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Sample-Average Approximation Methods
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THE TALK THAT DID NOT MAKE IT ... !

1. An Overview of Stochastic Approximation and
Sample-Average Approximation Methods

2. Some References:

2.1 A Guide to SAA [Kim et al., 2014]
2.2 Lectures on Stochastic Prgramming: Modeling and

Theory [Shapiro et al., 2009]
2.3 Simulation Optimization: A Concise Overview and

Implementation Guide [Pasupathy and Ghosh, 2013]
2.4 Introduction to Stochastic Search and

Optimization [Spall, 2003]
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2. Canonical Rates in Simulation Optimization

3. Stochastic Approximation

4. Adaptive Sampling Controlled Stochastic Recursion
(ASCSR)

5. The Optimality of ASCSR

6. Sample Numerical Experience

7. Final Remarks
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PROBLEM CONTEXT
SIMULATION OPTIMIZATION

“Solve an optimization problem when only ‘noisy’ observations
of the objective functions/constraints are available.”

minimize f (x)

subject to g(x) ≤ 0, x ∈ D;
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PROBLEM CONTEXT
SIMULATION OPTIMIZATION

“Solve an optimization problem when only ‘noisy’ observations
of the objective functions/constraints are available.”

minimize f (x)

subject to g(x) ≤ 0, x ∈ D;

– f : D → IR (and its derivative) can only be estimated, e.g.,
Fm(x) = m−1

∑m
i=1 Fj(x), where Fj(x) are iid random

variables with mean f (x);

– g : D → IRc can only be estimated using
Gm = m−1

∑m
i=1 Gj(x), where Gj(x) are iid random vectors

with mean g(x);

– unbiased observations of the derivative of f may or may
not be available.
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PROBLEM CONTEXT
STOCHASTIC ROOT FINDING

“Find a zero of a function when only ‘noisy’ observations of the
function are available.”

find x

such that f (x) = 0, x ∈ D;

where

– f : D → IRc can only be estimated using
Fm = m−1

∑m
i=1 Fj(x), where Fj(x) are iid random vectors

with mean f (x).
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“STOCHASTIC COMPLEXITY,” CANONICAL RATES

Examples:

(i) ξ = E[X], ξ̂(m) = m−1
∑m

i=1 Xi where Xi, i = 1, 2, . . . are iid
copies of X. Then, when E[X2] < ∞,

rmse(ξ̂(m), ξ) = O(m−1/2).
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“STOCHASTIC COMPLEXITY,” CANONICAL RATES

Examples:

(i) ξ = E[X], ξ̂(m) = m−1
∑m

i=1 Xi where Xi, i = 1, 2, . . . are iid
copies of X. Then, when E[X2] < ∞,

rmse(ξ̂(m), ξ) = O(m−1/2).

(ii) ξ = g′(x) and ξ̂(m) =
Ym(x + s)− Ym(x − s)

2s
, where

g(·) : IR → IR and Yi(x), i = 1, 2, . . . are iid copies of Y(x)
satisfying E[Y(x)] = g(x). Then, when s = Θ(m−1/6),

rmse(ξ̂(m), ξ) = O(m−1/3).
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“STOCHASTIC COMPLEXITY,” CANONICAL RATES

Examples:

(i) ξ = E[X], ξ̂(m) = m−1
∑m

i=1 Xi where Xi, i = 1, 2, . . . are iid
copies of X. Then, when E[X2] < ∞,

rmse(ξ̂(m), ξ) = O(m−1/2).

(ii) ξ = g′(x) and ξ̂(m) =
Ym(x + s)− Ym(x − s)

2s
, where

g(·) : IR → IR and Yi(x), i = 1, 2, . . . are iid copies of Y(x)
satisfying E[Y(x)] = g(x). Then, when s = Θ(m−1/6),

rmse(ξ̂(m), ξ) = O(m−1/3).

For forward differences, s = Θ(m−1/4),

rmse(ξ̂(m), ξ) = O(m−1/4).
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“STOCHASTIC COMPLEXITY,” CANONICAL RATES

Examples: ... contd.

