
An Asynchronously Parallel Optimization Solver
for Finding Multiple Minima

Stefan Wild

Joint work with Jeff Larson

Argonne National Laboratory
Mathematics and Computer Science Division

January 4, 2016

Motivation: Michael J.D. Powell

Michal Kocvara, 2011

Wild- USMex’16 1

Use of Software for “Blackbox” Optimization

Google Scholar (1/1/2016)

BOBYQA (2009) 293

NEWUOA (2006) 281 + 105 (2008)

UOBYQA (2002) 288

COBYLA (1994) 309

Wild- USMex’16 2

Use of Software for “Blackbox” Optimization

Google Scholar (1/1/2016)

BOBYQA (2009) 293

NEWUOA (2006) 281 + 105 (2008)

UOBYQA (2002) 288

COBYLA (1994) 309

CMA-ES (2001) 1,857 + 729 (2003) + 572 (2005) + 685 (2006) + . . .

NSGA-II (2002) 15,772 + 3,203 (2000) + . . .

Others Particle swarm, ant colony, firefly, . . .

Wild- USMex’16 2

Use of Software for “Blackbox” Optimization

Google Scholar (1/1/2016)

BOBYQA (2009) 293

NEWUOA (2006) 281 + 105 (2008)

UOBYQA (2002) 288

COBYLA (1994) 309

⋄ CONDOR, a new parallel, constrained extension of
Powell’s UOBYQA algorithm [Vanden Berghen & Bersini (JCAM,

2005)]: 123 (unavailable!)

CMA-ES (2001) 1,857 + 729 (2003) + 572 (2005) + 685 (2006) + . . .

NSGA-II (2002) 15,772 + 3,203 (2000) + . . .

Others Particle swarm, ant colony, firefly, . . .

The extensive use of heuristics was a key driver for Powell’s later work

Above software: https://ccpforge.cse.rl.ac.uk/gf/project/powell/

Wild- USMex’16 2

https://ccpforge.cse.rl.ac.uk/gf/project/powell/

One Reason For Increased Adoption: Concurrent Function Evaluations

Perform p evaluations f(x1), . . . , f(xp) concurrently

100 200 300 400 500 600 700 800 900 1000 1100 1200
0.058
0.075

0.1

0.14

0.2

0.4

0.8

Number of Iterations

F
it

V
al

ue
 (

lo
g

sc
al

e)

Serial** PSO
Serial Simplex
Serial POUNDERS
1024−Core PSO

Wild- USMex’16 3

One Reason For Increased Adoption: Concurrent Function Evaluations

Perform p evaluations f(x1), . . . , f(xp) concurrently

100 200 300 400 500 600 700 800 900 1000 1100 1200
0.058
0.075

0.1

0.14

0.2

0.4

0.8

Number of Iterations

F
it

V
al

ue
 (

lo
g

sc
al

e)

Serial** PSO
Serial Simplex
Serial POUNDERS
1024−Core PSO

Poor sequential methods can become attractive as parallelism increases

1. Wall time: Time required to obtain solution

2. Scalability: Efficiency of use of parallel resources

Wild- USMex’16 3

Outline: APOSMM Aims for Increased Concurrency

1. Reframe problem: Multiple local minimizers

2. Multistart: Exploit efficient local solvers

3. Guided by asymptotic convergence

4. Asynchronicity: Beyond batch evaluations

5. Performance metrics

6. Early numerical results

Wild- USMex’16 4

Outline: APOSMM Aims for Increased Concurrency

1. Reframe problem: Multiple local minimizers

2. Multistart: Exploit efficient local solvers

3. Guided by asymptotic convergence

4. Asynchronicity: Beyond batch evaluations

5. Performance metrics

6. Early numerical results

Today: Stay within a Powell-like setting

min
x
{f(x;B(x)) : x ∈ D ⊂ Rn}

⋄ Objective f depends on the output(s) of
a computationally expensive blackbox

� Derivatives unavailable, n small
(certainly less than 100)

