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PODs

Points-of-Dispensing (PODs)

Mass dispensing operations (prophylaxis).

Typically located in public facilities (e.g., schools, parking lots).

POD classes: Open vs Closed, Walk-in vs Drive-Thru.

Distribuition of antibiotics must be completed within a frame
time.

For instance: anthrax emergency requires distribution of
antibiotics to 100% of the target population within 36-48
hours.
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Problems

How many PODs should be open?

Where should PODs be located?

How big should the PODs be?

Scarce Resources! (volunteers, time, etc.)
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Literature Review

POD Management Literature:

Evaluation of dispensing plans using simulation (Lee 2008,
Whitworth 2006, Aaby et al. 2006).
Comparison of dispensing strategies: walk-in PODs, drive-thru
PODs, mail and pharmacy dispensing (Richter and Khan
2009).
Decision support system: Real Opt c©(Lee 2006 and 2009).

Our Contributions:

Solve the location and capacity problem simultaneously.
Consider POD capacity as a decision variable, not an input.
Consider not only geospatial information, but also
demographics.
Provide valuable information by relaxing limiting
assumptions/constraints.
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Decision Support System

Decision Support System (DSS) for emergency response:
Module 1: GIS Model.
Module 2: POD Location and Sta�ng Optimization.
Module 3: What− if Evaluation.
Module 4: Individual POD Simulation.

Planning process for anthrax emergency using the DSS:
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Problem Objective and POD Layout

Optimize POD location and sta�ng.
Objective: minimize the average travel time to PODs plus the
average waiting time within PODs (HtoP:
House-to-Prophylaxis).
POD layout:
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Model Assumptions

Modi�ed version of the p-median problem.

Demand points: census tracts.

Each household represents a vehicle to serve in a POD.

Rectilinear distance is used to compute travel time.

Average waiting time in a POD is computed as a weighted
average of the dispensing areas using M/G/1 queueing
formulations.

Queueing formulations are approximations.

Triage station and other support sta� are not included in the
model.

Number of PODs to open and candidate POD list is obtained
a priori.
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Model Formulation

Let I = {1, 2, ...,M} be the set of census tracts in the area under
study, J = {1, 2, ..., N} be the set of candidate PODs and
K = {1, 2, ..., L} be the set of dispensing station types required
for each POD (in our description, L=2, to cover express and
special-needs). The problem consists of (i) determining the set
S = {1, 2, ..., δ}, which is the list of PODs that should be open
(S ⊆ J); (ii) for each census tract i ∈ I determining the assignment
of i to POD j ∈ S; and (iii) for each POD j ∈ S determining the
number of servers assigned to each dispensing station k ∈ K. The
objective function consists of minimizing the sum of the average
vehicle travel time from all households to the assigned POD (T )
and the average vehicle waiting time across all PODs (W ).
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Model Formulation

Decision Variables:

xij =

{
1 if demand point i is assigned to POD j,

0, otherwise,

yj =

{
1 if candidate POD j is open,

0, otherwise,

ckj : Number of servers in dispensing area k at POD j.

λkj : Mean arrival rate per server of dispensing area k at POD j.
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Model Formulation

Parameters:

δ: Number of PODS to open determined a priori by the decision
makers.

T : Target dispensing time.

mi: Number of households in demand point i.

αi: Compliance factor in demand point i, αi ∈ (0, 1).

P : Total number of households (vehicles) to serve by open PODs,
P =

∑
i∈I αimi.

pki: Fraction of households (vehicles) from demand point i that
require service from dispensing area k, (p2i=1-p1i).
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Model Formulation

Parameters (continued...):

µk: Mean service rate of each server in dispensing area k.

σ2k: Variance of service time of each server in dispensing area k.

cvk: Coe�cient of variation of the service time in dispensing area
k, cvk = σkµk.

ρmaxk : Maximum desired utilization of dispensing area k
(0 ≤ρmaxk ≤ 1).
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Model Formulation

Parameters (continued...):

ck
min
j : Minimum number of servers for dispensing area k to assign

to POD j.

ck
max
j : Maximum number of servers for dispensing area k to assign

to POD j.