(iii) Owing to (i), SO and SRFP algorithms “declare victory” if
the error ‖Xk − x∗‖ in their solution estimator Xk decays as
Op(1/

√
Wk), where Wk is the total simulation effort

expended towards obtaining Xk.
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“STOCHASTIC COMPLEXITY,” CANONICAL RATES

But I hasten to add...

– There is a now a well-understood relationship between
smoothness and complexity in convex problems primarily
due to the work of Alexander Shapiro, Arkadi
Nemirovskii, and Yuri Nesterov — see Bubeck (2014) for a
beautiful monograph.

– Is there an analogous theory to be developed based on the
assumed structural property of the sample-paths?
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STOCHASTIC APPROXIMATION (SA)
Robbins and Monro (1951):

Xk+1 = Xk − akH(Xk),

where H(x) estimates h(x) , ∇f (x).
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STOCHASTIC APPROXIMATION (SA)
Robbins and Monro (1951):

Xk+1 = Xk − akH(Xk),

where H(x) estimates h(x) , ∇f (x).
Kiefer-Wolfowitz (1952) analogue for optimization:

Xk+1 = Xk − ak

(
F(Xk + sk)− F(Xk)

sk

)

,

where F(x) estimates f (x).
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STOCHASTIC APPROXIMATION (SA)
Robbins and Monro (1951):

Xk+1 = Xk − akH(Xk),

where H(x) estimates h(x) , ∇f (x).
Kiefer-Wolfowitz (1952) analogue for optimization:

Xk+1 = Xk − ak

(
F(Xk + sk)− F(Xk)

sk

)

,

where F(x) estimates f (x).
Modern Incarnations:

Xk+1 = ΠD[Xk − akB−1
k H(Xk)], (RM);

Xk+1 = ΠD[Xk − akB−1
k ∇̂F(Xk)], (KW);

where D is the feasible space, and ΠD[x] denotes projection.
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STOCHASTIC APPROXIMATION
SA IS UBIQUITOUS

1. SA is probably amongst most used algorithms. (Typing
“Stochastic Approximation” in Google Scholar brings up
about 1.77 million hits!)

2. SA is backed by more than six decades of research.

3. Enormous number of variations of SA have been created
and studied.

4. SA is used in virtually every field where there is a need for
stochastic optimization (Pasupathy (2014)).



Outline Preliminaries Stochastic Approximation SCSR and ASCSR Final Remarks

SA: ASYMPTOTICS

1. Convergence (L2,wp1) guaranteed assuming
C.1 structural conditions on f , g;
C.2

∑
∞

k=1 ak = ∞;
C.3

∑
∞

k=1 a2
k < ∞ for Robbins-Munro and

∑
∞

k=1 a2
k/s2

k < ∞, sk → 0 for Kiefer-Wolfowitz.

(C.3 can be weakened to ak → 0 [Broadie et al., 2011].)

2. The canonical rate of Op(1/
√

k) is achievable for
Robbins-Munro [Fabian, 1968, Polyak and Juditsky, 1992,
Ruppert, 1985, Ruppert, 1991].

3. Deterioration in the Kiefer-Wolfowitz
context [Mokkadem and Pelletier, 2011,
Djeddour et al., 2008].
(Loosely, when ρ/v(sk) is the deterministic bias of the

recursion, the best achievable rate is Θ(1/
√

ks2
k) achieved

when sk is chosen so that v(sk)
−1

√

kc2
k has a nonzero limit.)
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WHY AN ALTERNATIVE PARADIGM?

1. SA’s parameters are still difficult to choose.

– Conditions C.2 and C.3 leave enormous classes feasible
parameter sequences from which to choose. (See Broadie et
al. [Broadie et al., 2011]; Vaidya and
Bhatnagar [Vaidya and Bhatnagar, 2006] for further detail.)

– Nemiroski, Juditsky, Lan and
Shapiro [Nemirovski et al., 2009] demonstrate that there
can be a severe degradation in the convergence rate of
SA-type methods if the parameters inherent to the function
are guessed incorrectly.

2. Shouldn’t advances in nonlinear programming be
exploited more fully?

3. SA does not lend itself to trivial parallelization.



Outline Preliminaries Stochastic Approximation SCSR and ASCSR Final Remarks

SAMPLING CONTROLLED STOCHASTIC RECURSION

(SCSR)
AN ALTERNATIVE TO SA?