⋄ Bound constraints D = [l, u] (compact,
independent of blackbox Henk van der Vorst, 2011

Wild- USMex’16 4

Why Multistart?
Best minimizer(s) approximate global minimizer x∗, f(x∗) ≤ f(x) ∀x ∈ D

Multiple local minima are often of interest in practice

Design Multiple objectives/constraints
might later be of interest

Distinctness j best minimizers have
physical meaning

Simulation Errors Spurious local minima from
simulator anomalies

Uncertainty Some minima more sensitive
to perturbations

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Min A
MinB

Increased opportunity for parallelism

Trilevel simulation/function → local solver → global solver

Efficient local solvers

⋄ (Local) surrogate-based, exploit problem structure
� least-squares objectives, (un)relaxable constraints, known nonsmoothness,

. . .

Wild- USMex’16 5

Convergent Methods for Global Optimization, min
x∈D f(x)

either assume more about your problem (e.g., convex f , finite |D|)

or expect to wait forever

Törn and Žilinskas: An algorithm converges to the global minimum for
any continuous f if and only if the sequence of points
visited by the algorithm is dense in D.

Wild- USMex’16 6

Convergent Methods for Global Optimization, min
x∈D f(x)

either assume more about your problem (e.g., convex f , finite |D|)

or expect to wait forever

Törn and Žilinskas: An algorithm converges to the global minimum for
any continuous f if and only if the sequence of points
visited by the algorithm is dense in D.

Two-phase iterative methods

1. Global Exploration Sample points from D ← Guarantees convergence

2. Local Refinement Ex.- Start a local minimization algorithm A from some
promising subset of (the sample) points

⋄ Can require many, sequential evaluations

Wild- USMex’16 6

Convergent Methods for Global Optimization, min
x∈D f(x)

either assume more about your problem (e.g., convex f , finite |D|)

or expect to wait forever

Törn and Žilinskas: An algorithm converges to the global minimum for
any continuous f if and only if the sequence of points
visited by the algorithm is dense in D.

Two-phase iterative methods

1. Global Exploration Sample points from D ← Guarantees convergence

2. Local Refinement Ex.- Start a local minimization algorithm A from some
promising subset of (the sample) points

⋄ Can require many, sequential evaluations

→ We want to find many (good) local minima while avoiding
repeatedly finding the same local minima . . .

and to do so quickly

Wild- USMex’16 6

Multistart: Multi Level Single Linkage (MLSL) Clustering Procedure

Iteration k [Rinnooy Kan & Timmer (MathProg, 1987)]:

Sampled
Points

Sampled
Candidate
Points

Descent
Paths

Start
Points

It. 1 Exploration

1. Sample N points from D

⋄ Sk =
Sk−1 ∪ {x

kN+1−N , · · · , xkN}
or lower γ quantile of sampled
points

2. Start A at each sample point
xi ∈ Sk provided:

⋄ A has not been started from xi,
and

⋄ no other sample point xj ∈ Sk
with f(xj) < f(xi) is within a
distance

rk = 1√
π

n

√

vol (D)
5Γ(1+n

2
) log(kN)

kN

Wild- USMex’16 7

Multistart: Multi Level Single Linkage (MLSL) Clustering Procedure

Iteration k [Rinnooy Kan & Timmer (MathProg, 1987)]:

Sampled
Points

Optim.
Paths

Approx.
Local
Min.

It. 1 Refinement

1. Sample N points from D

⋄ Sk =
Sk−1 ∪ {x

kN+1−N , · · · , xkN}
or lower γ quantile of sampled
points

2. Start A at each sample point
xi ∈ Sk provided:

⋄ A has not been started from xi,
and

⋄ no other sample point xj ∈ Sk
with f(xj) < f(xi) is within a
distance

rk = 1√
π

n

√

vol (D)
5Γ(1+n

2
) log(kN)

kN

Wild- USMex’16 7

Multistart: Multi Level Single Linkage (MLSL) Clustering Procedure

Iteration k [Rinnooy Kan & Timmer (MathProg, 1987)]:

