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CONSTRAINED NONSMOOTH OPTIMIZATION

Given continuous, nonconvex and nonsmooth functions :

f : Rn → R and ci : Rn → R, i = 1, . . . ,m

Consider:

min
x

f (x) s.t. ci(x) ≤ 0, i = 1, . . . ,m

If f and the ci are (locally) Lipschitz functions, they are
differentiable almost everywhere, but often, at minimizers,
f and the active constraints are not differentiable.

There are almost no published methods for such general problems,
even when n is small.
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UNCONSTRAINED NONSMOOTH OPTIMIZATION
Failure of steepest descent: known for decades. Alternatives:

Bundle methods [Lemaréchal, Kiwiel, 1980s]: collect bundle of historical
gradient information to overcome discontinuity in gradients. Search
direction obtained by solving a QP. Philosophy: if gradient is not defined at a
point, user returns a "subgradient" instead. Guaranteed convergence to
nonsmooth stationary point if f is Lipschitz.
Gradient sampling (GS) [Burke, Lewis, O. 2005, Kiwiel 2006]: sample
gradients randomly near current iterate to overcome discontinuity in
gradients. Search direction obtained by solving a QP, with an Armijo line
search. Philosophy: user does not try to estimate whether f is differentiable
at a given iterate before computing gradients. It will be with probability one,
and this fails only in the limit. Guaranteed convergence to nonsmooth
stationary point if f is Lipschitz.
BFGS [Broyden, Fletcher, Goldfarb, Shanno 1970; Lewis, O. 2013]:
use the BFGS update Hk to the full Hessian approximation, with a weak
Wolfe line search. Philosophy: Hk becomes very ill conditioned because of
discontinuities in gradient, but this is desirable, and leads to automatic
identification of U and V spaces on which f is smooth/nonsmooth. No
theory except in very special cases, but extremely reliable in practice, and
much faster than Bundle and GS.
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I : SEQUENTIAL FIXED PENALTY PARAMETER (SFPP)

Consider the exact nonsmooth penalty function
[Conn et al, 1977, for smooth NLP]

φ(x;µ) = µ f (x) + v(x)

where µ is a penalty parameter and

v(x) = ‖max{c(x), 0}‖1 =
∑

ci(x)>0

ci(x).

Use a method for unconstrained nonsmooth optimization to
repeatedly minimize penalty function, adjusting µ after each
minimization if necessary until feasible.

Well known disadvantages: don’t know how to choose µ or
how accurately to do the unconstrained minimizations.
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II : SQP - GRADIENT SAMPLING (SQP-GS)

A successive quadratic programming method based on the
unconstrained Gradient Sampling method.
[Curtis, O. SIOPT 2013.]

Samples gradients of ci as well as f .

Basic search direction computed as in a penalty-SQP method
[Fletcher 1987], but with additional constraints in the QP
corresponding to the sampled constraint gradients.

Convergence guarantees to "nonsmooth stationary points"
when f and ci are Lipschitz.

Computationally intensive: requires function and constraint
gradient evaluations at n + 1 points per iteration.
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III : BFGS-SQP: A NEW METHOD
A successive quadratic programming method based on the
unconstrained BFGS method.

As in SQP-GS, basic search direction computed as in a
penalty-SQP method [Fletcher 1987], solving the QP

min
d∈Rn,s∈Rm

µ(f (xk) +∇f (xk)
Td) + eTs +

1
2

dTHkd

s.t. c(xk) +∇c(xk)
Td ≤ s, s ≥ 0.

Uses φ(x;µ) as a merit function, but unlike in SQP-GS, uses a
"steering strategy" to update µ.

No convergence theory at all.

Computationally very efficient compared to SQP-GS.

Point of this talk: not to explain the details of the algorithm, but
to evaluate how well it works in practice, compared to other
methods, on some challenging applications.
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SUMMARIZING: COMPARISON OF FOUR METHODS
All codes run with default parameters except with very small
termination tolerances and a maximum number of 500 iterations.