Instead of SA, why not just employ your favorite deterministic
recursion (e.g., quasi-Newton, trust region), and replace
unknown quantities in the recursion by Monte Carlo
estimators?
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SAMPLING CONTROLLED STOCHASTIC RECURSION

(SCSR)
AN ALTERNATIVE TO SA?

Instead of SA, why not just employ your favorite deterministic
recursion (e.g., quasi-Newton, trust region), and replace
unknown quantities in the recursion by Monte Carlo
estimators?

– Use a recursion (such as line search) as the underlying
search mechanism;

– Sample judiciously.
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ADAPTIVE SCSR: LINE SEARCH
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ADAPTIVE SCSR: LINE SEARCH
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ADAPTIVE SCSR: LINE SEARCH
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ADAPTIVE SCSR: GRADIENT SEARCH
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ADAPTIVE SCSR: GRADIENT SEARCH
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ADAPTIVE SCSR: GRADIENT SEARCH
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ADAPTIVE SCSR: GRADIENT SEARCH
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SAMPLING-CONTROLLED STOCHASTIC RECURSION

(SCSR)
AN ALTERNATIVE TO SA?

Xk+1 = Xk + Hk(Xk,Mk, k), k = 1, 2, . . . . (SCSR)

xk+1 = xk + hk(xk, k), k = 1, 2, . . . . (DA)
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SAMPLING-CONTROLLED STOCHASTIC RECURSION

(SCSR)
AN ALTERNATIVE TO SA?

Xk+1 = Xk + Hk(Xk,Mk, k), k = 1, 2, . . . . (SCSR)

xk+1 = xk + hk(xk, k), k = 1, 2, . . . . (DA)

1. How should the sample size Mk be chosen (adatively) to
ensure convergence wp1 of the iterates {Xk}?

2. Can the canonical rate be achieved in such “practical”
algorithms?
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SAMPLING-CONTROLLED STOCHASTIC RECURSION

(SCSR)
AN ALTERNATIVE TO SA?

Xk+1 = Xk + Hk(Xk,Mk, k), k = 1, 2, . . . . (SCSR)

xk+1 = xk + hk(xk, k), k = 1, 2, . . . . (DA)

1. Some theory on non-adaptive “optimal sampling rates”
has been developed recently [Pasupathy et al., 2014]. More )
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SAMPLING-CONTROLLED STOCHASTIC RECURSION

(SCSR)
AN ALTERNATIVE TO SA?

Xk+1 = Xk + Hk(Xk,Mk, k), k = 1, 2, . . . . (SCSR)

xk+1 = xk + hk(xk, k), k = 1, 2, . . . . (DA)

1. Some theory on non-adaptive “optimal sampling rates”
has been developed recently [Pasupathy et al., 2014]. More )

2. Virtually all recursions in [Ortega and Rheinboldt, 1970]
and in [Duflo and Wilson, 1997] are subsumed.

3. Trust-region [Conn et al., 2000] and DFO-type
recursions [Conn et al., 2009] are subsumed with effort!

4. Two prominent “realizations” of SCSR-type algorithms
are [Byrd et al., 2012] and [Chang et al., 2013].
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ADATIVE SCSR
THE GUIDING PRINCIPLE FOR OPTIMAL SAMPLING

Write:

Xk+1 = Xk + Hk(Xk,Mk, k), k = 1, 2, . . . . (SCSR)



Outline Preliminaries Stochastic Approximation SCSR and ASCSR Final Remarks

ADATIVE SCSR
THE GUIDING PRINCIPLE FOR OPTIMAL SAMPLING

Write:

Xk+1 = Xk + Hk(Xk,Mk, k), k = 1, 2, . . . . (SCSR)

as

Xk+1 − x∗ = Xk + hk(Xk, k)− x∗
︸ ︷︷ ︸

structural error

+Hk(Xk,Mk, k) − hk(Xk, k)
︸ ︷︷ ︸

sampling error

.
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ADATIVE SCSR
THE GUIDING PRINCIPLE FOR OPTIMAL SAMPLING

Write:

Xk+1 = Xk + Hk(Xk,Mk, k), k = 1, 2, . . . . (SCSR)

as

Xk+1 − x∗ = Xk + hk(Xk, k)− x∗
︸ ︷︷ ︸

structural error

+Hk(Xk,Mk, k) − hk(Xk, k)
︸ ︷︷ ︸

sampling error

.

