Decomposition Part, Week 1

ISE Department
COR@L Lab
Lehigh University
zelihakca@lehigh.edu

01/26/07
We will Cover:

- Dantzig-Wolfe decomposition and column generation in IP.
- 2 applications of DW decomposition: maximum independent set problem, multistage stochastic IP.
- Lagrangian relaxation (this week or next week).
- Formulation of Benders decomposition.
- Global optimization of nonconvex MINP with decomposable structures.
- Any suggestions? Additions? Not interesting?
- Volunteers?
- Suggestions for the structure of the seminar?
Introduction

Decomposition In General

1. DW Decomposition
2. Lagrangian relaxation
3. Benders decomposition

- All are large scale (models with large number of constraints/variables) optimization algorithms.
- We can find better bounds for branch and bound using these approaches.
- For the first 2, alternative approaches are cutting plane, variable redefinition.
- Basically, first 2 decomposition includes 3 steps:
 - Decompose system of inequalities into two parts.
 - Find the convex hull of the second system.
 - Optimize first system over this convex hull.
Why decomposition can find a better bound?

\[
\text{min}_{cx}
\]
\[
\text{s.t. } Ax \leq b
\]
\[
x \in \mathbb{Z}^n
\]

Let \(Q = \{ x \in \mathbb{R}^n | Ax \leq b \} = \{ x \in \mathbb{R}^n | A'' x \leq b'' , A' x \leq b' \} \).

Let \(F = Q \cap \mathbb{Z}^n \) (feasible integer points) and \(P \) be the convex hull of \(F \).

Let \(Q' = \{ x \in \mathbb{R}^n | A' x \leq b' \} \), \(F' = Q' \cap \mathbb{Z}^n \) (feasible integer points) and \(P' \) be the convex hull of \(F' \).

Let \(Q'' = \{ x \in \mathbb{R}^n | A'' x \leq b'' \} \).

\(z_{LP} = \text{min}_{x \in Q} \{ cx \} \).

\(z_{DECOMP} = \text{min}_{x \in P'} \{ cx | A'' x \leq b'' \} = \text{min}_{x \in P' \cap Q''} \{ cx \} \).
Why decomposition can find a better bound?

Dantzig Wolfe Decomposition

- Assume \(P' \) is bounded. Let \(E \subseteq F' \) be the set of extreme points of \(P' \).

\[
 P' = \{ x \in \mathbb{R}^n \mid x = \sum_{s \in E} s \lambda_s, \sum_{s \in E} \lambda_s = 1, \lambda_s \geq 0 \ \forall s \in E \}.
\]

- Dantzig Wolfe formulation and bound:

\[
 z_{DW} = \min_{x \in \mathbb{R}^n} \{ c^T x \mid A''x \geq b'', x = \sum_{s \in E} s \lambda_s, \sum_{s \in E} \lambda_s = 1, \lambda_s \geq 0 \ \forall s \in E \}.
\]

- Substitute new variables:

\[
 z_{DW} = \min_{\lambda \in \mathbb{R}^E_+} \{ c^T \left(\sum_{s \in E} s \lambda_s \right) \mid A'' \left(\sum_{s \in E} s \lambda_s \right) \geq b'', \sum_{s \in E} \lambda_s = 1 \}.
\]

- \(|E|\) may be very large, thus \(E \) should be generated dynamically.

Introduction

Cutting Strips Problem

\[
\begin{align*}
\min & \quad \sum_{k=1}^{K} L^k \left(W^k y^k - \sum_{i=1}^{p} w_i z_i^k \right) \\
\text{[P^cs]} & \quad \text{s.t.} \\
& \quad \sum_{k=1}^{K} L^k z_i^k \geq d_i, \quad i = 1, \ldots, p, \\
& \quad \sum_{i=1}^{p} w_i z_i^k \leq W^k y^k, \quad k = 1, \ldots, K, \\
& \quad y^k \in \{0, 1\}, \quad k = 1, \ldots, K, \\
& \quad z_i^k \in \mathbb{N}, \quad i = 1, \ldots, p, \quad k = 1, \ldots, K.
\end{align*}
\]

Let Q^k be the set of feasible cutting patterns for sheet k, λ_q^k be the number of times pattern q^k is selected.

$$X^{cs} = \left\{ (y^k, z^k)_{k=1,\ldots,K} \in \mathbb{N}^{K(1+p)} : \right\}$$

$$\sum_{i=1}^{p} w_i z_i^k \leq W^k y^k \text{ for } k = 1, \ldots, K$$

$$= \left\{ (y^k, z^k)_{k=1,\ldots,K} \in \mathbb{R}^{K(1+p)} : \right\}$$

$$y^k = \sum_{q^k \in Q^k} \lambda_q^k, \quad z^k = \sum_{q^k \in Q^k} q^k \lambda_q^k,$$

$$\sum_{q^k \in Q^k} \lambda_q^k \leq 1 \quad \forall k, \quad \lambda_q^k \in \{0, 1\} \quad \forall q^k \in Q^k, k$$
Dantzig Wolfe Decomposition of Cutting Strips Problem

\[
\min \sum_{k=1}^{K} \sum_{q^k \in Q^k} c^k_q \lambda^k_q
\]

\[
[M^{cs}] \quad \text{s.t.} \quad \sum_{k=1}^{K} \sum_{q^k \in Q^k} L^k q^k_i \lambda^k_q \geq d_i, \quad i = 1, \ldots, p, \quad (6)
\]

\[
\sum_{q^k \in Q^k} \lambda^k_q \leq 1, \quad k = 1, \ldots, K,
\]

\[\lambda^k_q \in \{0, 1\}, \quad q^k \in Q^k, k = 1, \ldots, K.\]
Master problem may include infinitely many cutting patterns:

\[Q^k = \{ q^k \in \mathbb{N}^p : \sum_{i} w_i q_i^k \leq W \} \]

