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Use of Software for “Blackbox” Optimization

Google Scholar (1/1/2016)

BOBYQA (2009) 293

NEWUOA (2006) 281 + 105 (2008)

UOBYQA (2002) 288

COBYLA (1994) 309
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Use of Software for “Blackbox” Optimization

Google Scholar (1/1/2016)

BOBYQA (2009) 293

NEWUOA (2006) 281 + 105 (2008)

UOBYQA (2002) 288

COBYLA (1994) 309

CMA-ES (2001) 1,857 + 729 (2003) + 572 (2005) + 685 (2006) + . . .

NSGA-II (2002) 15,772 + 3,203 (2000) + . . .

Others Particle swarm, ant colony, firefly, . . .
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Use of Software for “Blackbox” Optimization

Google Scholar (1/1/2016)

BOBYQA (2009) 293

NEWUOA (2006) 281 + 105 (2008)

UOBYQA (2002) 288

COBYLA (1994) 309

⋄ CONDOR, a new parallel, constrained extension of
Powell’s UOBYQA algorithm [Vanden Berghen & Bersini (JCAM,

2005)]: 123 (unavailable!)

CMA-ES (2001) 1,857 + 729 (2003) + 572 (2005) + 685 (2006) + . . .

NSGA-II (2002) 15,772 + 3,203 (2000) + . . .

Others Particle swarm, ant colony, firefly, . . .

The extensive use of heuristics was a key driver for Powell’s later work

Above software: https://ccpforge.cse.rl.ac.uk/gf/project/powell/
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One Reason For Increased Adoption: Concurrent Function Evaluations

Perform p evaluations f(x1), . . . , f(xp) concurrently
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Poor sequential methods can become attractive as parallelism increases

1. Wall time: Time required to obtain solution

2. Scalability: Efficiency of use of parallel resources
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Outline: APOSMM Aims for Increased Concurrency

1. Reframe problem: Multiple local minimizers

2. Multistart: Exploit efficient local solvers

3. Guided by asymptotic convergence

4. Asynchronicity: Beyond batch evaluations

5. Performance metrics

6. Early numerical results
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Outline: APOSMM Aims for Increased Concurrency

1. Reframe problem: Multiple local minimizers

2. Multistart: Exploit efficient local solvers

3. Guided by asymptotic convergence

4. Asynchronicity: Beyond batch evaluations

5. Performance metrics

6. Early numerical results

Today: Stay within a Powell-like setting

min
x
{f(x;B(x)) : x ∈ D ⊂ Rn}

⋄ Objective f depends on the output(s) of
a computationally expensive blackbox

� Derivatives unavailable, n small
(certainly less than 100)

⋄ Bound constraints D = [l, u] (compact,
independent of blackbox Henk van der Vorst, 2011
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Why Multistart?
Best minimizer(s) approximate global minimizer x∗, f(x∗) ≤ f(x) ∀x ∈ D

Multiple local minima are often of interest in practice

Design Multiple objectives/constraints
might later be of interest

Distinctness j best minimizers have
physical meaning

Simulation Errors Spurious local minima from
simulator anomalies

Uncertainty Some minima more sensitive
to perturbations
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Min A
MinB

Increased opportunity for parallelism

Trilevel simulation/function → local solver → global solver

Efficient local solvers

⋄ (Local) surrogate-based, exploit problem structure
� least-squares objectives, (un)relaxable constraints, known nonsmoothness,

. . .
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Convergent Methods for Global Optimization, min
x∈D f(x)

either assume more about your problem (e.g., convex f , finite |D|)

or expect to wait forever

Törn and Žilinskas: An algorithm converges to the global minimum for
any continuous f if and only if the sequence of points
visited by the algorithm is dense in D.
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Convergent Methods for Global Optimization, min
x∈D f(x)

either assume more about your problem (e.g., convex f , finite |D|)

or expect to wait forever

Törn and Žilinskas: An algorithm converges to the global minimum for
any continuous f if and only if the sequence of points
visited by the algorithm is dense in D.