✛

✚

✘

✙

(i) Sample so that ‖Hk(Xk,Mk)−hk(Xk)‖ ≈ ‖Xk +hk(Xk, k)−x∗‖
in some sense, for optimal evolution;
(ii) Fast structural recursion with (i) ensures efficiency, a fact
that is not immediately evident.
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ADAPTIVE SCSR
SAMPLE SIZE DETERMINATION

How much to sample? Sample until structural error estimate ≈
sampling error estimate?
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ADAPTIVE SCSR
SAMPLE SIZE DETERMINATION

How much to sample? Sample until structural error estimate ≈
sampling error estimate?

Mk|Fk = inf
m≥ν(k)

{mǫŝe(Hk(Xk,m)) < c‖Hk(Xk,m)‖|Fk} ,
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ADAPTIVE SCSR
SAMPLE SIZE DETERMINATION

How much to sample? Sample until structural error estimate ≈
sampling error estimate?

Mk|Fk = inf
m≥ν(k)

{mǫŝe(Hk(Xk,m)) < c‖Hk(Xk,m)‖|Fk} ,

which is usually,

Mk|Fk = inf
m≥ν(k)

{

mǫ σ̂(Xk,m)√
m

< c‖Hk(Xk,m)‖|Fk

}

.

1. {ν(k)} → ∞ is the “escorting sequence,” and ǫ is the
“coercion” constant.

2. The constants c, β > 0.
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ADAPTIVE SCSR
HEURISTIC INTERPRETATION I: BYRD, CHIN, NOCEDAL AND WU (2012)

1. At Xk, d = Hk(Xk,Mk) is a descent direction at Xk if
‖Hk(Xk,m)− hk(Xk)‖2 ≤ c‖H(Xk,m)‖2 for some c ∈ [0, 1).

2. Notice:

E[‖Hk(Xk,m)− hk(Xk)‖2
2|Fk] = V(Hk(Xk,m)|Fk).

The above two points inspires the heuristic:

Mk|Fk = inf
m
{
√

V̂(Hk(Xk)|Fk) ≤ c‖Hk(Xk,m)‖2|Fk}. (1)

(Sample until estimated error in gradient is less than c times
gradient estimate, i.e., until you are confident you have a
descent direction.)
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ADAPTIVE SCSR
HEURISTIC INTERPRETATION II: PASUPATHY AND SCHMEISER (2010)

1. The coefficient of variation of Hk(Xk,m)|Fk can be
estimated as

ĉv (Hk(Xk,m)|Fk) =

√

V̂ (Hk(Xk,m)|Fk)

Hk(Xk,m)
.

2. A “reasonable” heuristic is to then continue sampling until
the absolute value of the estimated coefficient of variation
drops below the fixed threshold c.
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ADAPTIVE SCSR
THEORETICAL RESULTS: STANDING ASSUMPTIONS AND NOTATION

A.1 There exists a unique root x∗ such that h(x∗) = 0.

A.2 There exists ℓ0, ℓ1 such that for all x ∈ D,
ℓ0‖x − x∗‖2

2 ≤ hT(x)h(x) ≥ ℓ1‖x − x∗‖2
2.