I SFPP (Sequential Fixed Penalty Parameter)
I repeatedly apply BFGS to minimize nonsmooth penalty function
I BFGS is reliable and efficient for nonsmooth unconstrained

problems, although theory is very limited
I disadvantages of sequential penalty methods are well known

I SQP-GS (SQP Gradient Sampling) [Curtis and O. 2012]
I guaranteed convergence for nonsmooth, nonconvex, Lipschitz

constrained optimization
I gradient sampling requires n + 1 gradient evaluations per iteration

I BFGS-SQP [our new method]
I uses a nonsmooth penalty function with a steering strategy
I no theoretical guarantees

I SNOPT [Gill, Murray and Saunders 2002]
I a well regarded code for nonlinearly constrained problems
I not intended for nonsmooth objective or constraints
I only one of the four solvers that is compiled code
I suggested by OMS editor as a benchmark/sanity check
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SPECTRAL RADIUS OPTIMIZATION
The spectral radius of a matrix M ∈ CN×N is

ρ(M) := max{|λ| : λ ∈ σ(M)}
where the spectrum, or set of eigenvalues of M, is

σ(M) = {λ ∈ C : det(M− λI) = 0}.
We say that M is (marginally) stable if ρ(M) ≤ 1.

Consider:
min

X∈RM×P
max{ρ(Ai + BiXCi) : i ∈ {m + 1, . . . ,m + q}}

s.t. ρ(Ai + BiXCi) ≤ 1, i ∈ {1, . . . ,m}
A nonsmooth, nonconvex, non-Lipschitz optimization problem
arising in control design via "static output feedback".
Data matrices Ai, Bi, Ci generated randomly and scaled such that
ρ(Ai) < 1, i = 1, . . . ,m, and hence X = 0 is a feasible initial point.
The gradient of the spectral radius can be computed from the right
and left eigenvectors for the eigenvalue with largest modulus,
assuming this is unique and simple — which it will be with
probability one, failing only in the limit.
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A SPECTRAL RADIUS SAMPLE PROBLEM
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BFGS-SQP finds the best result in this case
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BFGS-SQP finds the best result in this case
— but this is just one problem
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FINAL SPECTRAL CONFIGURATIONS
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These plots are in the complex plane: +’s are eigenvalues

Note the “ties" for the objective max values and constraint activity:
indicates nonsmoothness in objective and constraint in the limit.
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PSEUDOSPECTRAL RADIUS OPTIMIZATION

The pseudospectral radius of a matrix M ∈ CN×N is

ρε(M) := max{|λ| : λ ∈ σ(M + ∆),∆ ∈ CN×N, ‖∆‖2 ≤ ε},

where ρ0(M) = ρ(M). We say that M is (marginally) stable with
respect to the perturbation level ε > 0 if ρε(M) ≤ 1.

For fixed ε, consider

min
X∈RM×P

max{ρε(Ai + BiXCi) : i ∈ {m + 1, . . . ,m + q}}

s.t. ρε(Ai + BiXCi) ≤ 1, i ∈ {1, . . . ,m}

A nonsmooth, nonconvex, Lipschitz optimization problem
arising in control design via "static output feedback".

Computation of ρε: [Burke, Lewis, O. 2003]. Its gradient exists
with probability one, failing only in the limit.
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Again, BFGS-SQP is the best.
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FINAL PSEUDOSPECTRAL CONFIGURATIONS
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Note the “ties" for the objective max values and constraint activity:
indicates nonsmoothness in objective and constraint in the limit.
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BENCHMARKING OPTIMIZATION SOFTWARE

For a comparative benchmark of solvers s ∈ S on problems
p ∈ P , we would like a data representation that:

I depicts the overall comparative performances for all s ∈ S
I is informative and easy to read
I is not sensitive to just a subset of problems (e.g. difficult or large ones)
I does not require or is not sensitive to parameters to generate:

I parameters of the benchmark itself
I parameters of the solvers
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RECEIVER OPERATING CHARACTERISTIC

I ROC or ROC Curve
[Developed by electrical/radar engineers during WWII]

I Popular in psychology, medicine, radiology, biometrics, and now
machine learning, data mining too

I Plots the performance of a binary classifier dependent upon its
discrimination parameter (sensitivity)

I Relates the true positive rate with the false positive rate as a
classifier is tuned

I More area under the curve indicates better performance
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PERFORMANCE PROFILES [DOLAN AND MORÉ 2002]

I Now widely used to benchmark numerical software
(1692 Google Scholar citations)

I More area under a curve is better
I Plots how a solver’s rate of per-problem success on P changes, using a

binary classification of success/failure, as some allowable performance
limit is varied

I Usually the performance metric is running time
I A plot passing thru (α, y) indicates a solver s ∈ S:

I successfully solved 100× y percent of test set P
I provided that s was only allowed at most α-times as much time as

the fastest successful solver per problem
(i.e. taking longer is considered a failure for that value of α)