Two-phase iterative methods

1. Global Exploration Sample points from D ← Guarantees convergence

2. Local Refinement Ex.- Start a local minimization algorithm A from some
promising subset of (the sample) points

⋄ Can require many, sequential evaluations
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Convergent Methods for Global Optimization, min
x∈D f(x)

either assume more about your problem (e.g., convex f , finite |D|)

or expect to wait forever

Törn and Žilinskas: An algorithm converges to the global minimum for
any continuous f if and only if the sequence of points
visited by the algorithm is dense in D.

Two-phase iterative methods

1. Global Exploration Sample points from D ← Guarantees convergence

2. Local Refinement Ex.- Start a local minimization algorithm A from some
promising subset of (the sample) points

⋄ Can require many, sequential evaluations

→ We want to find many (good) local minima while avoiding
repeatedly finding the same local minima . . .

and to do so quickly
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Multistart: Multi Level Single Linkage (MLSL) Clustering Procedure

Iteration k [Rinnooy Kan & Timmer (MathProg, 1987)]:

Sampled 
Points

Sampled 
Candidate 
Points

Descent 
Paths

Start 
Points

It. 1 Exploration

1. Sample N points from D

⋄ Sk =
Sk−1 ∪ {x

kN+1−N , · · · , xkN}
or lower γ quantile of sampled
points

2. Start A at each sample point
xi ∈ Sk provided:

⋄ A has not been started from xi,
and

⋄ no other sample point xj ∈ Sk
with f(xj) < f(xi) is within a
distance

rk = 1√
π

n

√

vol (D)
5Γ(1+n

2
) log(kN)

kN
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Multistart: Multi Level Single Linkage (MLSL) Clustering Procedure

Iteration k [Rinnooy Kan & Timmer (MathProg, 1987)]:
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Multistart: Multi Level Single Linkage (MLSL) Clustering Procedure

Iteration k [Rinnooy Kan & Timmer (MathProg, 1987)]:

Sampled 
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Candidate 
Points
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Paths

Start 
Points

It. 2 Exploration

1. Sample N points from D

⋄ Sk =
Sk−1 ∪ {x

kN+1−N , · · · , xkN}
or lower γ quantile of sampled
points

2. Start A at each sample point
xi ∈ Sk provided:
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and
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MLSL Results

Theorem (Rinnooy Kan & Timmer)

Assuming

Sampling: uniform

f : Local minimizers uniformly separated (⇒ finite)

A: Satisfies (restrictive) descent properties

Then, even if sampling continues forever, with probability 1, MLSL will start
finitely many local runs.
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MLSL Results

Theorem (Rinnooy Kan & Timmer)

Assuming

Sampling: uniform

f : Local minimizers uniformly separated (⇒ finite)

A: Satisfies (restrictive) descent properties

Then, even if sampling continues forever, with probability 1, MLSL will start
finitely many local runs.

→ can refine distance measures based on local curvature knowledge

→ can update sampling distance for other distributions (e.g., LHS [Larson & W.

(2016)])
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MLSL Downsides in Practice

Inefficient parallelism

⋄ Batch (size N) sampling
� time

(

f(xkN+1)
)

=time
(

f(xkN+i)
)

, i = 1, . . . , N

⋄ Some number (< kN − 1) of A runs

⋄ Assumes A “runs to completion” (oracle)

Ignores expense of each f evaluation

⋄ Does not consider local optimization points, Lk

⋄ Local algorithm A run neglects history Hk = Sk ∪ Lk
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Modified Conditions For When to Start a Local Run

MLSL: (S2)–(S4)

x̂ ∈ Sk

(S2) ∄x ∈ Sk with
[‖x̂− x‖ ≤ rk and f(x) < f(x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν

from known local minima
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Modified Conditions For When to Start a Local Run

MLSL: (S2)–(S4)
BAMLM [Larson & W. (OptEng, 2015)]: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) ∄x ∈ Lk with
[‖x̂− x‖ ≤ rk and f(x) < f(x̂)]

