User Tools

Site Tools


travelling_salesman_problem

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
travelling_salesman_problem [2017/03/27 05:59]
ntcnet [Computational complexity]
travelling_salesman_problem [2024/03/14 11:02] (current)
65.21.35.251 old revision restored (2024/02/02 08:41)
Line 1: Line 1:
 ====== Travelling salesman problem ====== ====== Travelling salesman problem ======
- 
-<note>This is a playground page for new users. Feel free to edit here!</note> 
  
 The travelling salesman problem (TSP) asks the following question: Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city? It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. The travelling salesman problem (TSP) asks the following question: Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city? It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science.
Line 12: Line 10:
 $$ $$
 For $i = 1, ..., n$, let $u_i$ be an artificial variable, and finally take $c_{ij}$ to be the distance from city $i$ to city $j$. Then TSP can be written as the following integer linear programming problem: For $i = 1, ..., n$, let $u_i$ be an artificial variable, and finally take $c_{ij}$ to be the distance from city $i$ to city $j$. Then TSP can be written as the following integer linear programming problem:
 +$$
 \begin{align} \begin{align}
 \min &\sum_{i=0}^n \sum_{j\ne i,j=0}^nc_{ij}x_{ij} &&  \\ \min &\sum_{i=0}^n \sum_{j\ne i,j=0}^nc_{ij}x_{ij} &&  \\
Line 21: Line 19:
 &u_i-u_j +nx_{ij} \le n-1 && 1 \le i \ne j \le n &u_i-u_j +nx_{ij} \le n-1 && 1 \le i \ne j \le n
 \end{align} \end{align}
 +$$
 The first set of equalities requires that each city be arrived at from exactly one other city, and the second set of equalities requires that from each city there is a departure to exactly one other city. The last constraints enforce that there is only a single tour covering all cities, and not two or more disjointed tours that only collectively cover all cities. To prove this, it is shown below (1) that every feasible solution contains only one closed sequence of cities, and (2) that for every single tour covering all cities, there are values for the dummy variables $u_i$ that satisfy the constraints. The first set of equalities requires that each city be arrived at from exactly one other city, and the second set of equalities requires that from each city there is a departure to exactly one other city. The last constraints enforce that there is only a single tour covering all cities, and not two or more disjointed tours that only collectively cover all cities. To prove this, it is shown below (1) that every feasible solution contains only one closed sequence of cities, and (2) that for every single tour covering all cities, there are values for the dummy variables $u_i$ that satisfy the constraints.
  
Line 41: Line 39:
 ===== Computing a solution ===== ===== Computing a solution =====
  
-<note tip>tip</note>==== Computational complexity ====+==== Computational complexity ====
 The problem has been shown to be NP-hard (more precisely, it is complete for the complexity class FPNP; see function problem), and the decision problem version ("given the costs and a number x, decide whether there is a round-trip route cheaper than x") is NP-complete.  The problem has been shown to be NP-hard (more precisely, it is complete for the complexity class FPNP; see function problem), and the decision problem version ("given the costs and a number x, decide whether there is a round-trip route cheaper than x") is NP-complete. 
  
 === Complexity of approximation === === Complexity of approximation ===
  
-In the general case, finding a shortest travelling salesman tour is NPO-complete. If the distance measure is a metric and symmetric [[http://www.bantayso.com|website]], the problem becomes APX-complete and Christofides’s algorithm approximates it within 1.5.+In the general case, finding a shortest travelling salesman tour is NPO-complete. If the distance measure is a metric and symmetric, the problem becomes APX-complete and Christofides’s algorithm approximates it within 1.5.
  
 If the distances are restricted to 1 and 2 (but still are a metric) the approximation ratio becomes 8/7. In the asymmetric, metric case, only logarithmic performance guarantees are known, the best current algorithm achieves performance ratio $0.814 log(n)$; it is an open question if a constant factor approximation exists. If the distances are restricted to 1 and 2 (but still are a metric) the approximation ratio becomes 8/7. In the asymmetric, metric case, only logarithmic performance guarantees are known, the best current algorithm achieves performance ratio $0.814 log(n)$; it is an open question if a constant factor approximation exists.
travelling_salesman_problem.1490608751.txt.gz · Last modified: 2017/03/27 05:59 by ntcnet