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The Problem - Regularized Empirical Loss Minimization

min
w∈Rd

E(x,y)∼X ,Y

[
`(wT x ; y)

]
(1)
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The Problem - Regularized Empirical Loss Minimization

Let {(xi , yi )}n
i=1 be our training data, xi ∈ Rd and yi ∈ R.

min
w∈Rd

[
P(w) :=

1

n

n∑
i=1

`i (wT xi ) +
λ

2
‖w‖2

]
(P)

λ > 0 is a regularization parameter

`i (·) is convex loss function which can depend on the label yi

Examples:

Logistic loss: `i (ζ) = log(1 + exp(−yiζ))
Hinge loss: `i (ζ) = max{0, 1− yiζ}
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1

n

n∑
i=1

`i (wT xi ) +
λ

2
‖w‖2

]
(P)

λ > 0 is a regularization parameter

`i (·) is convex loss function which can depend on the label yi

Examples:
Logistic loss: `i (ζ) = log(1 + exp(−yiζ))
Hinge loss: `i (ζ) = max{0, 1− yiζ}

The dual problem

max
α∈Rn

[
D(α) := −λ

2
‖Aα‖2 − 1

n

n∑
i=1

`∗i (−αi )

]
(D)

where A = 1
λn X T and X T = [x1, x2, . . . , xn] ∈ Rd×n

`∗i is convex conjugate of `i

wlog ‖xi‖ ≤ 1
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Duality

Primal-Dual mapping

For any α ∈ dom(D) we can define

w(α) := Aα (1)

From strong duality we have that w∗ = w(α∗) is optimal to (P) if α∗ is optimal
solution to (D).

Gap function

G (α) = P(w(α))− D(α)
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The Setting & Challenges

Recent interest in machine learning:

the size of matrix A is huge (e.g. TBs of data)

we have to use many nodes of computer cluster (or cloud) to speed-up the
computation and leverage the problem size

Challenges

distributed data: no single machine can load the whole instance

expensive communication:

latency
RAM 100 nanoseconds

standard network connection 250,000 nanoseconds

unreliable nodes: we assume that the node can die at any point during the
computation (we want to have fault tolerant solution)

reuse of good solvers: we want to use highly tuned and customized single
machine solvers developed over many years (SAGA, SGD, SVRG, mSDCA,
mS2GD, MISO, . . . )
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Classical ”Distributed” Optimization Alg. – Primal Space

Many algorithms works as follows

split data {(xi , yi )}n
i=1 across K computers (nodes)

each node will solve some problem depending on some data stored locally

Question: How to combine the optimal local solutions?

Consensus based approach

impose some constraint that the local solutions from each node should be the
same

Parameter server approach

one node (master) has the vector w

other nodes (workers) have the data

workers ask master about coordinates of w and also tells to master which
changes should be made
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Classical ”Distributed” Optimization Alg. – Dual Space

objective function is D(α)

α ∈ Rn

we can split the coordinates of α across K nodes

we split the data matrix accordingly (coordinates corresponds to samples)

each node k can find some direction ∆αk how to decrease D(·) by changing
the local coordinates

Question: How to combine the optimal local solutions?

Easy solution: define a new iterate as the old one + average of locally
computed solutions
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Runtime Analysis - From Signle node to Distributed

Classical Single Node

iterative optimization algorithm A
TA – time it takes to perform a single iteration of algorithm A
IA(ε) is the number of iterations A needs to attain an ε-accurate objective

TIME(A) = IA(ε)× TA .
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Classical Single Node

iterative optimization algorithm A
TA – time it takes to perform a single iteration of algorithm A
IA(ε) is the number of iterations A needs to attain an ε-accurate objective

TIME(A) = IA(ε)× TA .

Distributed Algorithm

c – the time required to perform one round of communication
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Runtime Analysis - From Signle node to Distributed

Distributed Algorithm

c – the time required to perform one round of communication

TIME(A) = IA(ε)× (c + TA) .

Distributed Algorithm with Weak Local Solutions

TA(Θ) – the time the local algorithm A needs to obtain accuracy Θ on the
local subproblem

I(ε,Θ) – the number of outer iterations

c – the time required to perform one round of communication

TIME(A,Θ) = I(ε,Θ)× (c + TA(Θ)) .
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Data Distribution

Vector α and columns of matrix A are partitioned according {Pk}K
k=1.

