Nested Clustering on a Graph

Dave Morton
Industrial Engineering \& Management Sciences
Northwestern University

Joint work with Gökçe Kahvecioğlu and Mike Nehme

Clustering on a Graph

Optimal attack and reinforcement of a network W.H. Cunningham (1985)

Clustering on a Graph

- Given $G=(V, E)$. Each edge has cost $c_{e}>0, e \in E$
- Delete edges $K \subset E$ to form $G^{\prime}=(V, E \backslash K)$
- Cost: $c(K)=\sum_{e \in K} c_{e}$

Clustering on a Graph

- Given $G=(V, E)$. Each edge has cost $c_{e}>0, e \in E$
- Delete edges $K \subset E$ to form $G^{\prime}=(V, E \backslash K)$
- Cost: $c(K)=\sum_{e \in K} c_{e}$
- Gain: $g(K)=$ number of connected components of $G^{\prime}=(V, E \backslash K)$
- Let $r(K)$ be the rank of $G^{\prime}=(V, E \backslash K)$, where rank is the largest number of edges that can participate in a forest
- Then $g(K)=|V|-r(K)$

Clustering on a Graph

- Model:

$$
\begin{array}{rl}
\max _{K \subset E} & g(K) \\
\text { s.t. } & c(K) \leq b
\end{array}
$$

- If $c(K)=|K|$: Partition graph into as many pieces as possible, subject to cardinality constraint on number of edges we delete

Clustering on a Graph

Clustering on a Graph

Clustering on a Graph

Clustering on a Graph

- A related model:

$$
\max _{K \subset E} g(K)-\lambda c(K)
$$

where $\lambda>0$ is given

- Easier model and important for reasons we'll see shortly
- Cunningham's strength of a graph:

$$
\min _{K \subset E} c(K) /[g(K)-1]
$$

- Bicriteria view: Find Pareto efficient solutions, maximizing $g(K)$ and minimizing $c(K)$
- $g(K)$ is a supermodular function

Maximize a supermodular function subject to a submodular knapsack constraint

A Bicriteria Combinatorial Optimization Problem

- Let S be a finite universal set
- Let $g: 2^{S} \rightarrow \mathbb{R}$ be a supermodular gain function
- Let $c: 2^{S} \rightarrow \mathbb{R}$ be an increasing, submodular cost function
- Model:

$$
\begin{array}{rl}
\max _{K \subset S} & g(K) \tag{1}\\
\text { s.t. } & c(K) \leq b
\end{array}
$$

- Bicriteria view: Find Pareto efficient solutions, maximizing $g(K)$ and minimizing $c(K)$
- Nestedness: Let K_{b} and $K_{b^{\prime}}$ solve model (1) for b and $b^{\prime}, b<b^{\prime}$. These optimal solutions are nested, if $K_{b} \subset K_{b^{\prime}}$

Super- and Submodular Functions

- $g: 2^{S} \rightarrow \mathbb{R}$ is a supermodular function, provided

$$
g(B \cup\{k\})-g(B) \geq g(A \cup\{k\})-g(A)
$$

where $A \subset B \subset S$ and where $k \in S \backslash B$

- $c: 2^{S} \rightarrow \mathbb{R}$ is submodular if $-c(\cdot)$ is supermodular
- A function is modular if it is both super- and submodular

Nested Clustering on a Graph

Geometry and Nestedness under Supermodularity

- Model:

$$
\begin{array}{rl}
\max _{K \subset S} & g(K) \tag{1}\\
\text { s.t. } & c(K) \leq b
\end{array}
$$

- Assume $c(\cdot)$ is submodular and increasing. And $g(\cdot)$ is supermodular
- Let $A, B \subset S$ satisfy $c(A)<c(B)$.

Gain-to-cost ratio: $m: 2^{S} \times 2^{S} \rightarrow \mathbb{R}$ is:

$$
m(A, B)=\frac{g(B)-g(A)}{c(B)-c(A)}
$$

Gain-to-Cost Ratio

$$
m(A, B)=\frac{g(B)-g(A)}{c(B)-c(A)}
$$

Geometry and Nestedness under Supermodularity

Lemma 1 Let $B \subset S$ be a solution of model (1) on the concave envelope of the efficient frontier. Then,

$$
m(A, B)=\max _{K \subset S: c(K) \geq c(B)} m(A, K) \forall A: c(A)<c(B)
$$

and

$$
m(B, C)=\min _{K \subset S: c(K) \leq c(B)} m(K, C) \forall C: c(C)>c(B)
$$

Geometry and Nestedness under Supermodularity

Lemma 1 (in pictures): Let $B \subset S$ be a solution of model (1) on the concave envelope of the efficient frontier. Then the following is impossible; i.e., there is no such K^{*} :

(a)

(b)