Sampled
Points

Sampled
Candidate
Points

Descent
Paths

Start
Points

It. 2 Exploration

1. Sample N points from D

⋄ Sk =
Sk−1 ∪ {x

kN+1−N , · · · , xkN}
or lower γ quantile of sampled
points

2. Start A at each sample point
xi ∈ Sk provided:

⋄ A has not been started from xi,
and

⋄ no other sample point xj ∈ Sk
with f(xj) < f(xi) is within a
distance

rk = 1√
π

n

√

vol (D)
5Γ(1+n

2
) log(kN)

kN

Wild- USMex’16 7

MLSL Results

Theorem (Rinnooy Kan & Timmer)

Assuming

Sampling: uniform

f : Local minimizers uniformly separated (⇒ finite)

A: Satisfies (restrictive) descent properties

Then, even if sampling continues forever, with probability 1, MLSL will start
finitely many local runs.

Wild- USMex’16 8

MLSL Results

Theorem (Rinnooy Kan & Timmer)

Assuming

Sampling: uniform

f : Local minimizers uniformly separated (⇒ finite)

A: Satisfies (restrictive) descent properties

Then, even if sampling continues forever, with probability 1, MLSL will start
finitely many local runs.

→ can refine distance measures based on local curvature knowledge

→ can update sampling distance for other distributions (e.g., LHS [Larson & W.

(2016)])

Wild- USMex’16 8

MLSL Downsides in Practice

Inefficient parallelism

⋄ Batch (size N) sampling
� time

(

f(xkN+1)
)

=time
(

f(xkN+i)
)

, i = 1, . . . , N

⋄ Some number (< kN − 1) of A runs

⋄ Assumes A “runs to completion” (oracle)

Ignores expense of each f evaluation

⋄ Does not consider local optimization points, Lk

⋄ Local algorithm A run neglects history Hk = Sk ∪ Lk

Wild- USMex’16 9

Modified Conditions For When to Start a Local Run

MLSL: (S2)–(S4)

x̂ ∈ Sk

(S2) ∄x ∈ Sk with
[‖x̂− x‖ ≤ rk and f(x) < f(x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν

from known local minima

Wild- USMex’16 10

Modified Conditions For When to Start a Local Run

MLSL: (S2)–(S4)
BAMLM [Larson & W. (OptEng, 2015)]: (S1)–(S4), (L1)–(L6)

x̂ ∈ Sk

(S1) ∄x ∈ Lk with
[‖x̂− x‖ ≤ rk and f(x) < f(x̂)]

(S2) ∄x ∈ Sk with
[‖x̂− x‖ ≤ rk and f(x) < f(x̂)]

(S3) x̂ has not started a local
optimization run

(S4) x̂ is at least µ from ∂D and ν

from known local minima

x̂ ∈ Lk

(L1) ∄x ∈ Lk

[‖x̂− x‖ ≤ rk and f(x) < f(x̂)]

(L2) ∄x ∈ Sk with
[‖x̂− x‖ ≤ rk and f(x) < f(x̂)]

(L3) x̂ has not started a local
optimization run

(L4) x̂ is at least µ from ∂D and ν

from known local minima

(L5) x̂ is not in an active local
optimization run and has not been
ruled stationary

(L6) ∃rk-descent path in Hk from some
x ∈ Sk satisfying (S2-S4) to x̂

Wild- USMex’16 10

Basic Tests on Simulation-Based Problems

Microscopy Configuration of a scanning transmission electron microscope [Rudnaya, Van

den Broek, Doornbos, Mattheij, Maubach (Ultramicroscopy, 2011)]

⋄ n = 3, at least two local minima (both with values below the
average value)

Biometrics Biomechanical control [Easterling, Watson, Madigan, Castle, Trosset (COptA, 2014)]

⋄ n = 57, domain scaled to unit cube

Wild- USMex’16 11

Basic Tests on Simulation-Based Problems

Microscopy Configuration of a scanning transmission electron microscope [Rudnaya, Van

den Broek, Doornbos, Mattheij, Maubach (Ultramicroscopy, 2011)]