Notation: For k ∈ {1, 2, . . . ,K} we use αk ∈ R|Pk | is a subvector of α.
Vector α[k] ∈ Rn is a vector obtained from vector α by setting all coordinates
/∈ Pk to zero.
Example: α1 = (∗, ∗, ∗, ∗)T , α[1] = (∗, ∗, ∗, ∗, 0, 0, . . . , 0)T .
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Local Problem

CoCoA subproblem

At iteration t at node k

(∆α∗)
(t)
[k] = arg max

∆α[k]∈Rn
D(α(t) + ∆α[k])

= arg max
∆α[k]∈Rn

(
−λ

2
‖A(α(t) + ∆α[k])‖2 − 1

n

n∑
i=1

`∗i (−(α(t) + ∆α[k])i )

)

we cannot solve the subproblem as it depends on α(t) and A

if we know w (t) = Aα(t) then

(∆α∗)
(t)
[k] = arg max

∆α[k]∈Rn

(
−λ

2
‖w (t) + A∆α[k]‖2 − 1

n

∑
i∈Pk

`∗i (−(α(t) + ∆α[k])i )

)

if we know w (t) we can compute (∆α∗)
(t)
[k]
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The CoCoA Framework

Communication-Efficient Distributed Dual Coordinate Ascent
Input: T ≥ 1
Data: {(xi , yi )}n

i=1 distributed over K machines

Initialize: α
(0)
[k] ← 0 for all machines k , and w (0) ← 0

for t = 1, 2, . . . ,T
for all machines k = 1, 2, . . . ,K in parallel

Solve local problem approximately to obtain ∆α[k] computation

α
(t)
[k] ← α

(t−1)
[k] + 1

K ∆α[k]

∆wk ← 1
K A∆α[k]

reduce w (t) ← w (t−1) +
∑K

k=1 ∆wk communication

Few comments

The performance of this methods (in worst case) can be the same as if we
randomly pick k and solve corresponding subproblem and replace 1

K by 1

How accurately do we need to solve the local sub-problem?

How to change the local problem to avoid averaging (e.g. just to add local
solutions)?

Can we prove it will be better?
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Smarter Subproblem

Local Subproblem for CoCoA+

max
∆α[k]∈Rn

Gσ
′

k (∆α[k]; w (t)) (2)

where

Gσ
′

k (∆α[k]; w (t)) = −λ
2
‖w (t) + A∆α[k]‖2 − 1

n

∑
i∈Pk

`∗i (−(α
(t)
[k] + ∆α[k])i )

− 1

K

λ

2
‖w (t)‖2 − λ

2
(σ′ − 1)

∥∥∥A∆α[k]

∥∥∥2

.

and σ′ ≥ 1 will be explained soon

Compare with:

max
∆α[k]∈Rn

(
−λ

2
‖w (t) + A∆α[k]‖2 − 1

n

∑
i∈Pk

`∗i (−(α(t) + ∆α[k])i )

)
(3)

If σ′ = 1 then the optimal solutions of (2) and (3) coincides.
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The CoCoA+ Framework

Communication-Efficient Distributed Dual Coordinate Ascent

Input: T ≥ 1, γ ∈ [ 1
K , 1], σ′ ∈ [1,∞)

Data: {(xi , yi )}n
i=1 distributed over K machines

Initialize: α
(0)
[k] ← 0 for all machines k , and w (0) ← 0

for t = 1, 2, . . . ,T
for all machines k = 1, 2, . . . ,K in parallel

approximately maxGσ′(∆α[k]; w (t)) to obtain ∆α[k] computation

α
(t)
[k] ← α

(t−1)
[k] + γ∆α[k]

∆wk ← γA∆α[k]

reduce w (t) ← w (t−1) +
∑K

k=1 ∆wk communication

If γ = 1
K we obtain CoCoA

If γ = 1
K then σ′ = 1 is ”safe” value

What about another values of γ? (we want γ = 1)
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CoCoA+ Parameters - σ′ and γ

σ′ measures the difficulty of the given data partition

it must be chosen not smaller than

σ′ ≥ σ′min
def
= γ max

α∈Rn

‖Aα‖2∑K
k=1 ‖Aα[k]‖2

(4)

Lemma

For any α ∈ Rn (α 6= 0) we have

‖Aα‖2∑K
k=1 ‖Aα[k]‖2

≤ K

We can take the safe value σ′ = K · γ
Again: if γ = 1

K then σ′ = K · 1
K = 1 is a safe value

New: if γ = 1 then σ′ = K · 1 = K is a safe value

If AT A is block diagonal, then σ′min = γ

15 / 128



CoCoA+ Parameters - σ′ and γ

σ′ measures the difficulty of the given data partition

it must be chosen not smaller than

σ′ ≥ σ′min
def
= γ max

α∈Rn

‖Aα‖2∑K
k=1 ‖Aα[k]‖2

(4)

Lemma

For any α ∈ Rn (α 6= 0) we have

‖Aα‖2∑K
k=1 ‖Aα[k]‖2

≤ K

We can take the safe value σ′ = K · γ
Again: if γ = 1

K then σ′ = K · 1
K = 1 is a safe value

New: if γ = 1 then σ′ = K · 1 = K is a safe value

If AT A is block diagonal, then σ′min = γ

15 / 128



How Accurately?

