
Distributed Optimization with Arbitrary Local Solvers:
CoCoA+ and Beyond

Martin Takáč

joint work with

Chenxin Ma, Lehigh University

Martin Jaggi, ETH, Zurich

Nathan Srebro, Toyota Technological Institute at Chicago

Virginia Smith, UC Berkeley

Michael I. Jordan, UC Berkeley

Peter Richtarik, University of Edinburgh

Jakub Konecny, University of Edinburgh

U.S.-Mexico Workshop on Optimization and its Applications
January 4–8 2016

1 / 128

Hace 4 aos: ”Hola, soy Mike!”

3rd IMA Conference on Numerical Linear Algebra and Optimisation
10 – 12 September 2012, University of Birmingham

2 / 128

Outline

Problem Formulation & Motivation (5 min)

Classical ”Distributed” Methods (4.5 min)

CoCoA+ Framework (7 min)

Computation vs. Communication Trade-off (4 min)

Numerical Experiments (3.5 min)

How to do it Better (ongoing work) (6 min)

Questions (5 min)

3 / 128

The Problem - Regularized Empirical Loss Minimization

min
w∈Rd

E(x,y)∼X ,Y

[
`(wT x ; y)

]
(1)

4 / 128

The Problem - Regularized Empirical Loss Minimization

Let {(xi , yi)}n
i=1 be our training data, xi ∈ Rd and yi ∈ R.

min
w∈Rd

[
P(w) :=

1

n

n∑
i=1

`i (wT xi) +
λ

2
‖w‖2

]
(P)

λ > 0 is a regularization parameter

`i (·) is convex loss function which can depend on the label yi

Examples:

Logistic loss: `i (ζ) = log(1 + exp(−yiζ))
Hinge loss: `i (ζ) = max{0, 1− yiζ}

4 / 128

The Problem - Regularized Empirical Loss Minimization

Let {(xi , yi)}n
i=1 be our training data, xi ∈ Rd and yi ∈ R.

min
w∈Rd

[
P(w) :=

1

n

n∑
i=1

`i (wT xi) +
λ

2
‖w‖2

]
(P)

λ > 0 is a regularization parameter

`i (·) is convex loss function which can depend on the label yi

Examples:
Logistic loss: `i (ζ) = log(1 + exp(−yiζ))
Hinge loss: `i (ζ) = max{0, 1− yiζ}

The dual problem

max
α∈Rn

[
D(α) := −λ

2
‖Aα‖2 − 1

n

n∑
i=1

`∗i (−αi)

]
(D)

where A = 1
λn X T and X T = [x1, x2, . . . , xn] ∈ Rd×n

`∗i is convex conjugate of `i

wlog ‖xi‖ ≤ 1
4 / 128

Duality

Primal-Dual mapping

For any α ∈ dom(D) we can define

w(α) := Aα (1)

From strong duality we have that w∗ = w(α∗) is optimal to (P) if α∗ is optimal
solution to (D).

Gap function

G (α) = P(w(α))− D(α)

5 / 128

Duality

Primal-Dual mapping

For any α ∈ dom(D) we can define

w(α) := Aα (1)

From strong duality we have that w∗ = w(α∗) is optimal to (P) if α∗ is optimal
solution to (D).

Gap function

G (α) = P(w(α))− D(α)

5 / 128

The Setting & Challenges

Recent interest in machine learning:

the size of matrix A is huge (e.g. TBs of data)

we have to use many nodes of computer cluster (or cloud) to speed-up the
computation and leverage the problem size

Challenges

distributed data: no single machine can load the whole instance

expensive communication:

latency
RAM 100 nanoseconds

standard network connection 250,000 nanoseconds

unreliable nodes: we assume that the node can die at any point during the
computation (we want to have fault tolerant solution)

reuse of good solvers: we want to use highly tuned and customized single
machine solvers developed over many years (SAGA, SGD, SVRG, mSDCA,
mS2GD, MISO, . . .)