A.3 Hk(Xk,m) , h(Xk) +
∑m

j=1 ξkj, where ξk is a
martingale-difference process defined on the probability
space (Ω,F ,Fk,P), and ξkj are iid copies of ξk.
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ADAPTIVE SCSR
THEORETICAL RESULTS: SOME INTUITION ON ITERATION EVOLUTION

Letting Zk = Xk − x∗, we see that

Zk+1 = Zk +
1

β
h(Xk) +

1

β
(H(Xk,Mk)− h(Xk)), and



Outline Preliminaries Stochastic Approximation SCSR and ASCSR Final Remarks

ADAPTIVE SCSR
THEORETICAL RESULTS: SOME INTUITION ON ITERATION EVOLUTION

Letting Zk = Xk − x∗, we see that

Zk+1 = Zk +
1

β
h(Xk) +

1

β
(H(Xk,Mk)− h(Xk)), and

EΩ[Z
2
k+1|Fk] ≤

(

1 − 2ℓ0

β
+

ℓ2
1

β2

)

Z2
k

︸ ︷︷ ︸

structural error

+
1

β2
EΩ[‖H(Xk,Mk)− h(Xk)‖2|Fk]

︸ ︷︷ ︸

sampling error

.
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ADAPTIVE SCSR
THEORETICAL RESULTS: SOME INTUITION ON ITERATION EVOLUTION

Letting Zk = Xk − x∗, we see that

Zk+1 = Zk +
1

β
h(Xk) +

1

β
(H(Xk,Mk)− h(Xk)), and

EΩ[Z
2
k+1|Fk] ≤

(

1 − 2ℓ0

β
+

ℓ2
1

β2

)

Z2
k

︸ ︷︷ ︸

structural error

+
1

β2
EΩ[‖H(Xk,Mk)− h(Xk)‖2|Fk]

︸ ︷︷ ︸

sampling error

.

✗

✖

✔

✕
Recall Guiding Principles:
(i) EΩ[‖H(Xk,Mk)− h(Xk)‖2|Fk] ≈ h2(Xk) for opt. evolution;
(ii) fast structural recursion with (i) for efficiency.
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ADAPTIVE SCSR
THEORETICAL RESULTS: CONSISTENCY

Theorem
Let the sequence {νk} satisfy

∑

k ν
−1
k < ∞. Then the A-SCSR

iterates {Xk} satisfy {Xk}
a.s.→ x∗ as k → ∞.
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ADAPTIVE SCSR
THEORETICAL RESULTS: CONSISTENCY

Theorem
Let the sequence {νk} satisfy

∑

k ν
−1
k < ∞. Then the A-SCSR

iterates {Xk} satisfy {Xk}
a.s.→ x∗ as k → ∞.

Proof Sketch.

EΩ[‖H(Xk,Mk)− h(Xk)‖2|Fk]

≤ 1

νk
EΩ[Mk‖H(Xk,Mk)− h(Xk)‖2|Fk]

≤ 1

νk
EΩ[sup

m
‖
√

m (H(Xk,m)− h(Xk)) ‖2|Fk]

= O(
1

νk
).
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ADAPTIVE SCSR
THEORETICAL RESULTS: QUALITY OF ESTIMATOR

Theorem
Let σ2 = V(Y1(x

∗)) < ∞. Recalling that

Mk|Fk = infm≥ν(k)

{

mǫ σ̂(Xk,m)√
m

< c‖H(Xk,m)‖|Fk

}

, we have as

k → ∞,
E[‖H(Xk+1,Mk+1)‖2|Fk]

E[M−1+2ǫ
k+1 |Fk]

a.s.→ σ2

c2
.

1. Proof relies on the fact that the conditional second moment
of the excess is uniformly bounded away from infinity.

2. The theorem essentially connects the sampling error with
the sequential sample size.
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ADAPTIVE SCSR
THEORETICAL RESULTS: BEHAVIOR OF SAMPLE SIZE

Theorem
Denote η = 2/(1 − 2ǫ). The following hold as k → ∞ and for some
δ > 0.

(i) If x ≤ 4−η/2(σ
2

c2 )
η/2, then

P{hη(Xk)Mk ≤ x|Fk} ≤ exp{−h−δ(Xk)}.

(ii) If x ≥ 4η/2(σ
2

c2 )
η/2, then

P{hη(Xk)Mk ≥ x|Fk} ≤ exp{−h−δ(Xk)}.

(In English, Mk concentrates around h−η(Xk).)
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ADAPTIVE SCSR
THEORETICAL RESULTS: BEHAVIOR OF SAMPLE SIZE



Outline Preliminaries Stochastic Approximation SCSR and ASCSR Final Remarks

ADAPTIVE SCSR
THEORETICAL RESULTS: BEHAVIOR OF SAMPLE SIZE

Theorem
Denote η = 2/(1 − 2ǫ). Then following hold almost surely.