Ck: Total number of available servers for dispensing area k.

ν: Factor determining average travel speed as a function of
distance.

dij : Distance from demand point i to POD j.
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Model Formulation

Min
1

P

∑
i∈I

∑
j∈J

αimixij(tij +W j)

 (1)

Subject to:∑
j∈J

xij = 1 ∀i ∈ I (2)

∑
j∈J

yj ≤ δ (3)

xij ≤ yj ∀i ∈ I∀j ∈ J (4)∑
j∈J

ckj ≤ Ck ∀k (5)

yjck
min
j ≤ ckj ≤ yjckmaxj ∀j ∈ J∀k (6)
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Model Formulation (continuación...)

λkj =

∑
j∈J αimipkixij

Tckj
∀j ∈ J∀k (7)

λkj ≤ µkρmaxk ∀j ∈ J∀k (8)

W j = f(λkj , µk, cvk, ckj) ∀j ∈ J (9)

tij =
dij

ν 3
√
dij

∀i ∈ I∀j ∈ J (10)

xij , yj ∈ {0, 1} ∀i ∈ I∀j ∈ J (11)

ckj ∈ Z+ ∀j ∈ J∀k (12)

λkj ∈ R+ ∀j ∈ J∀k (13)
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Average Waiting Time Calculation

We used two equations to approximate the average waiting time:

Assuming that arrivals are evenly distributed (ED) across the
servers:

W j =
∑

k∈K

(
λkj∑
k∈K λkj

)(
1+cv2k

2

) (
λkj
µk

)
µk−λkj

Assuming that arrivals always choose the shortest queue (SQ)

W j =
∑

k∈K

(
λkj∑
k∈K λkj

)(
1+cv2k

2

) (
λkj
µk

)
ckj(µk−λkj)
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Validation of Queueing Formulations

Two problems arise when using queueing formulations (QF) for this
problem:

Arrivals to PODs could be non-stationary.

The system is transient.

We used a simulation model (Sim) of one POD under di�erent
arrival patterns and compared the results with QF.
We assume that the station has 4 servers. The mean arrival rate in
QF (λ) is set to 78.4 vehicles/hr (station utilization = 98%).
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Non-stationary Arrival Patterns

We implemented the following patterns in the simulation model:

In order to determine the mean arrival rate per hour in the Sim
model, the mean arrival rate used in QF (78.4 v/h) could represent
the mean, median, maximum or other quantile of the arrival
pattern (θ).
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QF vs Sim

Average waiting time (min) using QF and Sim.
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Solution Approach

Traditional p-median problem is NP -hard.

Model includes nonlinear equations.

We propose a Genetic Algorithm to solve the problem.

The objective of the GA is to �nd Pareto-optimal solutions of
the tuple (W, t).

Chromosome length: 3δ genes.
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GA Process

The GA is based on a greedy assumption: assign each demand
point to the nearest POD.

The initial population is randomly generated.

Each chromosome is checked for feasibility: Available servers,
target dispensing time and stability conditions.
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Constraint Relaxation

The GA may not �nd feasible solutions depending on
population size and available resources.

It is necessary to have an approach to deal with infeasible
solutions.

We implemented an approach that allows decision makers
relaxing three constraints:

1 Relax the assignment of demand points to nearest POD.
2 Relax capacity constraints.
3 Relax the target dispensing time constraint.
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Relax Assignment to Nearest POD

Algorithm 1 Relax nearest POD assumption

1: Rank the census tracts from the highest to the lowest population.
2: Make λk

current
j = 0, ∀k ∈ K,∀j ∈ J .