Geometry and Nestedness under Supermodularity

Lemma 2 Assume $c(\cdot)$ is submodular and increasing and $g(\cdot)$ is supermodular. Let $K_{1}, K_{2} \subset S$ be solutions on the concave envelope of the efficient frontier of model (1) with $K_{1} \not \subset K_{2}$ and $K_{2} \not \subset K_{1}$. Then

$$
m\left(K_{1} \cap K_{2}, K_{1}\right)=m\left(K_{2}, K_{1} \cup K_{2}\right)=m\left(K_{1} \cap K_{2}, K_{1} \cup K_{2}\right)
$$

Geometry and Nestedness under Supermodularity
Lemma 2 (in pictures): Assume $c(\cdot)$ is submodular and increasing and $g(\cdot)$ is supermodular. Then

$m\left(K_{1} \cap K_{2}, K_{1}\right)=m\left(K_{2}, K_{1} \cup K_{2}\right)=m\left(K_{1} \cap K_{2}, K_{1} \cup K_{2}\right)$

Proof of Lemma 2

- $K_{1} \cap K_{2} \subset K_{2}$. So,

$$
\begin{aligned}
& g\left(K_{1}\right)-g\left(K_{1} \cap K_{2}\right) \leq g\left(K_{1} \cup K_{2}\right)-g\left(K_{2}\right) \\
& c\left(K_{1}\right)-c\left(K_{1} \cap K_{2}\right) \geq c\left(K_{1} \cup K_{2}\right)-c\left(K_{2}\right)
\end{aligned}
$$

- Thus

$$
\begin{equation*}
m\left(K_{1} \cap K_{2}, K_{1}\right) \leq m\left(K_{2}, K_{1} \cup K_{2}\right) \tag{1}
\end{equation*}
$$

- Applying Lemma 1 with $A=K_{1} \cap K_{2}$ and $B=K_{1}$ yields:

$$
\begin{equation*}
m\left(K_{1} \cap K_{2}, K_{1} \cup K_{2}\right) \leq m\left(K_{1} \cap K_{2}, K_{1}\right) \tag{2}
\end{equation*}
$$

- Applying Lemma 1 with with $B=K_{2}$ and $C=K_{1} \cup K_{2}$ yields:

$$
\begin{equation*}
m\left(K_{2}, K_{1} \cup K_{2}\right) \leq m\left(K_{1} \cap K_{2}, K_{1} \cup K_{2}\right) \tag{3}
\end{equation*}
$$

Taken together, inequalities (1)-(3) yield the desired result.

Geometry and Nestedness under Supermodularity

Theorem 3 Assume $c(\cdot)$ is submodular and increasing and $g(\cdot)$ is supermodular. Let $K_{1}, K_{2} \subset S$ be extreme points on the concave envelope of the efficient frontier of model (1). Then either $K_{1} \subset K_{2}$ or $K_{2} \subset K_{1}$. Moreover, if $c\left(K_{1}\right)=c\left(K_{2}\right)$ then $K_{1}=K_{2}$.

Geometry and Nestedness under Supermodularity

$$
\begin{array}{rl}
\max _{K \subset S} & g(K) \\
\text { s.t. } & c(K) \leq b
\end{array}
$$

- Assume $c(\cdot)$ is submodular and increasing and $g(\cdot)$ is supermodular
- Extreme points of concave envelope of efficient frontier are nested
- Obtain those solutions in strongly polynomial time via

$$
\max _{K \subset S} g(K)-\lambda c(K)
$$

Okay. But, how do we solve the graph clustering problem?

$$
\begin{array}{rl}
\max _{K \subset S} & g(K) \\
\text { s.t. } & c(K) \leq b
\end{array}
$$

or

$$
\max _{K \subset S} g(K)-\lambda c(K)
$$

LP for Minimum Spanning Tree

$$
\begin{array}{ll}
\min _{x} & \sum_{e \in E} c_{e} x_{e} \\
\text { s.t. } & \sum_{e \in E} x_{e}=|V|-1 \\
& \sum_{\substack{e=(i, j) \in E \\
i, j \in S}} x_{e} \leq|S|-1, S \subset V, S \neq \emptyset \\
& 0 \leq x_{e} \leq 1, e \in E
\end{array}
$$

LP for Maximum Number of Edges in a Forest

$$
\begin{aligned}
& r(E)=\max _{x} \sum_{\substack{ \\
\text { s.t. }}} x_{e} \\
& \begin{array}{c}
e=(i, j) \in E \\
i, j \in S \\
\\
\\
\end{array} x_{e} \leq|S|-1, S \subset V, S \neq \emptyset \\
& x_{e} \leq 1, e \in E
\end{aligned}
$$

Recall:

- Let $r(K)$ be the rank of $G^{\prime}=(V, E \backslash K)$, where rank is the largest number of edges that can participate in a forest
- Then $g(K)=|V|-r(K)$

$\mathbf{L P}$ for $g(K)$

$$
\begin{aligned}
g(K)=|V|-\max _{x} & \sum_{\substack{e \in E \backslash K}} x_{e} \\
\text { s.t. } & \sum_{\substack{e=(i, j) \in E \backslash K \\
i, j \in S}} x_{e} \leq|S|-1, S \subset V, S \neq \emptyset \\
=|V|+\min _{x} & \sum_{e \in \in \backslash K}-x_{e} \\
\text { s.t. } & \sum_{\substack{e=(i, j) \in E \backslash K \\
i, j \in S}} x_{e} \leq|S|-1, S \subset V, K \neq \emptyset \\
& 0 \leq x_{e} \leq 1, e \in E \backslash K
\end{aligned}
$$