6 / 128

Classical ”Distributed” Optimization Alg. – Primal Space

Many algorithms works as follows

split data {(xi , yi)}n
i=1 across K computers (nodes)

each node will solve some problem depending on some data stored locally

Question: How to combine the optimal local solutions?

Consensus based approach

impose some constraint that the local solutions from each node should be the
same

Parameter server approach

one node (master) has the vector w

other nodes (workers) have the data

workers ask master about coordinates of w and also tells to master which
changes should be made

7 / 128

Classical ”Distributed” Optimization Alg. – Primal Space

Many algorithms works as follows

split data {(xi , yi)}n
i=1 across K computers (nodes)

each node will solve some problem depending on some data stored locally

Question: How to combine the optimal local solutions?

Consensus based approach

impose some constraint that the local solutions from each node should be the
same

Parameter server approach

one node (master) has the vector w

other nodes (workers) have the data

workers ask master about coordinates of w and also tells to master which
changes should be made

7 / 128

Classical ”Distributed” Optimization Alg. – Primal Space

Many algorithms works as follows

split data {(xi , yi)}n
i=1 across K computers (nodes)

each node will solve some problem depending on some data stored locally

Question: How to combine the optimal local solutions?

Consensus based approach

impose some constraint that the local solutions from each node should be the
same

Parameter server approach

one node (master) has the vector w

other nodes (workers) have the data

workers ask master about coordinates of w and also tells to master which
changes should be made

7 / 128

Classical ”Distributed” Optimization Alg. – Dual Space

objective function is D(α)

α ∈ Rn

we can split the coordinates of α across K nodes

we split the data matrix accordingly (coordinates corresponds to samples)

each node k can find some direction ∆αk how to decrease D(·) by changing
the local coordinates

Question: How to combine the optimal local solutions?

Easy solution: define a new iterate as the old one + average of locally
computed solutions

8 / 128

Classical ”Distributed” Optimization Alg. – Dual Space

objective function is D(α)

α ∈ Rn

we can split the coordinates of α across K nodes

we split the data matrix accordingly (coordinates corresponds to samples)

each node k can find some direction ∆αk how to decrease D(·) by changing
the local coordinates

Question: How to combine the optimal local solutions?

Easy solution: define a new iterate as the old one + average of locally
computed solutions

8 / 128

Runtime Analysis - From Signle node to Distributed

Classical Single Node

iterative optimization algorithm A
TA – time it takes to perform a single iteration of algorithm A
IA(ε) is the number of iterations A needs to attain an ε-accurate objective

TIME(A) = IA(ε)× TA .

9 / 128

Runtime Analysis - From Signle node to Distributed

Classical Single Node

iterative optimization algorithm A
TA – time it takes to perform a single iteration of algorithm A
IA(ε) is the number of iterations A needs to attain an ε-accurate objective

TIME(A) = IA(ε)× TA .

Distributed Algorithm

c – the time required to perform one round of communication

TIME(A) = IA(ε)× (c + TA) .

9 / 128

Runtime Analysis - From Signle node to Distributed

Distributed Algorithm

c – the time required to perform one round of communication

TIME(A) = IA(ε)× (c + TA) .

Distributed Algorithm with Weak Local Solutions

TA(Θ) – the time the local algorithm A needs to obtain accuracy Θ on the
local subproblem

I(ε,Θ) – the number of outer iterations

c – the time required to perform one round of communication

TIME(A,Θ) = I(ε,Θ)× (c + TA(Θ)) .

9 / 128

Data Distribution

Vector α and columns of matrix A are partitioned according {Pk}K
k=1.

Notation: For k ∈ {1, 2, . . . ,K} we use αk ∈ R|Pk | is a subvector of α.
Vector α[k] ∈ Rn is a vector obtained from vector α by setting all coordinates
/∈ Pk to zero.
Example: α1 = (∗, ∗, ∗, ∗)T , α[1] = (∗, ∗, ∗, ∗, 0, 0, . . . , 0)T .