⋄ n = 3, at least two local minima (both with values below the
average value)

Biometrics Biomechanical control [Easterling, Watson, Madigan, Castle, Trosset (COptA, 2014)]

⋄ n = 57, domain scaled to unit cube

Solvers:

GLODS Global & local optimization w/ direct search [Custódio, Madeira (JOGO, 2014)]

Direct Serial Matlab DiRect code [Finkel (2003)]

pVTdirect Parallel DiRect code [He, Watson, Sosonkina (TOMS, 2009)]

BAMLM [Larson & W. (OptEng, 2015)] with local solver ORBIT [W., Regis, Shoemaker (SISC,

2009)]

⋄ Fixed level of concurrency (batch size: 4)

⋄ Idealized performance for non-BAMLM solvers

Wild- USMex’16 11

BAMLM Results: Simulation-Based Problems

40 replications

⋄ Biometrics
challenging
(n=57)

0 0.5 1 1.5 2 2.5

x 10
4

10
4

10
5

Number of batches

B
es
t
fu
n
ct
io
n
va
lu
e
fo
u
n
d

BAMLM 4 workers
BAMLM max-min
Random Sampling
pVTdirect (idealized)
Direct (idealized)
GLODS (idealized)

Biometrics, best f value

Wild- USMex’16 12

BAMLM Results: Simulation-Based Problems

40 replications

⋄ Biometrics
challenging
(n=57)

⋄ Microscopy :
(Idealized) Direct
finds global
solution

0 20 40 60 80 100 120
−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5
x 10

5

Number of batches

B
es
t
fu
n
ct
io
n
va
lu
e
fo
u
n
d

BAMLM 4 workers
BAMLM max-min
Random Sampling
pVTdirect (idealized)
Direct (idealized)
GLODS (idealized)

Microscopy, best f value

Wild- USMex’16 12

BAMLM Results: Simulation-Based Problems

40 replications

⋄ Biometrics
challenging
(n=57)

⋄ Microscopy :
(Idealized) Direct
finds global
solution

⋄ BAMLM and
GLODS find both
minimizers

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

Number of batches

λ
-d
is
ta
n
ce

BAMLM 4 workers
BAMLM max-min
Random Sampling
pVTdirect (idealized)
Direct (idealized)
GLODS (idealized)

Microscopy, max distance to 2 best minima

Wild- USMex’16 12

Breaking Batch Parallelism

⋄ Better account for dynamic number of local
runs

⋄ Decouple local run from fixed resource

⋄ Anticipate nontrivial Var[time (f(x))]

Fundamental structural change to alg

Wild- USMex’16 13

The (A)POSMM Algorithm

Repeat:

⋄ Receive from worker(s) wℓ ∈W that has evaluated its point

⋄ If point was a sample point, update rk = 1√
π

n

√

vol (D)
5Γ(1+n

2
) log(|Sk|)

|Sk|

⋄ If point was a local optimization point, add subsequent point in the run
(not in Hk) to QL if not terminated

⋄ Start run(s) at all point(s) now satisfying conditions, adding subsequent
point from each run to QL

⋄ Merge/collapse runs within QL

⋄ Send point(s) from QL and/or R to worker(s)

W Set of workers (level of concurrency |W |)

R Stream of sample points (from D)

Sk Sample points after iteration k

QL Queue of local optimization points (needed by A)

Hk History after k evaluations

Wild- USMex’16 14

(A)POSMM Framework

History

Check
history

Queue

Decide

Random
stream

MANAGERWORKERS CUSTODIANS

...

...

...

...

...

