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Problem

Given: fi,..., fo: R — R := RN U {oo} smooth (and convex),

find smooth (and convex) approximations to

and

This is related to Owl norms (Bogdan et al., Zeng and Figueiredo). For a vector y € R", let y
denote the kth largest component. Then if f(z) > 0 and wy > wy > -+ > w, > w, 1 =0,

n

Qu(f(2) = wnfu(x) = (w; —wjn) f(z).

j=1

This includes the ¢; (w; =1 all j) and { (w1 =1, ws = -+ = w, = 0) norms.



Motivation

Let f; be a (self-concordant) barrier function for a closed convex set C; in ¢, with barrier parameter
Vi,izl,...,n.
Example: —In(b; — alx) for {x € R : alx < b;} with v; = 1.

n

Then Y7 | fi(x) is a barrier function for C' := NI'_;C;, with barrier parameter v := " | v;.
Example: —>°"  In(b; — al'z) for the polyhedron P := {z € R¢: Ax < b} with v = n.

Perhaps a suitable smooth approximation to f? can also be used as a barrier function, with a smaller

barrier parameter.
We know there is a barrier function for the set C' with barrier parameter of order d (but it is not

easily computable).

Barrier functions can be used in the efficient optimization of a linear function over the corresponding
set, and the complexity depends on the barrier parameter.



First idea

“Smear” in the domain:
Approximate a nonsmooth function f via a convolution or as an expectation:

flx) == E.f(x —2)
= /f(:z: — 2)¢(2)dz,

where ¢ is the probability density function of a localized random variable z € .

However, this shrinks the domain dom f := {x : f(z) < oo}, inappropriate for a barrier function.



Our idea

“Smear” in the range: Let &,...,&, be iid random variables and set
fix) = Ee e max{ fi(z) =&} + B,

ff@) = Ee . max (filx) = &) + kEE.

These functions inherit the smoothness (and convexity) of the f;'s. Moreover, they inherit the
domains of the nonsmooth functions. To enable fairly efficient evaluation, we choose Gumbel
random variables: (& > x) = exp(—exp(x)), F{ = —7.



Evaluation

We are interested in ¢, == E((f(x) — &)p)-

S /&HjeJP(fj(w)—fg'Zfi(x)— )

i J)|J|=k—1

I, zing s P(fu(x) — & < fi(x) = &) - (fi(x) — &) - exp(& — €5)d;

= > (=ptrt (Z: |‘ ? |‘ :D In > " exp(fi(x)) +7.

|K|<k i¢K

(Here (8) :=1.) But f¥(z) is just the sum of the first k (q; —7)'s. Since the alternating sum of the
binomial coefficients simplifies, we get:



Theorem 1

*x) = Z (— 1)k K- (Z: ‘| g “ :?) aneXp(fi(x)).

| K|<k i¢K
0

-1 . .
(Here (;) := 1, and otherwise (g) =0ifp<q.)
We have reduced the work from an n-dimensional integration to a sum over O(n*~!) terms.

Note that almost all the terms disappear for & = n, and we get f"(z) = f"(x) as expected.



Examples

k= 1: Here only K = () contributes to the sum, so we obtain

fi) = (Z exp(fm:))) .

Such functions have been used as potential functions in theoretical computer science, starting with
Shahrokhi-Matula and Grigoriadis-Khachiyan in the 1990s. They also appear in the economic
literature on consumer choice, dating back to the 1960s (e.g., Luce and Suppes).

This function is sometimes called the soft maximum of the f;'s. This term is also used for the weight

vector -
< Zixoig( <f; 21) ) ) '

Note that the gradient of f! is the weighted combination of those of the f;'s using these weights.




k= 2: Here K can be the empty set or any singleton, and we find

fx) = —(n—2)In (Z eXP(fz'(iU))) +> In (Z eXp(fj(fU)))
i i i
= In (ZeXp(f[h](l“))> +In (Zexp(f[h](fﬂ))) +

h#2 hA1

al1— exp(fj(2))
2! (1 > exp fh<x>>>'

1>2




k= 3: Now K can be the empty set or any singleton or pair, and we have

Plz) = <n - 2) In (Z exp(fi(a:))> —(n—3) Zln (Z exp(fj(x))
i ji
+ Zln( exp(fr(x )
1<J h#i,j

~ In (Z exp( fin ) +In (Z exp(f ) +In (Z eXP(f[h]@)))

h#2.3 h#1,3 h>2
n eXp( j](x)
! 1;3;1 ( Zh;& exp(f[h](:r:))>
1 al1- exp(fij(z)) n—2 exp( fii)(z))
i 3<;>31 <1 2 eXp(f[h] (7)) > ;1 ( > h eXP(fh(i'f))>



6. Bounds

Theorem 2
i) < ) < fAa) + kinn
Proof
ffz) = Ee g, f}g?f]iZ(fi(ﬂ?) — &)+ kEE
€K
> Fe e, Z(fz(iﬁ) — &)+ kES

iceK

= f¥a) — kE¢ + kEE = f*

ff(@) = Ee.g max > (filx) = &)+ kEE

K=k ieK
< By...e, maX > fix) + B e, max > (—&) + kEE
e el

< [H2) + kB,
= f*x)+klnn.



Final remarks

If we want a closer (but “rougher”) approximation, we can scale the Gumbel random variables by
a < 1, or equivalently, scale the functions f; by a~!, apply the formulae above, and then scale the
result by a.

If the f;'s differ by orders of magnitude, the above expressions need to be carefully evaluated, but at
the same time, we may be able to ignore many of the terms.

Still to do: study further properties of these smooth approximations.
(Unfortunately, even f! turns out not to be self-concordant in the case of log barrier functions for
linear constraints (Tuncel-Nemirovsky).)

Interesting fact: for symmetric matrices Fj,

In (Z exp(Fh)> - F, i=1,..,m.
h

What is lim, g aln (3, exp(a™'F}))?
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