Assumption: Θ-approximate solution

We assume that there exists Θ ∈ [0, 1) such that ∀k ∈ [K ], the local solver at any
iteration t produces a (possibly) randomized approximate solution ∆α[k], which
satisfies

E
[
Gσ
′

k (∆α∗[k],w)− Gσ
′

k (∆α[k],w)
]
≤ Θ

(
Gσ
′

k (∆α∗[k],w)− Gσ
′

k (0,w)
)
, (5)

where

∆α∗ ∈ arg min
∆α∈Rn

K∑
k=1

Gσ
′

k (∆α[k],w). (6)

because the subproblem is not really what one wants to solve, therefore in
practise Θ ≈ 0.9 (depending on the cluster and problem)

what about convergence guarantees?

how to get Θ approximate solution?
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Iteration Complexity - Smooth Loss

Theorem

Assume the loss functions functions `i are (1/µ)-smooth, for i ∈ {1, 2, . . . , n}. We
define

σk
def
= max

α[k]∈Rn

‖Aα[k]‖2

‖α[k]‖2
≤ |Pk | (7)

and σmax = maxk∈[K ] σk .
Then after T iterations of CoCoA+, with

T ≥ 1
γ(1−Θ)

λµn+σmaxσ
′

λµn log 1
ε ,

it holds that E[D(α∗)− D(αT )] ≤ ε.
Furthermore, after T iterations with

T ≥ 1
γ(1−Θ)

λµn+σmaxσ
′

λµn log
(

1
γ(1−Θ)

λµn+σmaxσ
′

λµn
1
ε

)
,

we have the expected duality gap

E[P(w(α(T)))−D(α(T))] ≤ ε.
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Averaging vs. Adding

The leading term is 1
γ(1−Θ)

λµn+σmaxσ
′

λµn . Let us assume that ∀k : |Pk | = n
K

Averaging

γ = 1
K

σ′ = 1

K
1−Θ

λµn+ n
K

λµn

1
1−Θ

λµK+1
λµ

Adding

γ = 1
σ′ = K

1
1−Θ

λµn+ n
K K

λµn

1
1−Θ

λµ+1
λµ

Note: this is in the worst case (for the worst case example)
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Iteration Complexity - General Convex Loss

Theorem

Consider CoCoA+ starting with α0 = 0 ∈ Rn and ∀i ∈ {1, 2, . . . , n} : `i (·) be
L-Lipschitz continuous and ε > 0 be the desired duality gap. Then after T
iterations, where

T ≥ T0 + max{
⌈ 1

γ(1−Θ)

⌉
,

4L2σσ′

λn2εγ(1−Θ)
},

T0 ≥ t0 +

(
2

γ(1−Θ)

(
8L2σσ′

λn2ε
− 1

))
+

,

t0 ≥ max(0,
⌈

1
γ(1−Θ) log( 2λn2(D(α∗)−D(α0))

4L2σσ′ )
⌉

),

we have that the expected duality gap satisfies E[P(w(α))− D(α)] ≤ ε, at the
averaged iterate

α := 1
T−T0

∑T−1
t=T0+1α

(t),

where σ =
∑K

k=1 |Pk |σk .
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SDCA as a Local Solver

SDCA

1: Input: α[k],w = w(α)
2: Data: Local {(xi , yi )}i∈Pk

3: Initialize: ∆α0
[k] = 0 ∈ Rn

4: for h = 0, 1, . . . ,H − 1 do
5: choose i ∈ Pk uniformly at random
6: δ∗i = arg max

δi∈R
Gσ
′

k (∆αh
[k] + δi ei ,w)

7: ∆α
(h+1)
[k] = ∆α

(h)
[k] + δ∗i ei

8: end for
9: Output: ∆α

(H)
[k]

Theorem

Assume the functions `i are (1/µ)−smooth for i ∈ {1, 2, . . . , n}. If

H ≥ nk
σ′ + λnµ

λnµ
log

1

Θ
(8)

then SDCA will produce a Θ-approximate solution.
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Total Runtime

To get ε accuracy we need

O
(

1

1−Θ
log

1

ε

)

Recall Θ =
(

1− λnγ
1+λnγ

K
n

)H

Let

τo be the duration of communication per iteration

τc be the duration of ONE coordinate update during the inner iteration

Total runtime

O
(

1

1−Θ
(τO + Hτc )