10 / 128

Local Problem

CoCoA subproblem

At iteration t at node k

(∆α∗)
(t)
[k] = arg max

∆α[k]∈Rn
D(α(t) + ∆α[k])

= arg max
∆α[k]∈Rn

(
−λ

2
‖A(α(t) + ∆α[k])‖2 − 1

n

n∑
i=1

`∗i (−(α(t) + ∆α[k])i)

)

we cannot solve the subproblem as it depends on α(t) and A

if we know w (t) = Aα(t) then

(∆α∗)
(t)
[k] = arg max

∆α[k]∈Rn

(
−λ

2
‖w (t) + A∆α[k]‖2 − 1

n

∑
i∈Pk

`∗i (−(α(t) + ∆α[k])i)

)

if we know w (t) we can compute (∆α∗)
(t)
[k]

11 / 128

Local Problem

CoCoA subproblem

At iteration t at node k

(∆α∗)
(t)
[k] = arg max

∆α[k]∈Rn
D(α(t) + ∆α[k])

= arg max
∆α[k]∈Rn

(
−λ

2
‖A(α(t) + ∆α[k])‖2 − 1

n

n∑
i=1

`∗i (−(α(t) + ∆α[k])i)

)

we cannot solve the subproblem as it depends on α(t) and A

if we know w (t) = Aα(t) then

(∆α∗)
(t)
[k] = arg max

∆α[k]∈Rn

(
−λ

2
‖w (t) + A∆α[k]‖2 − 1

n

∑
i∈Pk

`∗i (−(α(t) + ∆α[k])i)

)

if we know w (t) we can compute (∆α∗)
(t)
[k]

11 / 128

The CoCoA Framework

Communication-Efficient Distributed Dual Coordinate Ascent
Input: T ≥ 1
Data: {(xi , yi)}n

i=1 distributed over K machines

Initialize: α
(0)
[k] ← 0 for all machines k , and w (0) ← 0

for t = 1, 2, . . . ,T
for all machines k = 1, 2, . . . ,K in parallel

Solve local problem approximately to obtain ∆α[k] computation

α
(t)
[k] ← α

(t−1)
[k] + 1

K ∆α[k]

∆wk ← 1
K A∆α[k]

reduce w (t) ← w (t−1) +
∑K

k=1 ∆wk communication

Few comments

The performance of this methods (in worst case) can be the same as if we
randomly pick k and solve corresponding subproblem and replace 1

K by 1

How accurately do we need to solve the local sub-problem?

How to change the local problem to avoid averaging (e.g. just to add local
solutions)?

Can we prove it will be better?

12 / 128

The CoCoA Framework

Communication-Efficient Distributed Dual Coordinate Ascent
Input: T ≥ 1
Data: {(xi , yi)}n

i=1 distributed over K machines

Initialize: α
(0)
[k] ← 0 for all machines k , and w (0) ← 0

for t = 1, 2, . . . ,T
for all machines k = 1, 2, . . . ,K in parallel

Solve local problem approximately to obtain ∆α[k] computation

α
(t)
[k] ← α

(t−1)
[k] + 1

K ∆α[k]

∆wk ← 1
K A∆α[k]

reduce w (t) ← w (t−1) +
∑K

k=1 ∆wk communication

Few comments

The performance of this methods (in worst case) can be the same as if we
randomly pick k and solve corresponding subproblem and replace 1

K by 1

How accurately do we need to solve the local sub-problem?

How to change the local problem to avoid averaging (e.g. just to add local
solutions)?

Can we prove it will be better?
12 / 128

Smarter Subproblem

Local Subproblem for CoCoA+

max
∆α[k]∈Rn

Gσ
′

k (∆α[k]; w (t)) (2)

where

Gσ
′

k (∆α[k]; w (t)) = −λ
2
‖w (t) + A∆α[k]‖2 − 1

n

∑
i∈Pk

`∗i (−(α
(t)
[k] + ∆α[k])i)

− 1

K

λ

2
‖w (t)‖2 − λ

2
(σ′ − 1)

∥∥∥A∆α[k]

∥∥∥2

.

