

(Fletcher, Gould, L	of TR Subproblem eyffer, Toint, Wächter, 2002)
min $f(x)$	$\min_{x} \ y - r_k(w)\ $
s.t. $h(x) = 0$	s.t. $h(x) = 0$
$g(x) \le 0$	$g(x) \leq 0$
$y = r_k(w)$	$\ x - x_k\ \le \kappa_\Delta \Delta_k \min[1, \kappa_\mu \Delta_k^\mu]$
$\ x - x_k\ \le \Delta_k.$	Compatibility Check (analogous to 'normal problem')
Trust Region Subproblem	$\theta(x) = \ y - d(w)\ .$
$ \begin{aligned} \chi(x) &= \left \min_{v} \nabla f(x)^{T} v \right \\ \text{s.t.} \nabla h(x)^{T} v &= 0 \end{aligned} $	$\rho_k = \frac{ared_k}{pred_k} = \frac{\theta(x_k) - \theta(x_k + s_k)}{\theta^r(x_k) - \theta^r(x_k + s_k)}$
$g(x) + abla g(x)^T v \leq 0$ $v_y - abla r_k(w)^T v_w = 0$	$=\frac{\theta(x_k) - \theta(x_k + s_k)}{\ y_k - r_k(w_k)\ } = 1 - \frac{\theta(x_k + s_k)}{\theta^r(x_k)}$
$\ v\ \le 1$ Criticality Measure	Trust Region Management

Chernical ENGINEERING WII	liams-C	Otto O	ptimizati	on Res	sults	
• Filter me	thod with li	near RM	efficiently rec	luces simul	ation calls	
 Kriging R approxim 	 Kriging RM also converges but more expensive due to poorer approximations 					
 Lineariza reduces 57% 	tion with fi ODM calls	nite differ over Full	ences in the f Process (SQ	filter metho P, exact gra	d drastically adients) by	
• Unconstr	ained DFC) with Krig	ging RMs is 1	00x more e	expensive	
	Linear RM	Linear RM	Kriging on ODM	Process Opt.	Kriging on Process	
	1.e -5	$\Delta/2$	(DACE)	(SQP)	(Penalty)	
Objective	-1.2111	-1.2111	-1.211	-1.2111	-1.2111	
Iterations	13	92	123	15	53	
RM Points	91	644	3141	-	573	
ODM Calls	91	644	3141	210	11622	
					20	

	Air-fired	Oxy-fired
Solution time (hours)	9.8	8.6
Boiler simulations: (run on 4 cores)	759	598
Flue exit gas temperature (K)	1600	1600
Steam exit temperature (K)	835	835
Steam exit pressure (bar)	223	223
Fuel rate, HHV (MW)	1325.5	1325.5
ASU + CPU Power (MW)	N/A	114.3
Net Power (MWe)	515.5	437.4
Efficiency (HHV)	38.9%	33.0%