(S2) ∄x ∈ Sk with
[‖x̂− x‖ ≤ rk and f(x) < f(x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν

from known local minima

x̂ ∈ Lk

(L1) ∄x ∈ Lk

[‖x̂− x‖ ≤ rk and f(x) < f(x̂)]

(L2) ∄x ∈ Sk with
[‖x̂− x‖ ≤ rk and f(x) < f(x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν

from known local minima

(L5) x̂ is not in an active local
optimization run and has not been
ruled stationary

(L6) ∃rk-descent path in Hk from some
x ∈ Sk satisfying (S2-S4) to x̂
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Basic Tests on Simulation-Based Problems

Microscopy Configuration of a scanning transmission electron microscope [Rudnaya, Van

den Broek, Doornbos, Mattheij, Maubach (Ultramicroscopy, 2011)]

⋄ n = 3, at least two local minima (both with values below the
average value)

Biometrics Biomechanical control [Easterling, Watson, Madigan, Castle, Trosset (COptA, 2014)]

⋄ n = 57, domain scaled to unit cube
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Basic Tests on Simulation-Based Problems

Microscopy Configuration of a scanning transmission electron microscope [Rudnaya, Van

den Broek, Doornbos, Mattheij, Maubach (Ultramicroscopy, 2011)]

⋄ n = 3, at least two local minima (both with values below the
average value)

Biometrics Biomechanical control [Easterling, Watson, Madigan, Castle, Trosset (COptA, 2014)]

⋄ n = 57, domain scaled to unit cube

Solvers:

GLODS Global & local optimization w/ direct search [Custódio, Madeira (JOGO, 2014)]

Direct Serial Matlab DiRect code [Finkel (2003)]

pVTdirect Parallel DiRect code [He, Watson, Sosonkina (TOMS, 2009)]

BAMLM [Larson & W. (OptEng, 2015)] with local solver ORBIT [W., Regis, Shoemaker (SISC,

2009)]

⋄ Fixed level of concurrency (batch size: 4)

⋄ Idealized performance for non-BAMLM solvers
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BAMLM Results: Simulation-Based Problems

40 replications

⋄ Biometrics
challenging
(n=57)
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BAMLM Results: Simulation-Based Problems

40 replications

⋄ Biometrics
challenging
(n=57)

⋄ Microscopy :
(Idealized) Direct
finds global
solution
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BAMLM Results: Simulation-Based Problems

40 replications

⋄ Biometrics
challenging
(n=57)

⋄ Microscopy :
(Idealized) Direct
finds global
solution

⋄ BAMLM and
GLODS find both
minimizers
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BAMLM 4 workers
BAMLM max-min
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Microscopy, max distance to 2 best minima
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Breaking Batch Parallelism

⋄ Better account for dynamic number of local
runs

⋄ Decouple local run from fixed resource

⋄ Anticipate nontrivial Var[time (f(x))]

Fundamental structural change to alg
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The (A)POSMM Algorithm

Repeat:

⋄ Receive from worker(s) wℓ ∈W that has evaluated its point

⋄ If point was a sample point, update rk = 1√
π

n

√

vol (D)
5Γ(1+n

2
) log(|Sk|)

|Sk|

⋄ If point was a local optimization point, add subsequent point in the run
(not in Hk) to QL if not terminated

⋄ Start run(s) at all point(s) now satisfying conditions, adding subsequent
point from each run to QL

⋄ Merge/collapse runs within QL

⋄ Send point(s) from QL and/or R to worker(s)

W Set of workers (level of concurrency |W |)

R Stream of sample points (from D)

Sk Sample points after iteration k

QL Queue of local optimization points (needed by A)

Hk History after k evaluations
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(A)POSMM Framework

History

Check
history

Queue

Decide

Random
stream

MANAGERWORKERS CUSTODIANS

...

...

...

...

...