I α = 1 gives overall "first to answer" performance



NONSMOOTH OPTIMIZATION TEST PROBLEMS BENCHMARKING TOOLS RELATIVE MINIMIZATION PROFILES CONCLUSION

PERFORMANCE PROFILES [DOLAN AND MORÉ 2002]

I Now widely used to benchmark numerical software
(1692 Google Scholar citations)

I More area under a curve is better
I Plots how a solver’s rate of per-problem success on P changes, using a

binary classification of success/failure, as some allowable performance
limit is varied

I Usually the performance metric is running time
I A plot passing thru (α, y) indicates a solver s ∈ S:

I successfully solved 100× y percent of test set P
I provided that s was only allowed at most α-times as much time as

the fastest successful solver per problem
(i.e. taking longer is considered a failure for that value of α)

I α = 1 gives overall "first to answer" performance



NONSMOOTH OPTIMIZATION TEST PROBLEMS BENCHMARKING TOOLS RELATIVE MINIMIZATION PROFILES CONCLUSION

PERFORMANCE PROFILES [DOLAN AND MORÉ 2002]

I Now widely used to benchmark numerical software
(1692 Google Scholar citations)

I More area under a curve is better
I Plots how a solver’s rate of per-problem success on P changes, using a

binary classification of success/failure, as some allowable performance
limit is varied

I Usually the performance metric is running time
I A plot passing thru (α, y) indicates a solver s ∈ S:

I successfully solved 100× y percent of test set P
I provided that s was only allowed at most α-times as much time as

the fastest successful solver per problem
(i.e. taking longer is considered a failure for that value of α)

I α = 1 gives overall "first to answer" performance



NONSMOOTH OPTIMIZATION TEST PROBLEMS BENCHMARKING TOOLS RELATIVE MINIMIZATION PROFILES CONCLUSION

PERFORMANCE PROFILES: PROS AND CONS

Benefits:
I easily understood
I comprehensive, measures failures
I not sensitive to:

I heterogenous test sets (w.r.t. difficulty or dimension)
I perturbations to the performance ratios

I natural fit for convex programs (with or without constraints) —
because then we expect all solvers to find the same answer eventually

Limitations:
I requires a binary success/failure test (e.g. on target values, ‖∇f‖)

I success tolerance is fixed, how should we choose it?
I performance profile curve is potentially sensitive to this choice
I no credit is given for progress made
I what is a good success/failure metric for nonconvex problems?

I doesn’t allow computational budgets
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DATA PROFILES [MORÉ AND WILD 2009]

I Motivated for benchmarking solvers for derivative-free optimization:
I solvers may find low or high accuracy solutions
I there may be constraints on the computational budget
I want to know the relationship between accuracy and cost
I performance profiles don’t depict progress towards solutions

I Similar looking to performance profiles but not the same
I Again, more area under a curve is better
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DATA PROFILES [MORÉ AND WILD 2009]

I Proposed data profiles (right) to be used with performance profiles
(left), using a convergence test, to depict complementary information

I Performance profiles compare solvers relative to each other
I Data profiles are designed to assess short-term behavior:

plots the percentage of problems solved (to a tolerance) dependent
upon on the number of function evaluations.
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WHAT DO WE CARE TO ASSESS FOR A BENCHMARK?

For nonsmooth, nonconvex constrained optimization, we wish to
evaluate four algorithms over two test sets, each of 100 problems
with randomly generated data: one set of Lipschitz pseudospectral
radius optimization problems, the other a set of non-Lipschitz
spectral radius optimization problems, simultaneously in terms of:

I reliability:
I percentage of feasible solutions found over the test set
I constraint violation should be less than some tolerance

(can be zero for inequalities - we use this here)
I performance:

I quality of minimization achieved
I e.g. the lowest objective value encountered on the feasible set

I progress versus computational cost:
I how do the algorithms’ progress compare relative to each other or

some computational budget
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RELATIVE MINIMIZATION PROFILES (RMPS)
Let us first focus only on reliability and performance.

For problem pi ∈ P , consider:

ωi := target objective value
Ω := {ωi} (for all pi ∈ P)

fi(x) := objective function
vi(x) := violation function
{xk}s

i := iterates produced by solver s ∈ S.

The best computed objective value for solver s ∈ S on problem
pi ∈ P , in terms of violation tolerance τv ≥ 0 is:

f s
i (τv) := min { fi(x) s.t. x ∈ {xk}s

i , vi(x) ≤ τv} .