A

A

A

f(x′)

x′
f(x′)

x′

f(x′)

x′

Wild- USMex’16 15

Two Different Marsupials

POSMM

⋄ Clears all workers before making
decisions for next |W |
evaluations

– Blocking operation, wasteful as
Var[time (f(x))] grows

+ Reproducible runs

Wild- USMex’16 16

Two Different Marsupials

POSMM

⋄ Clears all workers before making
decisions for next |W |
evaluations

– Blocking operation, wasteful as
Var[time (f(x))] grows

+ Reproducible runs

APOSMM

⋄ Processes single worker w ∈W

when it frees up

+ Fully asynchronous

– Irreproducible runs
(nondeterministic run times)

Wild- USMex’16 16

Asymptotic Foundations

Lemma

BAMLM (A)POSMM starts no more optimization runs than does MLSL.

Wild- USMex’16 17

Asymptotic Foundations

Lemma

BAMLM (A)POSMM starts no more optimization runs than does MLSL.

Theorem

⋄ Given assumptions on f , A, and sampling, if (A)POSMM is run forever,
there will almost surely be a finite number of local optimization runs that
have a (non-starting) point evaluated.

⋄ Furthermore, if (A)POSMM is run forever and the next point given to a
worker satisfies Assumption, then with probability 1 each x∗ ∈ X∗ will be

� identified in a finite number of evaluations, or
� have a single local optimization run that is converging asymptotically to it.

Wild- USMex’16 17

Asymptotic Foundations

Lemma

BAMLM (A)POSMM starts no more optimization runs than does MLSL.

Theorem

⋄ Given assumptions on f , A, and sampling, if (A)POSMM is run forever,
there will almost surely be a finite number of local optimization runs that
have a (non-starting) point evaluated.

⋄ Furthermore, if (A)POSMM is run forever and the next point given to a
worker satisfies Assumption, then with probability 1 each x∗ ∈ X∗ will be

� identified in a finite number of evaluations, or
� have a single local optimization run that is converging asymptotically to it.

Assumption:
There exists K0 <∞ such that for any K0 consecutive iterations, the
probabilities of taking a single point from R and a point from each of the local
optimization runs is bounded away from zero.

Wild- USMex’16 17

Numerical Results: 600 GKLS Functions

⋄ From GKLS problem
generator [Gaviano, Kvasov,

Lera, Sergeyev (TOMS, 2003)]

⋄ Smooth modifications of a
convex quadratic

⋄ n = 2, . . . , 7

⋄ 10 known local minima in
the unit cube, unique
global min

⋄ 100 problems for each
dimension 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 1

 2

 3

 4

 5
 6

 7
 8

 9

 10 −0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

Wild- USMex’16 18

Two Measures of Success

Time/number of (batches of) evaluations k until success:

j best local minima at a level τ ≥ 0
Success if

∃xi ∈ Hk with
∥

∥

∥
x
i − x

∗
(i)

∥

∥

∥
≤ dn(τ)

for at least j (specially chosen) x∗
(i) ∈ X∗(j)

⋄ X∗(j) =
{

x∗
(1), . . . , x

∗
(j̄)

}

= set of minimizers with

function values corresponding to the j best local minima

⋄ dn(τ) =
n

√

τ vol(D) Γ(n
2
+1)

πn/2

⋄ Requires knowledge of X∗(j)

Wild- USMex’16 19

Two Measures of Success

Time/number of (batches of) evaluations k until success:

j best local minima at a level τ ≥ 0
Success if

∃xi ∈ Hk with
∥

∥

∥
x
i − x

∗
(i)

∥

∥

∥
≤ dn(τ)

for at least j (specially chosen) x∗
(i) ∈ X∗(j)

⋄ X∗(j) =
{

x∗
(1), . . . , x

∗
(j̄)

}

= set of minimizers with

function values corresponding to the j best local minima

⋄ dn(τ) =
n

√

τ vol(D) Γ(n
2
+1)

πn/2

⋄ Requires knowledge of X∗(j)

Global function value at a level τ ≥ 0
Success if have found x ∈ Hk satisfying

f(x)− fG ≤ (1− τ)
(

f(x0)− fG
)

,

⋄ x0: common starting point
⋄ fG: (estimate of) value at the global minimum

Wild- USMex’16 19

Numerical Tests

GLODS Global & local optimization using direct search [Custódio, Madeira

(JOGO, 2014)]