and σ′ ≥ 1 will be explained soon

Compare with:

max
∆α[k]∈Rn

(
−λ

2
‖w (t) + A∆α[k]‖2 − 1

n

∑
i∈Pk

`∗i (−(α(t) + ∆α[k])i)

)
(3)

If σ′ = 1 then the optimal solutions of (2) and (3) coincides.
13 / 128

The CoCoA+ Framework

Communication-Efficient Distributed Dual Coordinate Ascent

Input: T ≥ 1, γ ∈ [1
K , 1], σ′ ∈ [1,∞)

Data: {(xi , yi)}n
i=1 distributed over K machines

Initialize: α
(0)
[k] ← 0 for all machines k , and w (0) ← 0

for t = 1, 2, . . . ,T
for all machines k = 1, 2, . . . ,K in parallel

approximately maxGσ′(∆α[k]; w (t)) to obtain ∆α[k] computation

α
(t)
[k] ← α

(t−1)
[k] + γ∆α[k]

∆wk ← γA∆α[k]

reduce w (t) ← w (t−1) +
∑K

k=1 ∆wk communication

If γ = 1
K we obtain CoCoA

If γ = 1
K then σ′ = 1 is ”safe” value

What about another values of γ? (we want γ = 1)

14 / 128

CoCoA+ Parameters - σ′ and γ

σ′ measures the difficulty of the given data partition

it must be chosen not smaller than

σ′ ≥ σ′min
def
= γ max

α∈Rn

‖Aα‖2∑K
k=1 ‖Aα[k]‖2

(4)

Lemma

For any α ∈ Rn (α 6= 0) we have

‖Aα‖2∑K
k=1 ‖Aα[k]‖2

≤ K

We can take the safe value σ′ = K · γ
Again: if γ = 1

K then σ′ = K · 1
K = 1 is a safe value

New: if γ = 1 then σ′ = K · 1 = K is a safe value

If AT A is block diagonal, then σ′min = γ

15 / 128

CoCoA+ Parameters - σ′ and γ

σ′ measures the difficulty of the given data partition

it must be chosen not smaller than

σ′ ≥ σ′min
def
= γ max

α∈Rn

‖Aα‖2∑K
k=1 ‖Aα[k]‖2

(4)

Lemma

For any α ∈ Rn (α 6= 0) we have

‖Aα‖2∑K
k=1 ‖Aα[k]‖2

≤ K

We can take the safe value σ′ = K · γ
Again: if γ = 1

K then σ′ = K · 1
K = 1 is a safe value

New: if γ = 1 then σ′ = K · 1 = K is a safe value

If AT A is block diagonal, then σ′min = γ

15 / 128

How Accurately?

Assumption: Θ-approximate solution

We assume that there exists Θ ∈ [0, 1) such that ∀k ∈ [K], the local solver at any
iteration t produces a (possibly) randomized approximate solution ∆α[k], which
satisfies

E
[
Gσ
′

k (∆α∗[k],w)− Gσ
′

k (∆α[k],w)
]
≤ Θ

(
Gσ
′

k (∆α∗[k],w)− Gσ
′

k (0,w)
)
, (5)

where

∆α∗ ∈ arg min
∆α∈Rn

K∑
k=1

Gσ
′

k (∆α[k],w). (6)

because the subproblem is not really what one wants to solve, therefore in
practise Θ ≈ 0.9 (depending on the cluster and problem)

what about convergence guarantees?

how to get Θ approximate solution?

16 / 128

Iteration Complexity - Smooth Loss

Theorem

Assume the loss functions functions `i are (1/µ)-smooth, for i ∈ {1, 2, . . . , n}. We
define

σk
def
= max

α[k]∈Rn

‖Aα[k]‖2

‖α[k]‖2
≤ |Pk | (7)

and σmax = maxk∈[K] σk .
Then after T iterations of CoCoA+, with

T ≥ 1
γ(1−Θ)

λµn+σmaxσ
′

λµn log 1
ε ,

it holds that E[D(α∗)− D(αT)] ≤ ε.
Furthermore, after T iterations with

T ≥ 1
γ(1−Θ)

λµn+σmaxσ
′

λµn log
(

1
γ(1−Θ)