In the absence of any a priori information, set the target value

ωi := min {f s
i (τv) : s ∈ S} .

(as suggested for data profiles).
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RELATIVE MINIMIZATION PROFILES (RMPS)

Consider the relative residual function and its associated indicator
function:

r(ϕ, ϕ̃) :=

{
∞ if ϕ =∞ or ϕ̃ =∞∣∣∣ϕ−ϕ̃ϕ ∣∣∣ otherwise,

1r(ϕ, ϕ̃, γ) :=

{
1 if r(ϕ, ϕ̃) ≤ γ
0 otherwise.

For violation tolerance τv ≥ 0, per-problem target values Ω := {ωi},
and solver s ∈ S, its relative minimization profile curve is defined as:

rs,∞
Ω,τv

(γ) :=
1
|P|

|P|∑
i=1

1r (ωi, f s
i (τv), γ) ,

where γ specifies the max relative difference allowed w.r.t. ωi ∈ Ω.
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Pseudospectral radius test set Spectral radius test set
Lipschitz Not Lipschitz

BFGS-SQP wins SQP-GS wins (but takes a long time)
(despite no theory) (although its theory not relevant)

Note the Inf: no restrictions on running time
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I (γ, y) plots the percentage of problems that a solver encountered:
I feasible iterates which were also
I within a relative difference γ of the best known objective values

I no convergence test: success/failure classification is no longer fixed
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Like an ROC Curve, an RMP shows the effect of tuning the
convergence/success classifier over its entire range:

I γ = εmach (left) - objective value agrees to machine precision, feasible
I γ =∞ (right) - only requiring feasibility with no agreement at all
I tolerance is required only for constraint violation (zero here)
I compact and nicely scaled (log10 representation of entire range)
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BENCHMARKING EFFICIENCY VIA MULTIPLE β-RMPS

For solver s ∈ S on problem pi ∈ P , define:

ts
i (j) := cumulative cost to compute {x0, . . . , xj} ⊆ {xk}s

i

and for some given cost limit t > 0, the set of iterates
encountered within that limit:

X s
i (t) :=

{
{xk}s

i if t =∞{
xj : xj ∈ {xk}s

i and ts
i (j) ≤ t

}
otherwise.

and the redefinition of the best computed objective value now
also subject to cost limit t:

f s
i (τv, t) := min {fi(x) : s.t. x ∈ X s

i (t), vi(x) ≤ τv}
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BENCHMARKING EFFICIENCY VIA MULTIPLE β-RMPS
To assess progress with respect to cost, we will need to define a
computational budget per problem:

B := {bi : bi is max computational cost allowed for problem pi ∈ P}.

We set bi to cost of running BFGS-SQP on pi ∈ P . Alternatives:
I user-supplied budget values
I set bi to average or median cost of solvers s ∈ S on pi ∈ P

Then set target values

ωi := min {f s
i (τv, βbi), s ∈ S}

Then the β-relative minimization profile curve
rs,β
Ω,τv

: R+ → [0, 1] for solver s is defined by:

rs,β
Ω,τv

(γ) :=
1
|P|

|P|∑
i=1

1r (ωi, f s
i (τv, βbi), γ) .



NONSMOOTH OPTIMIZATION TEST PROBLEMS BENCHMARKING TOOLS RELATIVE MINIMIZATION PROFILES CONCLUSION

β-RMPS: β = {1, 5, 10,∞}, bi = TOTAL CPU-TIME OF BFGS-SQP ON pi

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0  1  2  Inf

within 10x rel. diff. to best optimizer found

0  

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

%
 b

e
s
t 

o
p

ti
m

iz
e

r 
w

it
h

in
 r

e
l.
 d

if
f.

 w
it
h

 c
o

n
s
tr

a
in

t 
v
io

l.
 t

o
l.
 =

 0
e

+
0

0

Pseudospectral Radius: 1 * Max Time of BFGS-SQP per Problem

SNOPT
SFPP
BFGS-SQP
SQP-GS

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0  1  2  Inf

within 10x rel. diff. to best optimizer found

0  

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

%
 b

e
s
t 

o
p

ti
m

iz
e

r 
w

it
h

in
 r

e
l.
 d

if
f.