Direct Serial Matlab DiRect code [Finkel (2003)]

pVTdirect Parallel DiRect code [He, Watson, Sosonkina (TOMS, 2009)]

CMA-ES Parallel Covariance Matrix Adaptation Evolution Strategy code
[Hansen & Ostermeier (EvolComp, 2001)]

Random Uniform sampling (as a baseline)

(A)POSMM [Larson, W. (2016)] with local solver BOBYQA [Powell (2009)]

Wild- USMex’16 20

Numerical Tests

GLODS Global & local optimization using direct search [Custódio, Madeira

(JOGO, 2014)]

Direct Serial Matlab DiRect code [Finkel (2003)]

pVTdirect Parallel DiRect code [He, Watson, Sosonkina (TOMS, 2009)]

CMA-ES Parallel Covariance Matrix Adaptation Evolution Strategy code
[Hansen & Ostermeier (EvolComp, 2001)]

Random Uniform sampling (as a baseline)

(A)POSMM [Larson, W. (2016)] with local solver BOBYQA [Powell (2009)]

Use data profiles [Moré, W. (SIOPT, 2009)] to aggregate results

ds(α) =

∣

∣

∣

{

p ∈ P :
tp,s

np+1
≤ α

}∣

∣

∣

|P|
,

⋄ cdf of successes within α (simplex-equivalent) evals

⋄ tp,s: number of evals required to satisfy performance metric

Wild- USMex’16 20

Data Profiles: Ability to Find Approximate Global Minimizer

600 GKLS problems

(A)POSMM

⋄ Makes rapid
progress to fG

⋄ Outperforms other
algorithms (even
while demanding
14-fold
concurrency)

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMAES
Direct
GLODS

τ = 10−2

f(x)− fG ≤ (1− τ)
(

f(x0)− fG
)

Wild- USMex’16 21

Data Profiles: Ability to Find Approximate Global Minimizer

600 GKLS problems

(A)POSMM

⋄ Makes rapid
progress to fG

⋄ Outperforms other
algorithms (even
while demanding
14-fold
concurrency)

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMAES
Direct
GLODS

τ = 10−5

f(x)− fG ≤ (1− τ)
(

f(x0)− fG
)

Wild- USMex’16 21

Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A)POSMM

⋄ Designed to find
more than just the
global minimizer

⋄ Extends lead for
tighter tolerances

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMAES
Direct
GLODS

distance τ = 10−5, j = 2 minimizers

Wild- USMex’16 22

Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A)POSMM

⋄ Designed to find
more than just the
global minimizer

⋄ Extends lead for
tighter tolerances

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMAES
Direct
GLODS

distance τ = 10−3, j = 7 minimizers

Wild- USMex’16 22

Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A)POSMM

⋄ Designed to find
more than just the
global minimizer

⋄ Extends lead for
tighter tolerances

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMAES
Direct
GLODS

distance τ = 10−2, j = 3 minimizers

Wild- USMex’16 22

Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A)POSMM

⋄ Designed to find
more than just the
global minimizer

⋄ Extends lead for
tighter tolerances

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

Random
POSMM(14)
pVTDirect(2)
CMAES
Direct
GLODS

distance τ = 10−4, j = 3 minimizers

Wild- USMex’16 22

Sanity Check

⋄ Is this just “advanced” random sampling?

⋄ Is random sampling ever better?

Wild- USMex’16 23

(Tolerance, # Minimizers) Comparison With Random Sampling

Area under data profile: POSMM (L), RS (R)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

10

0

0
0

τ

#
m
in
im

a

0

200

400

600

800

1000

1200

1400

1600

1800
0

0
0

τ

#
m
in
im

a

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

10

0

200

400

600

800

1000

1200

1400

1600

1800

Wild- USMex’16 24

(Tolerance, # Minimizers) Comparison With Random Sampling

Percent difference between POSMM and RS areas

0

0
0

τ

#
m
in
im

a

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

10

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

POSMM has clear advantages as tolerances tighten

Wild- USMex’16 24

Fraction of Evaluations Dedicated to Optimization

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50

100

150

200

250

Fraction

co
u
n
t

n=2
n=3
n=4
n=5
n=6
n=7

14 workers (10 local minimizers for each n)