λµn+σmaxσ
′

λµn
1
ε

)
,

we have the expected duality gap

E[P(w(α(T)))−D(α(T))] ≤ ε.
17 / 128

Averaging vs. Adding

The leading term is 1
γ(1−Θ)

λµn+σmaxσ
′

λµn . Let us assume that ∀k : |Pk | = n
K

Averaging

γ = 1
K

σ′ = 1

K
1−Θ

λµn+ n
K

λµn

1
1−Θ

λµK+1
λµ

Adding

γ = 1
σ′ = K

1
1−Θ

λµn+ n
K K

λµn

1
1−Θ

λµ+1
λµ

Note: this is in the worst case (for the worst case example)

18 / 128

Iteration Complexity - General Convex Loss

Theorem

Consider CoCoA+ starting with α0 = 0 ∈ Rn and ∀i ∈ {1, 2, . . . , n} : `i (·) be
L-Lipschitz continuous and ε > 0 be the desired duality gap. Then after T
iterations, where

T ≥ T0 + max{
⌈ 1

γ(1−Θ)

⌉
,

4L2σσ′

λn2εγ(1−Θ)
},

T0 ≥ t0 +

(
2

γ(1−Θ)

(
8L2σσ′

λn2ε
− 1

))
+

,

t0 ≥ max(0,
⌈

1
γ(1−Θ) log(2λn2(D(α∗)−D(α0))

4L2σσ′)
⌉

),

we have that the expected duality gap satisfies E[P(w(α))− D(α)] ≤ ε, at the
averaged iterate

α := 1
T−T0

∑T−1
t=T0+1α

(t),

where σ =
∑K

k=1 |Pk |σk .

19 / 128

SDCA as a Local Solver

SDCA

1: Input: α[k],w = w(α)
2: Data: Local {(xi , yi)}i∈Pk

3: Initialize: ∆α0
[k] = 0 ∈ Rn

4: for h = 0, 1, . . . ,H − 1 do
5: choose i ∈ Pk uniformly at random
6: δ∗i = arg max

δi∈R
Gσ
′

k (∆αh
[k] + δi ei ,w)

7: ∆α
(h+1)
[k] = ∆α

(h)
[k] + δ∗i ei

8: end for
9: Output: ∆α

(H)
[k]

Theorem

Assume the functions `i are (1/µ)−smooth for i ∈ {1, 2, . . . , n}. If

H ≥ nk
σ′ + λnµ

λnµ
log

1

Θ
(8)

then SDCA will produce a Θ-approximate solution.
20 / 128

Total Runtime

To get ε accuracy we need

O
(

1

1−Θ
log

1

ε

)

Recall Θ =
(

1− λnγ
1+λnγ

K
n

)H

Let

τo be the duration of communication per iteration

τc be the duration of ONE coordinate update during the inner iteration

Total runtime

O
(

1

1−Θ
(τO + Hτc)

)
= O

 1

1−Θ

1 + H
τc

τo︸︷︷︸
rc/o

21 / 128

H(τc/τo), Θ(τc/τo)

10
−4

10
−2

10
0

10
2

0

1000

2000

3000

4000

5000

optimal H vs. r, 1e−3

computation to communication ratio

H

10
−4

10
−2

10
0

10
2

0

1

2

3

4

5
x 10

5 optimal H vs. r, 1e−6

computation to communication ratio

H

10
−4

10
−2

10
0

10
2

0

0.2

0.4

0.6

0.8

1

optimal θ vs. r, 1e−3

computation to communication ratio

θ

10
−4

10
−2

10
0

10
2

0

0.2

0.4

0.6

0.8

1

optimal θ vs. r, 1e−6

computation to communication ratio

θ

22 / 128

Numerical Experiments

Datasets

Dataset n d size(GB)
rcv1test 677,399 47,236 1.2
epsilon 400,000 2,000 3.1

splice-site.t 4,627,840 11,725,480 273.4

Local Solvers

RCDM Randomized Coordinate Descent
APPROX Accelerated, Parallel and Proximal Coordinate Descent
GD Gradient Descent with Backtracking Line Search
CG Conjugate Gradient Method
L-BFGS Quasi-Newton with Limited-Memory BFGS Updating
BB Barzilai-Borwein Gradient Method
FISTA Fast Iterative Shrinkage-Thresholding Algorithm

