracting
 - In practice, idea is commonly used
 - Actual OR models rarely implemented
Bullwhip Effect (BWE)

- Demand for diapers:

![Graph showing the Bullwhip Effect with time on the x-axis and order quantity on the y-axis.]
Irrational Behavior Causes BWE

- Firms over-react to demand signals
 - Order too much when they perceive an upward demand trend
 - Then back off when they accumulate too much inventory
- Firms under-weight the supply line
- Both are irrational behaviors
- Demonstrated by “beer game”
Rational Behavior Causes BWE

- Famous paper by Hau Lee, et al. (1997)
- BWE can be caused by rational behavior
 - i.e., by acting in “optimal” ways according to OR inventory models
- Four causes:
 - Demand forecast updating
 - Batch ordering
 - Rationing game
 - Price variations
Questions?