User Tools

Site Tools


info:tech_report_example

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
info:tech_report_example [2017/05/04 09:33]
sertalpbilal We have a tex version of this file
— (current)
Line 1: Line 1:
-\def\coralreport{1} 
-%\documentclass{./​llncs2e/​llncs} 
-\documentclass{article} 
- 
-\usepackage{ifthen} 
-%\usepackage{float} 
-\usepackage[funcfont=italic,​full]{./​complexity/​complexity} 
-\usepackage{algorithm} % for algorithm environment 
-\usepackage{algpseudocode} % for algorithmic environment 
-   ​%\usepackage[pdftex]{graphicx} for pdflatex 
-   ​%\usepackage{graphicx} for latex 
-\usepackage{amsmath} 
-\usepackage{amssymb} 
-\usepackage{graphicx} 
-\usepackage[authoryear]{natbib} 
- 
-% for tiles and keywords 
-\usepackage{authblk} 
-\usepackage{geometry} 
-\usepackage{fullpage} 
-\newtheorem{theorem}{Theorem} 
-\newtheorem{claim}{Claim} 
-\newtheorem{definition}{Definition} 
- 
- 
-\renewcommand{\Re}{\mathbb{R}} 
-\algdef{SE}[DOWHILE]{Do}{doWhile}{\algorithmicdo}[1]{\algorithmicwhile\ #1} 
-% todo(aykut) this will create a problem with \P command of complexity package. 
-\renewcommand{\P}{\mathcal{P}} 
- 
-\setlength{\evensidemargin}{0in} 
-\setlength{\oddsidemargin}{0in} 
-\setlength{\parindent}{0in} 
-\setlength{\parskip}{0.06in} 
- 
- 
-\ifthenelse{\coralreport = 1}{ 
-\usepackage{./​isetechreport/​isetechreport} 
-\def\reportyear{15T} 
-% The report number is the same one used in the ISE tech report series 
-\def\reportno{001} 
-% This is the revision number (increment for each revision) 
-\def\revisionno{0} 
-% This is the date f the original report 
-\def\originaldate{March 13, 2015} 
-% This is the date of the latest revision 
-\def\revisiondate{March 13, 2015} 
-% Set these variables according to whether this should be a CORAL or CVCR 
-% report 
-\coralfalse 
-\cvcrfalse 
-\isetrue 
- 
-}{} 
- 
-%TODO(aykut):​ 
-% -> fix path problem of isetechreport.sty 
- 
- 
-\begin{document} 
- 
-\title{On the Complexity of Inverse MILP} 
- 
-\ifthenelse{\coralreport = 1}{ 
-  \author{Aykut Bulut\thanks{E-mail:​ \texttt{aykut@lehigh.edu}}} 
-  \author{Ted K. Ralphs\thanks{E-mail:​ \texttt{ted@lehigh.edu}}} 
-  \affil{Department of Industrial and Systems Engineering,​ Lehigh University, USA} 
-  \titlepage 
-}{ 
-  \author{Aykut Bulut} 
-  \author{Ted K. Ralphs} 
-  \affil{COR@L Lab, Department of Industrial and Systems Engineering,​ Lehigh University, USA} 
-  \date{\today} 
-} 
- 
-\maketitle 
- 
-\begin{abstract} 
-Inverse optimization problems determine problem parameters that are closest to 
-the estimates and will make a given solution optimum. In this study we work 
-inverse \textbf{m}ixed \textbf{i}nteger \textbf{l}inear \textbf{p}roblems (MILP) 
-where we seek the objective function coefficients. This is the inverse problem 
-\cite{AhujaSeptember2001} studied for linear programs (LP). They 
-show that inverse LP can be solved in polynomial time under mild conditions. We 
-extend their result for the MILP case. We prove that the decision version of 
-the inverse MILP is $\coNP$--complete. We also propose a cutting plane algorithm for 
-solving inverse MILPs for practical purposes. 
- 
-\ifthenelse{\coralreport = 0}{ 
-\bigskip\noindent 
-{\bf Keywords:} Inverse optimization,​ mixed integer linear program, 
-computational complexity, polynomial hierarchy 
-}{} 
-\end{abstract}