PS: we tried different parameters for local solvers. The best parameters are here:
Local Solver RCDM APPROX GD CG L-BFGS BB FISTA

H 40,000 40,000 20 5 10 15 20

23 / 128

Numerical Experiments

Datasets

Dataset n d size(GB)
rcv1test 677,399 47,236 1.2
epsilon 400,000 2,000 3.1

splice-site.t 4,627,840 11,725,480 273.4

Local Solvers

RCDM Randomized Coordinate Descent
APPROX Accelerated, Parallel and Proximal Coordinate Descent
GD Gradient Descent with Backtracking Line Search
CG Conjugate Gradient Method
L-BFGS Quasi-Newton with Limited-Memory BFGS Updating
BB Barzilai-Borwein Gradient Method
FISTA Fast Iterative Shrinkage-Thresholding Algorithm

PS: we tried different parameters for local solvers. The best parameters are here:
Local Solver RCDM APPROX GD CG L-BFGS BB FISTA

H 40,000 40,000 20 5 10 15 20

23 / 128

Numerical Experiments

Datasets

Dataset n d size(GB)
rcv1test 677,399 47,236 1.2
epsilon 400,000 2,000 3.1

splice-site.t 4,627,840 11,725,480 273.4

Local Solvers

RCDM Randomized Coordinate Descent
APPROX Accelerated, Parallel and Proximal Coordinate Descent
GD Gradient Descent with Backtracking Line Search
CG Conjugate Gradient Method
L-BFGS Quasi-Newton with Limited-Memory BFGS Updating
BB Barzilai-Borwein Gradient Method
FISTA Fast Iterative Shrinkage-Thresholding Algorithm

PS: we tried different parameters for local solvers. The best parameters are here:
Local Solver RCDM APPROX GD CG L-BFGS BB FISTA