A

A

A

f(x′)

x′
f(x′)

x′

f(x′)

x′
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Two Different Marsupials

POSMM

⋄ Clears all workers before making
decisions for next |W |
evaluations

– Blocking operation, wasteful as
Var[time (f(x))] grows

+ Reproducible runs
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Two Different Marsupials

POSMM

⋄ Clears all workers before making
decisions for next |W |
evaluations

– Blocking operation, wasteful as
Var[time (f(x))] grows

+ Reproducible runs

APOSMM

⋄ Processes single worker w ∈W

when it frees up

+ Fully asynchronous

– Irreproducible runs
(nondeterministic run times)

Wild- USMex’16 16



Asymptotic Foundations

Lemma

BAMLM (A)POSMM starts no more optimization runs than does MLSL.
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Asymptotic Foundations

Lemma

BAMLM (A)POSMM starts no more optimization runs than does MLSL.

Theorem

⋄ Given assumptions on f , A, and sampling, if (A)POSMM is run forever,
there will almost surely be a finite number of local optimization runs that
have a (non-starting) point evaluated.

⋄ Furthermore, if (A)POSMM is run forever and the next point given to a
worker satisfies Assumption, then with probability 1 each x∗ ∈ X∗ will be

� identified in a finite number of evaluations, or
� have a single local optimization run that is converging asymptotically to it.
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Asymptotic Foundations

Lemma

BAMLM (A)POSMM starts no more optimization runs than does MLSL.

Theorem

⋄ Given assumptions on f , A, and sampling, if (A)POSMM is run forever,
there will almost surely be a finite number of local optimization runs that
have a (non-starting) point evaluated.

⋄ Furthermore, if (A)POSMM is run forever and the next point given to a
worker satisfies Assumption, then with probability 1 each x∗ ∈ X∗ will be

� identified in a finite number of evaluations, or
� have a single local optimization run that is converging asymptotically to it.

Assumption:
There exists K0 <∞ such that for any K0 consecutive iterations, the
probabilities of taking a single point from R and a point from each of the local
optimization runs is bounded away from zero.
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Numerical Results: 600 GKLS Functions

⋄ From GKLS problem
generator [Gaviano, Kvasov,

Lera, Sergeyev (TOMS, 2003)]

⋄ Smooth modifications of a
convex quadratic

⋄ n = 2, . . . , 7

⋄ 10 known local minima in
the unit cube, unique
global min

⋄ 100 problems for each
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Two Measures of Success

Time/number of (batches of) evaluations k until success:

j best local minima at a level τ ≥ 0
Success if

∃xi ∈ Hk with
∥

∥

∥
x
i − x

∗
(i)

∥

∥

∥
≤ dn(τ )

for at least j (specially chosen) x∗
(i) ∈ X∗(j)

⋄ X∗(j) =
{

x∗
(1), . . . , x

∗
(j̄)

}

= set of minimizers with

function values corresponding to the j best local minima

⋄ dn(τ ) =
n

√

τ vol(D) Γ(n
2
+1)

πn/2

⋄ Requires knowledge of X∗(j)
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Two Measures of Success

Time/number of (batches of) evaluations k until success:

j best local minima at a level τ ≥ 0
Success if

∃xi ∈ Hk with
∥

∥

∥
x
i − x

∗
(i)

∥

∥

∥
≤ dn(τ )

for at least j (specially chosen) x∗
(i) ∈ X∗(j)

⋄ X∗(j) =
{

x∗
(1), . . . , x

∗
(j̄)

}

= set of minimizers with

function values corresponding to the j best local minima

⋄ dn(τ ) =
n

√

τ vol(D) Γ(n
2
+1)

πn/2

⋄ Requires knowledge of X∗(j)

Global function value at a level τ ≥ 0
Success if have found x ∈ Hk satisfying

f(x)− fG ≤ (1− τ )
(

f(x0)− fG
)

,

⋄ x0: common starting point
⋄ fG: (estimate of) value at the global minimum
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Numerical Tests

GLODS Global & local optimization using direct search [Custódio, Madeira

(JOGO, 2014)]

Direct Serial Matlab DiRect code [Finkel (2003)]

pVTdirect Parallel DiRect code [He, Watson, Sosonkina (TOMS, 2009)]