LP for $g(y)$

Let $K=\left\{e: y_{e}=1, e \in E\right\}$

$$
\begin{aligned}
g(y)=|V|+\min _{x} & \sum_{e \in E}-x_{e} \\
\text { s.t. } & \sum_{\substack{e=(i, j) \in E \\
i, j \in S}} x_{e} \leq|S|-1, S \subset V, S \neq \emptyset \\
=|V|+\min _{x} & \sum_{e \in E}\left(y_{e}-1\right) x_{e} \\
\text { s.t. } & \sum_{\substack{e=(i, j) \in E \\
i, j \in S}} x_{e} \leq|S|-1, S \subset V, S \neq \emptyset: y_{S}, e \in E \\
& 0 \leq x_{e} \leq 1, e \in E: \gamma_{e} \\
=|V|+\max _{\pi, \gamma} & \sum_{S \subset V}(|S|-1) \pi_{S}+\sum_{e \in E} \gamma_{e} \\
\text { s.t. } & \sum_{S: i, j \in S} \pi_{S}+\gamma_{e} \leq y_{e}-1, e=(i, j) \in E \\
& \pi_{S} \leq 0, S \subset V, S \neq \emptyset \\
& \gamma_{e} \leq 0, e \in E .
\end{aligned}
$$

MIP for Knapsack-constrained Graph Clustering

A MIP for model (1) is then:

$$
\begin{array}{ll}
\max _{y, \pi, \gamma} & \sum_{S \in V}(|S|-1) \pi_{S}+\sum_{e \in E} \gamma_{e} \\
\text { s.t. } & \sum_{S: i, j \in S} \pi_{S}+\gamma_{e} \leq y_{e}-1, e=(i, j) \in E \\
& \sum_{e \in E} c_{e} y_{e} \leq b \\
& \pi_{S} \leq 0, S \subset V, S \neq \emptyset \\
& \gamma_{e} \leq 0, e \in E \\
& y_{e} \in\{0,1\}, e \in E
\end{array}
$$

Pricing problem for column generation is well-known max-flow problem on an auxiliary graph with $|V|+2$ nodes, just like in MST problem.

No, really. How do we solve the graph clustering problem?

$$
\max _{K \subset S} g(K)-\lambda c(K)
$$

Solving Sequence of Max-Flow Problems Solves Graph Clustering Problem

1. Cunningham (1985) solves $|E|$ max-flow problems on a graph with $|V|+2$ nodes
2. Barahona (1992) solves at most $|V|$ max-flow problems on a graph with $|V|+2$ nodes
3. Baïou, Barahona and Mahjoub (2000) solve at most $|V|$ max-flow problems on a graph with $|k|+2$ nodes at iteration k
4. Preissmann and Sebó (2008) solve $|V|$ max-flow problems on a graph with at most $|k|+2$ nodes at iteration k

Max-flow problems are the same as in the MST problem.

How do we solve the nested graph clustering problem?

$$
\max _{K \subset S} g(K)-\lambda c(K) \quad \forall \lambda>0
$$

Solving Sequence of Parametric Max-Flow Problems Solves Nested Graph Clustering Problem

1. Cunningham (1985)
2. Barahona (1992)
3. Baïou, Barahona, and Mahjoub (2000)
4. Preissmann and Sebó (2008)

- Each algorithm works for fixed $\lambda>0$
- We modify each, solving a parametric max-flow problem in λ
- This yields family of nested (hierarchical) clusters on the concave envelope of the efficient frontier

Parametric Max Flow

- In general, parametric LP and parametric max flow can have exponentially many break points
- But, we have nested property, and hence, at most $|V|$ break points
- Parametric push-relabel algorithm has same complexity as for fixed λ : Gallo, Grigoriadis and Tarjan (1989)
- Ditto for pseudo-flow algorithm (Hochbaum 2008) and others

We have preliminary implementation of Preissmann and Sebó (2008) with parametric max-flow in Python/Gurobi

Relaxed Caveman Graph

Relaxed Caveman Graph: $g(K)=2$

Relaxed Caveman Graph: $g(K)=3$

Relaxed Caveman Graph: $g(K)=20$

Relaxed Caveman Graph: $g(K)=160$

Summary: Nested Clustering on a Graph

- Bicriteria model
- maximize gain: number of clusters
- minimize cost: weight of edges removed
- Gain is supermodular and cost is submodular, increasing
- Pareto efficient solutions on concave envelope of efficient frontier
- computed in polynomial time
- nested
- Proposed algorithm
- combines Preissmann and Sebó (2008) and parametric max flow
- solves nested clustering problem in same complexity as for fixed λ
- Value of, and connections to, MIP formulation?