H 40,000 40,000 20 5 10 15 20
23 / 128

CoCoA vs. CoCoA+ - SDCA as a Local Solver

Number of Communications
101 102 103 104 105

D
ua

lit
y

G
ap

10-4

10-3

10-2

10-1

100 RCV1, 1e-4

CoCoA H=106

CoCoA H=105

CoCoA H=104

CoCoA+ H=106

CoCoA+ H=105

CoCoA+ H=104

Number of Communications
101 102 103 104 105

D
ua

lit
y

G
ap

10-4

10-3

10-2

10-1

100 RCV1, 1e-5

CoCoA H=106

CoCoA H=105

CoCoA H=104

CoCoA+ H=106

CoCoA+ H=105

CoCoA+ H=104

Elapsed Time (s)
101 102 103 104

D
ua

lit
y

G
ap

10-4

10-3

10-2

10-1

100 RCV1, 1e-4

CoCoA H=106

CoCoA H=105

CoCoA H=104

CoCoA+ H=106

CoCoA+ H=105

CoCoA+ H=104

Elapsed Time (s)
101 102 103 104

D
ua

lit
y

G
ap

10-4

10-3

10-2

10-1

100 RCV1, 1e-5

CoCoA H=106

CoCoA H=105

CoCoA H=104

CoCoA+ H=106

CoCoA+ H=105

CoCoA+ H=104

24 / 128

CoCoA+: Various Solvers

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

rcv1_test, compare solvers, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

RCDM

APPROX

GD

CG

L−BFGS

BB

FISTA

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

rcv1_test, compare solvers, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

RCDM

APPROX

GD

CG

L−BFGS

BB

FISTA

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

rcv1_test, compare solvers, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

RCDM

APPROX

GD

CG

L−BFGS

BB

FISTA

10
−1

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

rcv1_test, compare solvers, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

RCDM

APPROX

GD

CG

L−BFGS

BB

FISTA

10
−1

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

rcv1_test, compare solvers, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

RCDM

APPROX

GD

CG

L−BFGS

BB

FISTA

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

rcv1_test, compare solvers, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

RCDM

APPROX

GD

CG

L−BFGS

BB

FISTA

25 / 128

CoCoA+: Various Solvers

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

rcv1_test, compare solvers, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

RCDM

APPROX

GD

CG

L−BFGS

BB

FISTA

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

rcv1_test, compare solvers, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

RCDM

APPROX

GD

CG

L−BFGS

BB

FISTA

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

rcv1_test, compare solvers, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

RCDM

APPROX

GD

CG

L−BFGS

BB

FISTA

10
−1

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

rcv1_test, compare solvers, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

RCDM

APPROX

GD

CG

L−BFGS

BB

FISTA

10
−1

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

rcv1_test, compare solvers, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

RCDM

APPROX

GD

CG

L−BFGS

BB

FISTA

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

rcv1_test, compare solvers, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

RCDM

APPROX

GD

CG

L−BFGS

BB

FISTA

25 / 128

CoCoA+: L-BFGS

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

rcv1_test, L−BFGS, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

rcv1_test, L−BFGS, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

26 / 128

CoCoA+: L-BFGS

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

rcv1_test, L−BFGS, λ=1e−3

Number of Communications

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−4

Number of Communications

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−5

Number of Communications

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

rcv1_test, L−BFGS, λ=1e−3

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

rcv1_test, L−BFGS, λ=1e−5

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

H=2

H=5

H=10

H=20

H=30

H=40

26 / 128

CoCoA+ with RCDM - Large Scale Problem

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

splice−site.t, Logistic Loss, H=50k, K=4

Number of Communications

D
u

a
lit

y
 G

a
p

ν=1/K

ν=1

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

splice−site.t, Logistic Loss, H=50k, K=4

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

ν=1/K

ν=1

27 / 128

Effect of σ′

Number of Communications
101 102 103

D
ua

lit
y

G
ap

10-4

10-3

10-2

10-1

100

101
Effect of <` for . = 1 (adding)

<` = 8 (K)
<` = 6
<` = 4
<` = 2
<` = 1

Elapsed Time (s)
101

D
ua

lit
y

G
ap

10-4

10-3

10-2

10-1

100

101
Effect of <` for . = 1 (adding)

<` = 8 (K)
<` = 6
<` = 4
<` = 2
<` = 1

28 / 128

Scaling up

Number of machines (K)
2 4 6 8 10 12 14 16

T
im

e
(s

)
to

 e
-4

 D
ua

lit
y

G
ap

0

50

100

150

200

250

300

350

Scaling up K, RCV1

CoCoA+
CoCoA

Number of machines (K)
2 4 6 8 10 12 14 16

T
im

e
(s

)
to

 e
-3

 A
cc

ur
at

e
P

rim
al

101

102

103 Scaling up K, RCV1

CoCoA+
CoCoA
Mini-batch SGD

Number of machines (K)
20 40 60 80 100

T
im

e
(s

)
to

 e
-2

 D
ua

lit
y

G
ap

0

100

200

300

400

500

600

700
Scaling up K, Epsilon

CoCoA+
CoCoA

29 / 128

How to do it Better?

Props

the subproblem are very similar to original problems ⇒ hope that optimized
solvers will work still fine

we can use duality to write the primal to local dual problem (we can also use
optimized primal solvers – SAGA, SGD, SVRG, . . .)

Cons
Theory shows no advantage when compared with steepest descent

. . . this is just theory, in practise it works much better . . . (actually, this can
be seen as some fully parallel inexact block coordinate descent but with
primal-dual analysis

the main reason is that the algorithm is using ONLY the block diagonal part
of Hessian

30 / 128

How to do it Better?

Props

the subproblem are very similar to original problems ⇒ hope that optimized
solvers will work still fine

we can use duality to write the primal to local dual problem (we can also use
optimized primal solvers – SAGA, SGD, SVRG, . . .)