3: for i = 1→M do
4: Assign census tract i to the nearest open POD j that satis�es:
λk

current
j + αimipki

ckjT
< µkρ

max
k ,∀k ∈ K

5: Update λk
current
j = λk

current
j + αimipki

ckjT
, ∀k ∈ K

6: end for
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Relax Capacity Constraints

Algorithm 2 Relax capacity constraints

1: Assign each census tract to the nearest open POD.
2: for j = 1→ δ do
3: for k = 1→ L do
4: if

∑
i∈I αimipkixij
ckjµkT

> ρmaxk then

5: ckj =
⌈∑

i∈I αimipkixij
µkTρ

max
k

⌉
6: end if
7: end for
8: end for
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Relax Target Dispensing Time

Algorithm 3 Relax target dispensing time constraint

1: Assign each census tract to the nearest open POD.
2: Assign servers to each POD using the GA.
3: for j = 1→ δ do

4: T adjj = T ×maxk
{∑

i∈I αimipkixij
ckjµkρ

max
k

}
5: end for
6: Return maxj

{
T adjj

}
and T adjj .
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Anthrax Emergency in the Phoenix Metro Area

All census tracts within 25 miles from the Capitol building
must receive prophylaxis within 48 hours.

We compare the proposed co-optimization method with the
sequential method (�rst optimizes location, then capacity).

Input parameters:

Parameter Value Parameter Value

M 695 census tracts µ1 20 vehicles/hr
αi 1, ∀i σ2

1 2400 sec2

p1i Uniform(0.35, 0.45), ∀i cv1 0.2721
p2i 1-p1i, ∀i µ2 80 vehicles/hr
P 1,194,251 vehicles σ2

2 37.5 sec2

T 48 hours cv2 0.1360
N 200 candidate PODs ck

min
j 1 servers, k = 1, 2, ∀j

ν 15 mph ck
max
j 60 servers, k = 1, 2, ∀j
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Relaxing the Capacity Constraints

Using the proposed co-optimization, we obtain two solutions:

Co-opt:MinTime: Solution that minimizes the average HtoP
time with co-optimization.

Co-opt:MinServers: Solution with the minimum total number
of servers amongst the last population of chromosomes.
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Relaxing the Capacity Constraints

Average HtoP time and total number of servers relaxing the
capacity constraints.

(a) Average HtoP time (b) Total number of servers
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Relaxing the Capacity Constraints

Average travel time and average waiting time relaxing the capacity
constraints.

(c) Average travel time (d) Average waiting time
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No Relaxation

POD performance with �xed capacity (780 servers). The empty
markers are infeasible scenarios with relaxation of target dispensing
time.

(e) Average HtoP time (f) Average dispensing time
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Relaxing the Assignment to the Nearest POD

Average travel and waiting time (min) relaxing the assignment to the
nearest POD and the target dispensing time when the total number of
servers is 700. The sequential method did not �nd feasible solutions for
these scenarios.
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Validation with RealOpt c©(Lee 2006 and 2009)

RealOpt �nds the optimal number of PODs to open, their location
and the amount of people required to serve. The input parameters
of RealOpt include the maximum distance to PODs and the
capacity of PODs (throughput).

Case study in the Atlanta metro area.

RealOpt: P=1868444, DSS: P=1890208.

T = 36 hours.

DSS: N=1000, δ=100, p1i = 0.5.

Service time according to Lee et al. (2009).
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Validation with RealOpt c©(Lee 2006 and 2009)

Results:

RealOpt: PODs=53-128, DSS:PODs=68-78
(Co-Opt:MinServers)-(Co-Opt:MinTime), respectively.

RealOpt: T=13-16 min, DSS: T=11.6-13.3 min.

RealOpt: Sta�=2400-2600/12 hr-shift, DSS:
Sta�=2600-2626/shift, (servers*1.5).

RealOpt: W=?, DSS:29.4-35.4 min adjusting λkj to the
62.5%-quantile.
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Results using GIS

(g) Target area (h) PODs around the plume

Color of the POD is related with server utilization and color of the
census tract is related with average HtoP time.
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Conclusions

Emergency response plans require to solve complex problems
in a very short period.

We developed a mathematical model and a solution approach
based on a GA to assist decision makers.

The solution approach allows decision makers relaxing limiting
assumptions/constraints.

The proposed co-optimization method is superior to the
sequential method in large scenarios.

Decision makers can make adjustments and obtain e�ective
solutions quickly.
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Extensions

Design a solution approach that allows decision makers
relaxing several constraints simultaneously.
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Thank you!
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