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|
The General Problem - Black Box Stochastic Optimization

Want to minimize (unconstrained) f(x) : R” — R. Minimal assumptions:
fe Clorfe C? fisbounded below.
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O’©b

CAUTION
Noise

However, we cannot compute f(x) exactly: only have access to estimators

f(x,w), where w € Q is a random variable beyond optimizer's control.
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The General Problem - Black Box Stochastic Optimization

Want to minimize (unconstrained) f(x) : R” — R. Minimal assumptions:
fe Clorfe C? fisbounded below.

O’©B

CAUTION
Noise

However, we cannot compute f(x) exactly: only have access to estimators
f(x,w), where w € Q is a random variable beyond optimizer's control.
This also implies one cannot compute V£(x) or V2f(x) exactly - only

estimators g(x,w) or H(x,w). Examples to follow immediately.
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|
Gradient Estimators: Supervised Learning/SGD

@ Suppose feature-label pairs (x,y) € X x Y C R" x {—1,1} come
from some unknown distribution on X x Y.
@ Suppose you have a training set of finite size p,
(x4, y1), (x%,¥?), ..., (xP,yP) C X x Y.
Task: Letting ¢(f, x,y) denote a loss incurred by using f(x) to predict y,
minimize £(f) = E(, ) ((f,x,y).
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@ Suppose feature-label pairs (x,y) € X x Y C R" x {—1,1} come
from some unknown distribution on X x Y.
@ Suppose you have a training set of finite size p,
(1), 02 y2) s (XPyP) C X X Y.
Task: Letting ¢(f, x,y) denote a loss incurred by using f(x) to predict y,
minimize £(f) = E(, ) ((f,x,y).
What one does: Let w € RY parameterize a class of functions and
approximate L£(f) by
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Gradient Estimators: Supervised Learning/SGD

@ Suppose feature-label pairs (x,y) € X x Y C R" x {—1,1} come
from some unknown distribution on X x Y.
@ Suppose you have a training set of finite size p,
(1), 02 y2) s (XPyP) C X X Y.
Task: Letting ¢(f, x,y) denote a loss incurred by using f(x) to predict y,
minimize £(f) = E(, ) ((f,x,y).
What one does: Let w € RY parameterize a class of functions and
approximate L£(f) by

“G

1P
fZny

If £(w,x',y") is smooth, |S| < p, then a gradient estimator for VL(f) is

’S‘ZVEWX,)/
ies
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-
Gradient Estimators: Simulation Optimization

Suppose an unconstrained objective f(x) is approximated via a stochastic
simulation f(x).

To estimate the gradient V£ (x) via central difference gradient, choose a
parameter p > 0, and run the simulation in parallel at “compass points”:

Central difference gradient:

Fx + per) — F(x — per)

I

] s =21 . D
-y e

(Kiefer-Wolfowitz)
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-
What Already Exists?

OK, so gradient (and Hessian) approximation aren't abstruse things.
Supposing one has access to these things, what already exists?

[CAUTION]

FALSE

DICHOTOMY
AHEAD

Stochastic optimization (SO) is a huge field. Arguably the two largest
families to solve our problem: stochastic gradient (SG) methods and
sample average approximation (SAA) methods.
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|
Stochastic Gradient (SG) Methods

Suppose access to estimator g(x,w) of Vf(x).

Algorithm 1 Stochastic Gradient Descent (Robbins Monro)

1. Initialize x°.

2: while TRUE do

3 X Xk — g (XK, wi)
4

5

k+— k+1
. end while

o If E,[g(x,w)] = VF(x) for all x in the search space, then converges
in expectation (E[f(x¥) — f*] = O(1/k) in the strongly convex case).

o0
@ Need ay — 0 and Zak = 00.
k=0
@ Practical performance heavily depends on good tuning of {ay}.
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-
Sample Average Approximation (SAA) Methods

General flavor: suppose access to unbiased estimators g(x,w) of Vf(x)
and f(x,w) of f(x).

In the kth iteration of your favorite iterative algorithm for unconstrained
optimization, define a sample size Ny and

1

ka(Xk) = ﬁ Z F(Xk7wi) ka Nk Zg X wl

k=

@ Variants exist that work quite well in practice
o Generally, {N}2°, must be nondecreasing (variance reduction)

@ Strong assumptions necessary for analysis.
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|
Compare & Contrast

(SG) (SAA)

© Accuracy of g(xK,wy) does @ Accuracy of fiy, (x¥), Vp, f(x¥)
not improve with k improves with k

@ Constantly cheap iterations @ lteration complexity grows with Ny

© Particular step size © Works in many algorithmic
restrictions - inflexible frameworks

© Asymptotically optimal rates @ Through adaptive Ny, same

known optimal rates
@ INHERENTLY ASSUMES © INHERENTLY ASSUMES
UNBIASED ESTIMATORS UNBIASED ESTIMATORS

Matt Menickelly (Lehigh) US-Mexico Workshop January 5, 2016 8 /26



|
STORM

Our method: STORM (STochastic Optimization using Random Models).