CMA-ES Parallel Covariance Matrix Adaptation Evolution Strategy code
[Hansen & Ostermeier (EvolComp, 2001)]

Random Uniform sampling (as a baseline)

(A)POSMM [Larson, W. (2016)] with local solver BOBYQA [Powell (2009)]
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Numerical Tests

GLODS Global & local optimization using direct search [Custódio, Madeira

(JOGO, 2014)]

Direct Serial Matlab DiRect code [Finkel (2003)]

pVTdirect Parallel DiRect code [He, Watson, Sosonkina (TOMS, 2009)]

CMA-ES Parallel Covariance Matrix Adaptation Evolution Strategy code
[Hansen & Ostermeier (EvolComp, 2001)]

Random Uniform sampling (as a baseline)

(A)POSMM [Larson, W. (2016)] with local solver BOBYQA [Powell (2009)]

Use data profiles [Moré, W. (SIOPT, 2009)] to aggregate results

ds(α) =

∣

∣

∣

{

p ∈ P :
tp,s

np+1
≤ α

}∣

∣

∣

|P|
,

⋄ cdf of successes within α (simplex-equivalent) evals

⋄ tp,s: number of evals required to satisfy performance metric
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Data Profiles: Ability to Find Approximate Global Minimizer

600 GKLS problems

(A)POSMM

⋄ Makes rapid
progress to fG

⋄ Outperforms other
algorithms (even
while demanding
14-fold
concurrency)
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Data Profiles: Ability to Find Approximate Global Minimizer

600 GKLS problems

(A)POSMM

⋄ Makes rapid
progress to fG

⋄ Outperforms other
algorithms (even
while demanding
14-fold
concurrency)
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Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A)POSMM

⋄ Designed to find
more than just the
global minimizer

⋄ Extends lead for
tighter tolerances
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Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A)POSMM

⋄ Designed to find
more than just the
global minimizer

⋄ Extends lead for
tighter tolerances
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Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A)POSMM

⋄ Designed to find
more than just the
global minimizer

⋄ Extends lead for
tighter tolerances
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Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A)POSMM

⋄ Designed to find
more than just the
global minimizer

⋄ Extends lead for
tighter tolerances
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Sanity Check

⋄ Is this just “advanced” random sampling?

⋄ Is random sampling ever better?
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(Tolerance, # Minimizers) Comparison With Random Sampling

Area under data profile: POSMM (L), RS (R)
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(Tolerance, # Minimizers) Comparison With Random Sampling

Percent difference between POSMM and RS areas
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POSMM has clear advantages as tolerances tighten
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Fraction of Evaluations Dedicated to Optimization
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Scaling Results For Evaluations: Variable Time(f(x))

Mean wall time to exhaust 2000(n + 1) evals
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600 GKLS problems, time(f(x)) ∼Unif[0, 0.2] seconds

Asynchronicity of APOSMM & pVTDirect yields near-perfect execution scaling
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Scaling Results For Time To Solution

Mean wall time to find j = 3 best minimizers (τ = 10−2 accuracy) on κ probs
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(A)POSMM time to solution scales well up to (at least) 14-fold concurrency
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Summary & Early Conclusions

⋄ APOSMM+BOBYQA effective at finding multiple minimizers
. . . without sacrificing quality of approximate global soln

⋄ Asymptotic convergence results limit the number of expensive local runs

⋄ POSMM admits additional concurrency, reduces time to solution

⋄ Scales to concurrency above problem dimension, number of minimizers,
number of desired minimizers, . . .

⋄ Asynchronous logic allows for heterogeneous function evaluation times

⋄ Preprint + python software [Larson, W. (2016)]

[Larson & W. “A Batch, Derivative-free Algorithm for Finding Multiple Local Minima.”

(OptEng, 2015)]

Current work:

⋄ Tests for greater concurrency levels

⋄ Interaction with local solver (use of information, concurrent evals,
termination, addressing (stochastic) noise, . . . )
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Gracias y Felicidades Jorge!
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