(i) lim infk hη(Xk)E[Mk|Fk] ≥ 4−η/2(σ
2

c2 )
η/2.

(ii) lim supk hη(Xk)E[Mk|Fk] ≤ 4η/2(σ
2

c2 )
η/2.
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ADAPTIVE SCSR
THEORETICAL RESULTS: BEHAVIOR OF SAMPLE SIZE

Theorem
Denote η = 2/(1 − 2ǫ). Then following hold almost surely.

(i) lim infk hη(Xk)E[Mk|Fk] ≥ 4−η/2(σ
2

c2 )
η/2.

(ii) lim supk hη(Xk)E[Mk|Fk] ≤ 4η/2(σ
2

c2 )
η/2.

Theorem
Denote η = 2/(1 − 2ǫ). Then following hold almost surely.

(i) lim infk h−2(Xk)E[M
−1+2ǫ
k |Fk] ≥ 1/4.

(ii) lim supk h−2(Xk)E[M
−1+2ǫ
k |Fk] ≤ 4.

(Loosely, E[M−1+2ǫ
k |Fk] ≈ h2(Xk).)
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ADAPTIVE SCSR
THEORETICAL RESULTS: EFFICIENCY

Theorem
Let Wk =

∑

j Mj denote the total simulation effort after k iterations.
Then,

(i) E[‖Xk − x∗‖2W1−2ǫ
k ] = O(1) as k → ∞;

(ii) If Mk = op(Wk), then W1−2ǫ
k ‖Xk − x∗‖2 p→∞.

1. The result says that the mean squared error
E[‖Xk − x∗‖2] ≈ (E[Wk])

−1, coinciding with the estimation
rate.

2. Sampling should be atleast “geometric,” irrespective of
error!
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ADAPTIVE SCSR
THE ESCORT SEQUENCE AND THE COERCION CONSTANT

Theorem
Let Wk =

∑

j Mj denote the total simulation effort after k iterations.

Then, P{Mk = νk i.o.} = 0.

*
(solution)

(initial guess)

k (escort parameter)

(correction constant)
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NUMERICAL ILLUSTRATION

AluffiPentini Function Rosenbrock Function

g(x) = Eξ[0.25(x1ξ)
4 − 0.5(x1ξ)

2 +
0.1(x1ξ) + 0.5x2

2], ξ ∼ N(1, 0.1)
g(x) = Eξ[100(x2 − (x1 ξ)

2)2 +
(x1 ξ − 1)2], ξ ∼ N(1, 0.1)
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SUMMARY AND FINAL REMARKS

1. Main Insight for Canonical Rates:
“Sample until the standard error estimate (of the object
being estimated within the recursion) is in lock step with
the estimate itself.”
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Some details, however, seem important.

– The escorting sequence {νk} is needed to bring iterates to
the vicinity of the root.

– The coercion constant ǫ is needed, unfortunately, to make
sure that the sampling error drops at the requisite rate.
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SUMMARY AND FINAL REMARKS

1. Main Insight for Canonical Rates:
“Sample until the standard error estimate (of the object
being estimated within the recursion) is in lock step with
the estimate itself.”
Some details, however, seem important.

– The escorting sequence {νk} is needed to bring iterates to
the vicinity of the root.

– The coercion constant ǫ is needed, unfortunately, to make
sure that the sampling error drops at the requisite rate.

2. Generalization to faster recursions will involve a
corresponding higher power of the object estimate.

3. Incorportaion of biased estimators, non-stationary
recursions that include more than just the current point
seems within reach.
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SCSR: HOW MUCH TO SAMPLE?
THEORETICAL GUIDANCE

Polynomial (λ p, p ) Geometric (c ) Exponential(λ t, t )

Sublinear(λ s, s)

Linear(ℓ)

Superlinear(λ q, q )

k−p α+1

k−s

k−s k−s

k−p α

ℓk

c−α k

ℓk

k−p α c−α k

c
−α p k

2

c−α t k

1

pα = 1 + s

ℓ = c−α

p = t
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