)
= O

 1

1−Θ

1 + H
τc

τo︸︷︷︸
rc/o
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H(τc/τo), Θ(τc/τo)
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Numerical Experiments

Datasets

Dataset n d size(GB)
rcv1test 677,399 47,236 1.2
epsilon 400,000 2,000 3.1

splice-site.t 4,627,840 11,725,480 273.4

Local Solvers

RCDM Randomized Coordinate Descent
APPROX Accelerated, Parallel and Proximal Coordinate Descent
GD Gradient Descent with Backtracking Line Search
CG Conjugate Gradient Method
L-BFGS Quasi-Newton with Limited-Memory BFGS Updating
BB Barzilai-Borwein Gradient Method
FISTA Fast Iterative Shrinkage-Thresholding Algorithm

PS: we tried different parameters for local solvers. The best parameters are here:
Local Solver RCDM APPROX GD CG L-BFGS BB FISTA

H 40,000 40,000 20 5 10 15 20
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CoCoA vs. CoCoA+ - SDCA as a Local Solver

Number of Communications
101 102 103 104 105

D
ua

lit
y 

G
ap

10-4

10-3

10-2

10-1

100 RCV1, 1e-4

CoCoA    H=106

CoCoA    H=105

CoCoA    H=104

CoCoA+  H=106

CoCoA+  H=105

CoCoA+  H=104

Number of Communications
101 102 103 104 105

D
ua

lit
y 

G
ap

10-4

10-3

10-2

10-1

100 RCV1, 1e-5

CoCoA    H=106

CoCoA    H=105

CoCoA    H=104

CoCoA+  H=106

CoCoA+  H=105

CoCoA+  H=104

Elapsed Time (s)
101 102 103 104

D
ua

lit
y 

G
ap

10-4

10-3

10-2

10-1

100 RCV1, 1e-4

CoCoA    H=106

CoCoA    H=105

CoCoA    H=104

CoCoA+  H=106

CoCoA+  H=105

CoCoA+  H=104

Elapsed Time (s)
101 102 103 104

D
ua

lit
y 

G
ap

10-4

10-3

10-2

10-1

100 RCV1, 1e-5

CoCoA    H=106

CoCoA    H=105

CoCoA    H=104

CoCoA+  H=106

CoCoA+  H=105

CoCoA+  H=104

24 / 128



CoCoA+: Various Solvers
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CoCoA+: Various Solvers
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CoCoA+: L-BFGS
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CoCoA+: L-BFGS
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CoCoA+ with RCDM - Large Scale Problem

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

splice−site.t, Logistic Loss, H=50k, K=4 

Number of Communications

D
u

a
lit

y
 G

a
p

 

 

ν=1/K

ν=1

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

splice−site.t, Logistic Loss, H=50k, K=4 

Elapsed Time [s]

D
u

a
lit

y
 G

a
p

 

 

ν=1/K

ν=1

27 / 128



Effect of σ′
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Scaling up
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How to do it Better?

Props

the subproblem are very similar to original problems ⇒ hope that optimized
solvers will work still fine

we can use duality to write the primal to local dual problem (we can also use
optimized primal solvers – SAGA, SGD, SVRG, . . . )

Cons
Theory shows no advantage when compared with steepest descent

. . . this is just theory, in practise it works much better . . . (actually, this can
be seen as some fully parallel inexact block coordinate descent but with
primal-dual analysis

the main reason is that the algorithm is using ONLY the block diagonal part
of Hessian
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Distributed PCG

Partitioning by samples was done in Yuchen Zhang and Lin Xiao:
Communication-efficient distributed optimization of self-concordant empirical loss,
arXiv:1501.00263, 2015.
We redesign the algorithm to utilize cores better and minimize
communication

part. by samp. part. by feat.

comp.

master

matrix-vector multiplication 1(Rd×d × Rd ) 1(Rd1×d1 × Rd1 )
back solving linear system 1 (Rd ) 1 (Rd1 )

sum of vectors 4 (Rd ) 4 (Rd1 )
inner product of vectors 4 (Rd ) 4 (Rd1 )

nodes

matrix-vector multiplication 1 (Rd×d × Rd ) 1(Rd1×di × Rdi )
back solving linear system 0 1 (Rdi )

sum of vectors 0 4 (Rdi )
inner product of vectors 0 4 (Rdi )

comn.
Broadcast one Rd vector 0
ReduceAll 1x Rd 1x Rn, 3 scalars
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we need the same number of iterations (the ”same algorithm”)
we save almost 50% of communication
we are much faster (we utilize nodes better)
future work: searching for better preconditioning; distributed L-BFGS
implementation
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Joke at the end – what have I learnt in US so far
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