 w
it
h

 c
o

n
s
tr

a
in

t 
v
io

l.
 t

o
l.
 =

 0
e

+
0

0

Pseudospectral Radius: 5 * Max Time of BFGS-SQP per Problem

SNOPT
SFPP
BFGS-SQP
SQP-GS

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0  1  2  Inf

within 10x rel. diff. to best optimizer found

0  

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

%
 b

e
s
t 

o
p

ti
m

iz
e

r 
w

it
h

in
 r

e
l.
 d

if
f.

 w
it
h

 c
o

n
s
tr

a
in

t 
v
io

l.
 t

o
l.
 =

 0
e

+
0

0

Pseudospectral Radius: 10 * Max Time of BFGS-SQP per Problem

SNOPT
SFPP
BFGS-SQP
SQP-GS

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0  1  2  Inf

within 10x rel. diff. to best optimizer found

0  

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

%
 b

e
s
t 

o
p

ti
m

iz
e

r 
w

it
h

in
 r

e
l.
 d

if
f.

 w
it
h

 c
o

n
s
tr

a
in

t 
v
io

l.
 t

o
l.
 =

 0
e

+
0

0

Pseudospectral Radius: Inf * Max Time of BFGS-SQP per Problem

SNOPT
SFPP
BFGS-SQP
SQP-GS

Pseudospectral Radius Test Set (Lipschitz)

I β = 1 (top left): all solvers quit when BFGS-SQP finishes
I β = 5 (top right): all solvers get 5 times as much time as BFGS-SQP
I β = 10 (bottom left): all solvers get 10 times as much time as BFGS-SQP
I β =∞ (bottom right): all solvers get unlimited time (max iters = 500)
I Even with no time limit, SQP-GS is behind BFGS-SQP
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Pseudospectral Radius Test Set (Lipschitz)
I β = 1 (top left): all solvers quit when BFGS-SQP finishes

I β = 5 (top right): all solvers get 5 times as much time as BFGS-SQP
I β = 10 (bottom left): all solvers get 10 times as much time as BFGS-SQP
I β =∞ (bottom right): all solvers get unlimited time (max iters = 500)
I Even with no time limit, SQP-GS is behind BFGS-SQP
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Pseudospectral Radius Test Set (Lipschitz)
I β = 1 (top left): all solvers quit when BFGS-SQP finishes
I β = 5 (top right): all solvers get 5 times as much time as BFGS-SQP

I β = 10 (bottom left): all solvers get 10 times as much time as BFGS-SQP
I β =∞ (bottom right): all solvers get unlimited time (max iters = 500)
I Even with no time limit, SQP-GS is behind BFGS-SQP
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Spectral Radius Test Set (Not Lipschitz)
I β = 1 (top left): all solvers quit when BFGS-SQP finishes
I β = 5 (top right): all solvers get 5 times as much time as BFGS-SQP
I β = 10 (bottom left): all solvers get 10 times as much time as BFGS-SQP
I β =∞ (bottom right): all solvers get unlimited time (max iters = 500)

I SQP-GS pulls ahead when time limit is removed (ironic, as not Lipschitz)
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I β =∞ (bottom right): all solvers get unlimited time (max iters = 500)
I SQP-GS pulls ahead when time limit is removed (ironic, as not Lipschitz)
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β-RMPS IN PRACTICE
Requires:

I history of iterates:
I {fi}, {vi}
I cumulative cost to compute each ith iterate

I possibly obtained with OOP if solver doesn’t provide
I can be estimated via average if not attainable (this talk)

I user-selected violation tolerance and a handful of pertinent β values
I test solvers should be run with tight tolerances to maximize amount of

data collected - β-RMPs simulate different stopping criteria

Optional (can be automatically generated from experimental data):
I target values ωi ∈ Ω

I budget values bi ∈ B
Does not require:

I success/failure criterion

We applied RMPs to nonsmooth, nonconvex, constrained
optimization but they can be used in a much broader context.
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Last slide: another birthday meeting. . .
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CELEBRATING ANDREW CONN’S 70TH BIRTHDAY

Workshop on Nonlinear Optimization Algorithms and
Industrial Applications

June 2 – 4, 2016

The Fields Institute for Research in Mathematical Sciences
Toronto

Organizers:
Michael Overton, NYU

Oleksandr Romanko, IBM Canada
Tamás Terlaky, Lehigh University

Henry Wolkowicz, University of Waterloo

No speaking slots left, but plenty of room in a poster session.
Everyone is welcome to attend. Some funding is available for

students and early career researchers presenting posters.
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