Start with “a” set of feasible cutting patterns → RMP.

Generate the column with most negative reduced cost to improve the bound.

Let \(\pi_i \) be the dual variable for demand constraint \(i \), \(\mu_k \) be the dual variable for convex comb. constr. Subproblem:

\[
\zeta^k(\pi, \mu) = \min L^k \left(W^k - \sum_{i=1}^{p} (w_i + \pi_i) z_i \right) + \mu_k \\
\text{s.t.} \\
\sum_{i=1}^{p} w_i z_i \leq W^k, \\
z_i \in \mathbb{N}, \quad i = 1, \ldots, p,
\]
Lower bound for DW Decomposition LP

If column generation subproblem is solved to optimality:

\[z_{DW}(LP)^{LB} = \text{(obj. value of dual master)} \]
\[+ \text{(obj. function value of optimal column generation subproblem)} \]

Let \(q \) be the optimal solution to the column generation problem.

\[z_{DW}(LP)^{LB} = \left(\sum_{i=1..p} d_i \pi_i + \sum_{k=1..K} \mu_k \right) + \left(\sum_{k=1..K} c_q q_k - \sum_{k=1..K,i=1..p} L^k q_i - \sum_{k=1..K} \mu_k \right) \]
Some Points

- Lagrangian relaxation and Dantzig Wolfe decomposition is used to find better bounds for the MIP.
- Lagrangian relaxation, Dantzig Wolfe decomposition, cutting plane, variable redefinition can be used to get the same bound.
- Cutting plane: convex hull of second system P' is defined by finding the facet defining inequalities of the system.
- Master LP (from Dantzig Wolfe Decomp.) = dual formulation of the Lagrangian dual that results from dualizing the $A''x \leq b''$.
- Dantzig Wolfe decomposition leads to models with large number of variables which requires column generation algorithm.
- Variable redefinition: develop an alternative formulation Z for the polyhedron P'.
The first DW example is **convexification**.

Cutting Strip problem uses **discretization**.

Convexification: $\lambda_s > 0$,

Discretization: $\lambda_s \in \{0, 1\}$ if it is an extreme point, $\lambda_s \in \mathbb{N}$ if it is an extreme ray.

Convexification: $x = \sum_s s\lambda_s$ does not imply x is integer. To express integrality, must return to original variables. Branching should be in original variables.

Discretization: $x = \sum_s s\lambda_s$ results integer variables. Can do branching or write cuts in terms of λ_s.

Both give the same LP relaxation of master.

Both has the same IP master if variables are binary.

Discretization \neq convexification if some variables are general integer.
General form of master problem.
\[\sum_s \lambda_s = 1 \] can be changed with \(\sum_s \lambda_s \leq 1 \) if 0 vector is a feasible solution for the problem.

Independent subsystems: \(Dx \leq d \rightarrow D^k x \leq d^k, \; k = 1, \ldots, K. \)
\[
\sum_{q \in Q(k)} \lambda_q = 1, \; k = 1, \ldots, K.
\]

Identical independent subsystems: \(Dx \leq d \rightarrow D^k x \leq d^k, \; k = 1, \ldots, K, \) but \(D^k = \bar{D}, \; d^k = \bar{d} \) for \(k = 1 \ldots K. \)
\[
\sum_{q \in \bar{Q}} \lambda_q = K.
\]
Let P be the original problem, M be the master problem.
Both have the same set of feasible integer points.
Since the representation of solution is different in both formulations, a solution x for P may not result a unique solution λ for M.
Cases when the solutions do not corresponds to a unique solution is given in the paper.
$Z_{LP}(P) \leq Z_{LP}(M) \leq Z_{IP}$.
$Z_{LP}(P) < Z_{LP}(M)$ if subsystem does not have integrality property.
At each branch and bound node, a **feasible** LP solution is required. Especially with branching it becomes difficult to maintain feasibility. One way is to use artificial variables that will always result feasible solutions.

Designing **branching rules**: Branching rule must be incorporated into subproblem (column generation problem).

RMP: Optimize RMP to get dual variables. Dual solution is not **unique** if primal is degenerate. Dual variables effect the generated column.

- Initialization is necessary with simplex and for other methods it can reduce **heading-in effect** of initially producing bad duals which may cause irrelevant columns.
- Solution with primal, primal-dual simplex, barrier?
- Simplex based column generation has **tailing off effect** (poor convergence).