-
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Derivative-Free Optimization - A Brief Intro

noisyfen(x,y) noisyfen(x.y)
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Derivative-Free Optimization - A Brief Intro

noisyfen(x,y) noisyfen(x,y)

Interpolation model of noisyfen(x,y)

y 5 X -5 -4 -3 -2 —17 [ 1 2 3 4 5
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-
Derivative-Free Optimization - A Brief Intro

Interpolation model of noisyfen(x.y)

The gradient and Hessian of the model centered at x are inexact
approximations of V£(x) and V2f(x) provided the model is

Definition (x-fully linear.)
A function m is a s-fully linear model of f on B(x,A) provided, for

k = (Kef, keg) and Yy € B(x,A),

IVf(y) =Vm(y)| < kegA and
1f(y) —m(y)| < rerA?
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Random Models are Good, Too!

noisyfen(x,y) noisyfen(x.y)
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N
Model-Based DFO-TR Framework

The heart of any DFO-TR method for unconstrained minimization:

Initialize x°, Ay > 0, and some r-fully linear gradient(Hessian)
approximation go(Ho).
While TRUE:

Q s+ argselg?oi%k) mi(s) where mi(s) = f(x¥) + gls + 1sT Hys
f(xk) — f(xk + s*)
my(xK) — my(xk + s*)
@ If successful, x**1 « xk + s* Ayi1 > Ay. Compute new x-fully

linear approximations g1, Hk41 at xk.
k+1

Q If

> 1 > 0, declare a successful iteration.

@ If unsuccessful, x + xk. At least one of A1 < Ay, compute
new k- fully linear approximations gxy1, Hk+1 at xk.

Q k+— k+1.
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-
In Pictures - A Single Iteration and TR Subproblem

noisyfen(x,y)

f(xk) — f(xk + s%)
my(xk) — my(xk + s*)

Success ratio:
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-
In Pictures - A Single Iteration and TR Subproblem

mxy) noisyfen(x,y)

y
R

f(xk) — f(xk + s%)

Success ratio:

0
me(F) —mexk +s7) 17

What if at each k we only have have an estimate f; of f(x*) and f," of
f(x* + x*), generated by our estimator f(x*,wy)?
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A Stochastic DFO-TR Framework

What if at each k we only have have an estimate f; of f(x*) and f," of
f(x* + xT), generated by our estimator f(x*,wy)?
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N
A Stochastic DFO-TR Framework

What if at each k we only have have an estimate f; of f(x*) and f," of
f(x* + xT), generated by our estimator f(x*,wy)?

Initialize x°, Ag > 0, and some random gradient(Hessian) approximation
go(Ho) at x°.

While TRUE:
" i h =f(x¥) +gls+3s"H
Qs argsege(;rkk) mg(s) where my(s) (x*) + g s+ 55" Hys
fi — f;j . .
QIf > 1 > 0, declare a successful iteration.

my(xk) — my(xk + xT)
Q |If successful, xkt1 « xk 4 xt, Ayy1 > Ag. Compute new random
approximations g1, Hii1 at x<+1.

@ If unsuccessful, xk*1 < xk. Atleastoneof Arp1 < Ak, compute
new random approximations gxy1, Hk+1 at xk+1,

Q@ k+ k+1.
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-

What Could Go Wrong - A Peek At Analysis
fo — £

my(xk) — my(xk + xt)

Recall, success determined by >n>0

1{x) ; mix}
mx}

1ix);

(a) Good model; good estimates. (b) Bad model; good estimates.
True successful steps. Unsuccessful steps.

Images on this slide and next from Ruobing Chen’s PhD thesis.
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-
What Could Go Wrong - A Peek At Analysis
fo — £
my(xk) — my(xk + xt)

Recall, success determined by >n>0

£ £
x x
(c) Good model; bad estimates. (d) Bad model; bad estimates.
Unsuccessful steps. False successful steps: f can increase!

Images on this slide and next from Ruobing Chen’s PhD thesis.
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Some Definitions

We just saw that we need good models and good estimates for success.

Moreover, we need to be very wary of FALSE successes!
Good models:
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N
Some Definitions

We just saw that we need good models and good estimates for success.
Moreover, we need to be very wary of FALSE successes!
Good models:

Definition
A sequence of random models { M} is said to be a-probabilistically x-fully

linear with respect to the corresponding sequence {B(X, Ag)} if the
events

Ik = {My is a k-fully linear model of f on B(Xy, Ak)}

satisfy the condition
P(I|FiLy) > o,

where ]:19{1 is the o-algebra generated by Mg, --- , Mi_;.
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Some Definitions

We just saw that we need good models and good estimates for success.
Good estimates:

Definition

The estimates £ and f," are said to be ef-accurate estimates of f(xx) and f(xk + x;),
respectively, for a given d, provided

|fk0 — f(x)] < €rd7 and |f,<+ — f(x + X,f)| < erdi.
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N
Some Definitions

We just saw that we need good models and good estimates for success.
Good estimates:

Definition

The estimates £ and f," are said to be ef-accurate estimates of f(xx) and f(xk + x;),
respectively, for a given d, provided

|fk0 — f(x)] < €rd7 and |f,<+ — f(xk +X,<+)| < erdi.

