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1. Problem

Given: f1, . . . , fn : <d → <̄ := < ∪ {∞} smooth (and convex),

find smooth (and convex) approximations to

f 1(x) := max
i
{fi(x)}

and
fk(x) := max

|K|=k

∑
i∈K

fi(x).

This is related to Owl norms (Bogdan et al., Zeng and Figueiredo). For a vector y ∈ <n, let y[k]
denote the kth largest component. Then if f(x) ≥ 0 and w1 ≥ w2 ≥ · · · ≥ wn ≥ wn+1 := 0,

Ωw(f(x)) =
∑
h

whf[h](x) =
n∑
j=1

(wj − wj+1)f
j(x).

This includes the `1 (wj = 1 all j) and `∞ (w1 = 1, w2 = · · · = wn = 0) norms.



Motivation

Let fi be a (self-concordant) barrier function for a closed convex set Ci in <d, with barrier parameter
νi, i = 1, . . . , n.
Example: − ln(bi − aTi x) for {x ∈ <d : aTi x ≤ bi} with νi = 1.

Then
∑n

i=1 fi(x) is a barrier function for C := ∩ni=1Ci, with barrier parameter ν :=
∑n

i=1 νi.
Example: −

∑n
i=1 ln(bi − aTi x) for the polyhedron P := {x ∈ <d : Ax ≤ b} with ν = n.

Perhaps a suitable smooth approximation to fd can also be used as a barrier function, with a smaller
barrier parameter.
We know there is a barrier function for the set C with barrier parameter of order d (but it is not
easily computable).

Barrier functions can be used in the efficient optimization of a linear function over the corresponding
set, and the complexity depends on the barrier parameter.



2. First idea

“Smear” in the domain:
Approximate a nonsmooth function f via a convolution or as an expectation:

f̂(x) := Ezf(x− z)

=

∫
f(x− z)φ(z)dz,

where φ is the probability density function of a localized random variable z ∈ <d.

However, this shrinks the domain dom f := {x : f(x) <∞}, inappropriate for a barrier function.



3. Our idea

“Smear” in the range: Let ξ1, . . . , ξn be iid random variables and set

f̄ 1(x) := Eξ1,...,ξn max
i
{fi(x)− ξi}+ Eξ,

f̄k(x) := Eξ1,...,ξn max
|K|=k

∑
i∈K

(fi(x)− ξi) + kEξ.

These functions inherit the smoothness (and convexity) of the fi’s. Moreover, they inherit the
domains of the nonsmooth functions. To enable fairly efficient evaluation, we choose Gumbel
random variables: P (ξ > x) = exp(− exp(x)), Eξ = −γ.



4. Evaluation

We are interested in qk := E((f(x)− ξ)[k]).

qk =
∑

i/∈J,|J |=k−1

∫
ξi

Πj∈JP (fj(x)− ξj ≥ fi(x)− ξi) ·

Πh6=i,h/∈JP (fh(x)− ξh ≤ fi(x)− ξi) · (fi(x)− ξi) · exp(ξi − eξi)dξi

= . . .

=
∑
|K|<k

(−1)k−|K|−1
(
n− | K | −1

k− | K | −1

)
ln
∑
i/∈K

exp(fi(x)) + γ.

(Here
(
0
0

)
:= 1.) But f̄k(x) is just the sum of the first k (qj − γ)’s. Since the alternating sum of the

binomial coefficients simplifies, we get:



Theorem 1

f̄k(x) =
∑
|K|<k

(−1)k−|K|−1
(
n− | K | −2

k− | K | −1

)
ln
∑
i/∈K

exp(fi(x)).

ut
(Here

(−1
0

)
:= 1, and otherwise

(
p
q

)
:= 0 if p < q.)

We have reduced the work from an n-dimensional integration to a sum over O(nk−1) terms.

Note that almost all the terms disappear for k = n, and we get f̄n(x) = fn(x) as expected.



5. Examples

k = 1: Here only K = ∅ contributes to the sum, so we obtain

f̄ 1(x) = ln

(∑
i

exp(fi(x))

)
.

Such functions have been used as potential functions in theoretical computer science, starting with
Shahrokhi-Matula and Grigoriadis-Khachiyan in the 1990s. They also appear in the economic
literature on consumer choice, dating back to the 1960s (e.g., Luce and Suppes).
This function is sometimes called the soft maximum of the fi’s. This term is also used for the weight
vector (

exp(fi(x))∑
h exp(fh(x))

)
.

Note that the gradient of f̄ 1 is the weighted combination of those of the fi’s using these weights.



k = 2: Here K can be the empty set or any singleton, and we find

f̄ 2(x) = −(n− 2) ln

(∑
i

exp(fi(x))

)
+
∑
i

ln

∑
j 6=i

exp(fj(x))


= ln

∑
h6=2

exp(f[h](x))

+ ln

∑
h6=1

exp(f[h](x))

+

∑
i>2

ln

(
1−

exp(f[i](x))∑
h exp(fh(x))

)
.



k = 3: Now K can be the empty set or any singleton or pair, and we have

f̄ 3(x) =

(
n− 2

2

)
ln

(∑
i

exp(fi(x))

)
− (n− 3)

∑
i

ln

∑
j 6=i

exp(fj(x)


+
∑
i<j

ln

∑
h6=i,j

exp(fh(x))



= ln

∑
h 6=2,3

exp(f[h](x))

+ ln

∑
h6=1,3

exp(f[h](x))

+ ln

(∑
h>2

exp(f[h](x))

)

+
∑
1≤i≤3

∑
j>3

ln

(
1−

exp(f[j](x)∑
h6=i exp(f[h](x))

)

+
1

2

∑
3<i6=j>3

ln

(
1−

exp(f[j](x))∑
h6=i exp(f[h](x))

)
− n− 2

2

∑
i>3

ln

(
1−

exp(f[i](x))∑
h exp(fh(x))

)
.

(2)



6. Bounds

Theorem 2
fk(x) ≤ f̄k(x) ≤ fk(x) + k lnn.

Proof

f̄k(x) = Eξ1,...,ξn max
|K|=k

∑
i∈K

(fi(x)− ξi) + kEξ

≥ Eξ1,...,ξn

∑
i∈K̂

(fi(x)− ξi) + kEξ

= fk(x)− kEξ + kEξ = fk.

f̄k(x) = Eξ1,...,ξn max
|K|=k

∑
i∈K

(fi(x)− ξi) + kEξ

≤ Eξ1,...,ξn max
|K|=k

∑
i∈K

fi(x) + Eξ1,...,ξn max
|K|=k

∑
i∈K

(−ξi) + kEξ

≤ fk(x) + kEξ1,...,ξn max
i

(−ξi) + kEξ

= fk(x) + k lnn.

ut



7. Final remarks

If we want a closer (but “rougher”) approximation, we can scale the Gumbel random variables by
α < 1, or equivalently, scale the functions fi by α−1, apply the formulae above, and then scale the
result by α.

If the fi’s differ by orders of magnitude, the above expressions need to be carefully evaluated, but at
the same time, we may be able to ignore many of the terms.

Still to do: study further properties of these smooth approximations.
(Unfortunately, even f̄ 1 turns out not to be self-concordant in the case of log barrier functions for
linear constraints (Tuncel-Nemirovsky).)

Interesting fact: for symmetric matrices Fi,

ln

(∑
h

exp(Fh)

)
� Fi, i = 1, ...,m.

What is limα↓0 α ln
(∑

i exp(α−1Fi)
)
?
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