Cons
Theory shows no advantage when compared with steepest descent

. . . this is just theory, in practise it works much better . . . (actually, this can
be seen as some fully parallel inexact block coordinate descent but with
primal-dual analysis

the main reason is that the algorithm is using ONLY the block diagonal part
of Hessian

30 / 128

Distributed PCG

Partitioning by samples was done in Yuchen Zhang and Lin Xiao:
Communication-efficient distributed optimization of self-concordant empirical loss,
arXiv:1501.00263, 2015.
We redesign the algorithm to utilize cores better and minimize
communication

part. by samp. part. by feat.

comp.

master

matrix-vector multiplication 1(Rd×d × Rd) 1(Rd1×d1 × Rd1)
back solving linear system 1 (Rd) 1 (Rd1)

sum of vectors 4 (Rd) 4 (Rd1)
inner product of vectors 4 (Rd) 4 (Rd1)

nodes

matrix-vector multiplication 1 (Rd×d × Rd) 1(Rd1×di × Rdi)
back solving linear system 0 1 (Rdi)

sum of vectors 0 4 (Rdi)
inner product of vectors 0 4 (Rdi)

comn.
Broadcast one Rd vector 0
ReduceAll 1x Rd 1x Rn, 3 scalars

31 / 128

0 20 40 60 80 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

kdd, m=32

Elapsed Time

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−S

DiSCO−F

CoCoA+

0 20 40 60 80 100

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

kdd, m=32

Number of Communications

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−S

DiSCO−F

CoCoA+

0 2 4 6 8 10 12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

kdd, m=32

Number of Iterations

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−S

DiSCO−F

CoCoA+

0 1 2 3 4 5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

news, m=8

Elapsed Time

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−S

DiSCO−F

CoCoA+

0 5 10 15 20 25 30 35

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

news, m=8

Number of Communications

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−S

DiSCO−F

CoCoA+

0 2 4 6 8 10 12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

news, m=8

Number of Iterations

N
o

rm
 o

f
G

ra
d

ie
n

t

DiSCO−S

DiSCO−F

CoCoA+

we need the same number of iterations (the ”same algorithm”)
we save almost 50% of communication
we are much faster (we utilize nodes better)
future work: searching for better preconditioning; distributed L-BFGS
implementation

32 / 128

Joke at the end – what have I learnt in US so far

33 / 128

References

1 Chenxin Ma and Martin Takáč: Partitioning Data on Features or Samples in Communication-Efficient
Distributed Optimization?, OptML@NIPS 2015.

2 Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtárik and Martin Takáč: Adding
vs. Averaging in Distributed Primal-Dual Optimization, ICML 2015.

3 Martin Jaggi, Virginia Smith, Martin Takáč, Jonathan Terhorst, Thomas Hofmann and Michael I.
Jordan: Communication-Efficient Distributed Dual Coordinate Ascent, NIPS 2014.

4 Richtárik, P. and Takáč, M.: Distributed coordinate descent method for learning with big data, Journal
Paper Journal of Machine Learning Research (to appear), 2016

5 Richtárik, P. and Takáč, M.: On optimal probabilities in stochastic coordinate descent methods,
Optimization Letters, 2015.

6 Richtárik, P. and Takáč, M.: Parallel coordinate descent methods for big data optimization,
Mathematical Programming, 2015.

7 Richtárik, P. and Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function, Mathematical Programming, 2012.

8 Takáč, M., Bijral, A., Richtárik, P. and Srebro, N.: Mini-batch primal and dual methods for SVMs, In
ICML, 2013.

9 Qu, Z., Richtárik, P. and Zhang, T.: Randomized dual coordinate ascent with arbitrary sampling,
arXiv:1411.5873, 2014.

10 Qu, Z., Richtárik, P., Takáč, M. and Fercoq, O.: SDNA: Stochastic Dual Newton Ascent for Empirical
Risk Minimization, arXiv:1502.02268, 2015.

11 Tappenden, R., Takáč, M. and Richtárik, P., On the Complexity of Parallel Coordinate Descent, arXiv:
1503.03033, 2015.

34 / 128