Definition

A sequence of random estimates {F,?, Ff} is said to be B-probabilistically ef-accurate
with respect to the corresponding sequence { X, Ak, X, } if the events

Jo = {F{, F are ep-accurate estimates of f(x.) and f(xx + x; ), respectively, for Ay}

satisfy the condition
Pl Fel112) = B,

where €f is a fixed constant and }',f/ifﬂ is the o-algebra generated by My, --- , Mi and
Fo, -+, Fre1.

v
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-
The Key Point

© Model accuracy and estimate accuracy are both pegged to Ay.
@ Probabilities «, 3 are constants - noise can be “occasionally
dominating”
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The Key Point

© Model accuracy and estimate accuracy are both pegged to Ay.

@ Probabilities «, 3 are constants - noise can be “occasionally
dominating”

© Analysis follows DFO-TR framework, additionally define r.v.
(OPRES I/f(Xk) + (1 — V)Ai, Ve (0, 1)

Q@ Prove E[®y 1 — &y |FMF] < —CA? <0 (see the 1D pictures from
before)
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The Key Point

Model accuracy and estimate accuracy are both pegged to Ay.
Probabilities «, 8 are constants - noise can be “occasionally
dominating”

Analysis follows DFO-TR framework, additionally define r.v.

d, = I/f(Xk) + (1 — V)Ai, Ve (0, 1)

Prove E[®);1 — ®x|FMF] < —CA2 < 0 (see the 1D pictures from
before)

So, ®y is a supermartingale. A bit more math, conclude from this
that Ay — 0. By enforcing Ax < 12||g¥|| on successful iterations,

© 6 0 o060
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The Key Point
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Analysis follows DFO-TR framework, additionally define r.v.

d, = I/f(Xk) + (1 — V)Ai, Ve (0, 1)

Prove E[®);1 — ®x|FMF] < —CA2 < 0 (see the 1D pictures from
before)

So, ®y is a supermartingale. A bit more math, conclude from this
that Ay — 0. By enforcing Ax < 12||g¥|| on successful iterations,

© 6 0 o060

Theorem (Rough Statement - Chen, M., Scheinberg 2015)

There exist a, f € (0,1) and e > 0 dependent on f and algorithmic
parameters so that if { My} is a-probabilistically k-fully linear and
{F2, Ff} is B-probabilistically eg-accurate, then almost surely

[VF(X)|| = 0.
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A simple experiment - Function computation failures

Consider minimizing
n

Fx) = (x—1)%

i=1

but whenever for a given i, |x; — 1| < ¢, we replace (x; — 1)? with

v [ (-1 wp. 1-0
f’(x)_{ 10000  w.p. o

Use DFO-TR method with quadratic interpolation models.
Interpolation models built on random points within the current TR.
Initial point: x° = 0.
Good models :a > ((1 — o))
Good estimates : B > ((1 — o)")>.

(n+1)(n+2)
2
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A simple experiment - Function computation failures

Comparing theory to practice:

Our theory predicts in red the least allowable value of 1 — o for which our
algorithm will guarantee convergence.

n=2 n=10

s o o
o
a
o
o
o
o

o
>

o

Proportion of random runs solved by STORM
o s
Proportion of random runs solved by STORM

o
~

o

°

o

o

08 082 084 086 088 09 082 094 096 098 1
1-sigma

0.995 0.9955 0.996 0.9965 0.997 0.9975 0.998 0.9985 0.999 0.9995 1
1-sigma
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How do | construct my models?

Interpolation model of noisyfcn(x,y)
= ~

y
R I

e Larson, Billups (2013) - Poised

sets for regression

Random regression model of noisyfcn(x.y)

y
6 A b R A o kN ow & @

o

O o

.

\ .
\
\

@ Shashaani, Hashemi, Pasupathy
(2015) - ASTRO-DF - Poised
sets for interpolation, adaptive

sampling

Matt Menickelly (Lehigh)

US-Mexico Workshop

@ Scheinberg, M. (to appear)
Uniform random sampling
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a-probabilistically fully linear model sequences

Rough statement of a theorem:

Theorem

Let o € (0,1). Let f(x) be an unbiased estimator of f(x) with standard deviation o.
Suppose you have p pairs {(x', f(x"))}?_, where the x' are drawn from a uniform
distribution on B(0, A) and p > max{x’/A* 16(n +2)* max{2n,In(1/(1 — a))}}. Let W
denote the solution to

P
min > "(F(x') = (w, x"))%.
i=1
Then, with probability at least c,

sup |f(x) — (W, x)| < NA2,
x€B(0,A)

where k, ' depend only on Lipschitz constants, n, o, «, and numerical constants.
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Conclusions and Future Work

Conclusions:

@ We proposed a method STORM for unconstrained stochastic
optimization and proved a first-order stationarity result

@ Noise can occasionally be arbitrarily bad (“occasionally dominating™)
Future/Ongoing Work:

© Applying this work to various learning contexts (see: Katya's
presentation)

@ Theoretical convergence rates? Rates for random model methods
explored by Cartis and Scheinberg.
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