Increasing fraction of work assigned to local optimization

Wild- USMex’16 25

Scaling Results For Evaluations: Variable Time(f(x))

Mean wall time to exhaust 2000(n + 1) evals

2 8 14

10
2

10
3

Workers

R
u
n
ti
m
e

APOSMM
pVTDirect
median
Ideal

600 GKLS problems, time(f(x)) ∼Unif[0, 0.2] seconds

Asynchronicity of APOSMM & pVTDirect yields near-perfect execution scaling

Wild- USMex’16 26

Scaling Results For Evaluations: Variable Time(f(x))

Mean wall time to exhaust 2000(n + 1) evals

2 8 14

10
2

10
3

Workers

R
u
n
ti
m
e

APOSMM
POSMM
median
Ideal

600 GKLS problems, time(f(x)) ∼Unif[0, 0.2] seconds

Asynchronicity of APOSMM & pVTDirect yields near-perfect execution scaling

Wild- USMex’16 26

Scaling Results For Time To Solution

Mean wall time to find j = 3 best minimizers (τ = 10−2 accuracy) on κ probs

2 8 14

10
0

10
1

Workers

R
u
n
ti
m
e

APOSMM
pVTDirect
κ = 90%
κ = 70%
κ = 50%
Ideal

n = 2

(A)POSMM time to solution scales well up to (at least) 14-fold concurrency

Wild- USMex’16 27

Scaling Results For Time To Solution

Mean wall time to find j = 3 best minimizers (τ = 10−2 accuracy) on κ probs

2 8 14

10
1

10
2

10
3

Workers

R
u
n
ti
m
e

APOSMM
pVTDirect
κ = 80%
κ = 60%
κ = 40%
Ideal

n = 7

(A)POSMM time to solution scales well up to (at least) 14-fold concurrency

Wild- USMex’16 27

Summary & Early Conclusions

⋄ APOSMM+BOBYQA effective at finding multiple minimizers
. . . without sacrificing quality of approximate global soln

⋄ Asymptotic convergence results limit the number of expensive local runs

⋄ POSMM admits additional concurrency, reduces time to solution

⋄ Scales to concurrency above problem dimension, number of minimizers,
number of desired minimizers, . . .

⋄ Asynchronous logic allows for heterogeneous function evaluation times

⋄ Preprint + python software [Larson, W. (2016)]

[Larson & W. “A Batch, Derivative-free Algorithm for Finding Multiple Local Minima.”

(OptEng, 2015)]

Current work:

⋄ Tests for greater concurrency levels

⋄ Interaction with local solver (use of information, concurrent evals,
termination, addressing (stochastic) noise, . . .)

Wild- USMex’16 28

Summary & Early Conclusions

⋄ APOSMM+BOBYQA effective at finding multiple minimizers
. . . without sacrificing quality of approximate global soln

⋄ Asymptotic convergence results limit the number of expensive local runs

⋄ POSMM admits additional concurrency, reduces time to solution

⋄ Scales to concurrency above problem dimension, number of minimizers,
number of desired minimizers, . . .

⋄ Asynchronous logic allows for heterogeneous function evaluation times

⋄ Preprint + python software [Larson, W. (2016)]

[Larson & W. “A Batch, Derivative-free Algorithm for Finding Multiple Local Minima.”

(OptEng, 2015)]

Current work:

⋄ Tests for greater concurrency levels

⋄ Interaction with local solver (use of information, concurrent evals,
termination, addressing (stochastic) noise, . . .)

Gracias y Felicidades Jorge!

Wild- USMex’16 28

	0. Introduction/Motivation
	I. Multiple local minimizers
	II. Multistart: Exploit efficient local solvers
	III. Asymptotic Theory
	IV. Beyond Batch Evaluations
	V. Performance Metrics
	VI. Numerical Results
	Summary

