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The General Problem - Black Box Stochastic Optimization

Want to minimize (unconstrained) f (x) : Rn → R. Minimal assumptions:
f ∈ C 1 or f ∈ C 2, f is bounded below.

However, we cannot compute f (x) exactly: only have access to estimators
f̃ (x , ω), where ω ∈ Ω is a random variable beyond optimizer’s control.
This also implies one cannot compute ∇f (x) or ∇2f (x) exactly - only
estimators g(x , ω) or H(x , ω). Examples to follow immediately.

Matt Menickelly (Lehigh) US-Mexico Workshop January 5, 2016 2 / 26



The General Problem - Black Box Stochastic Optimization

Want to minimize (unconstrained) f (x) : Rn → R. Minimal assumptions:
f ∈ C 1 or f ∈ C 2, f is bounded below.

However, we cannot compute f (x) exactly: only have access to estimators
f̃ (x , ω), where ω ∈ Ω is a random variable beyond optimizer’s control.

This also implies one cannot compute ∇f (x) or ∇2f (x) exactly - only
estimators g(x , ω) or H(x , ω). Examples to follow immediately.

Matt Menickelly (Lehigh) US-Mexico Workshop January 5, 2016 2 / 26



The General Problem - Black Box Stochastic Optimization

Want to minimize (unconstrained) f (x) : Rn → R. Minimal assumptions:
f ∈ C 1 or f ∈ C 2, f is bounded below.

However, we cannot compute f (x) exactly: only have access to estimators
f̃ (x , ω), where ω ∈ Ω is a random variable beyond optimizer’s control.
This also implies one cannot compute ∇f (x) or ∇2f (x) exactly - only
estimators g(x , ω) or H(x , ω). Examples to follow immediately.

Matt Menickelly (Lehigh) US-Mexico Workshop January 5, 2016 2 / 26



Gradient Estimators: Supervised Learning/SGD

Suppose feature-label pairs (x , y) ∈ X × Y ⊂ Rn × {−1, 1} come
from some unknown distribution on X × Y .
Suppose you have a training set of finite size p,
(x1, y1), (x2, y2), . . . , (xp, yp) ⊂ X × Y .

Task: Letting `(f , x , y) denote a loss incurred by using f (x) to predict y ,
minimize L(f ) = E(x ,y)`(f , x , y).

What one does: Let w ∈ Rd parameterize a class of functions and
approximate L(f ) by

Lp(w) =
1

p

p∑
i=1

`(w , x i , y i ).

If `(w , x i , y i ) is smooth, |S| ≤ p, then a gradient estimator for ∇L(f ) is

g(w) =
1

|S|
∑
i∈S
∇`(w , x i , y i ).
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Gradient Estimators: Simulation Optimization

Suppose an unconstrained objective f (x) is approximated via a stochastic
simulation f̃ (x).
To estimate the gradient ∇f (x) via central difference gradient, choose a
parameter µ > 0, and run the simulation in parallel at “compass points”:

Central difference gradient:

g(x) =
1

2µ

 f̃ (x + µe1)− f̃ (x − µe1)
...

f̃ (x + µen)− f̃ (x − µen)



(Kiefer-Wolfowitz)
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What Already Exists?

OK, so gradient (and Hessian) approximation aren’t abstruse things.
Supposing one has access to these things, what already exists?

Stochastic optimization (SO) is a huge field. Arguably the two largest
families to solve our problem: stochastic gradient (SG) methods and
sample average approximation (SAA) methods.
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Stochastic Gradient (SG) Methods

Suppose access to estimator g(x , ω) of ∇f (x).

Algorithm 1 Stochastic Gradient Descent (Robbins Monro)

1: Initialize x0.
2: while TRUE do
3: xk+1 ← xk − αkg(xk , ωk)
4: k ← k + 1
5: end while

If Eω[g(x , ω)] = ∇f (x) for all x in the search space, then converges
in expectation (E[f (xk)− f ∗] = O(1/k) in the strongly convex case).

Need αk → 0 and
∞∑
k=0

αk =∞.

Practical performance heavily depends on good tuning of {αk}.
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Sample Average Approximation (SAA) Methods

General flavor: suppose access to unbiased estimators g(x , ω) of ∇f (x)
and f̃ (x , ω) of f (x).
In the kth iteration of your favorite iterative algorithm for unconstrained
optimization, define a sample size Nk and

fNk
(xk) =

1

Nk

Nk∑
i=1

f̃ (xk , ωi ) ∇Nk
f (xk) =

1

Nk

Nk∑
i=1

g(xk , ωi )

Variants exist that work quite well in practice

Generally, {Nk}∞k=0 must be nondecreasing (variance reduction)

Strong assumptions necessary for analysis.
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Compare & Contrast

(SG)

1 Accuracy of g(xk , ωk) does
not improve with k

2 Constantly cheap iterations

3 Particular step size
restrictions - inflexible

4 Asymptotically optimal rates
known

5 INHERENTLY ASSUMES
UNBIASED ESTIMATORS

(SAA)

1 Accuracy of fNk
(xk), ∇Nk

f (xk)
improves with k

2 Iteration complexity grows with Nk

3 Works in many algorithmic
frameworks

4 Through adaptive Nk , same
optimal rates

5 INHERENTLY ASSUMES
UNBIASED ESTIMATORS
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STORM

Our method: STORM (STochastic Optimization using Random Models).
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Derivative-Free Optimization - A Brief Intro
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The gradient and Hessian of the model centered at x are inexact
approximations of ∇f (x) and ∇2f (x) provided the model is

Definition (κ-fully linear.)

A function m is a κ-fully linear model of f on B(x ,∆) provided, for
κ = (κef , κeg ) and ∀y ∈ B(x ,∆),

‖∇f (y)−∇m(y)‖ ≤ κeg∆ and
|f (y)−m(y)| ≤ κef ∆2
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Random Models are Good, Too!
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Model-Based DFO-TR Framework

The heart of any DFO-TR method for unconstrained minimization:

Initialize x0, ∆0 > 0, and some κ-fully linear gradient(Hessian)
approximation g0(H0).
While TRUE:

1 s∗ ← arg min
s∈B(0,∆k )

mk(s) where mk(s) = f (xk) + gT
k s + 1

2s
THks

2 If
f (xk)− f (xk + s∗)

mk(xk)−mk(xk + s∗)
> η > 0, declare a successful iteration.

3 If successful, xk+1 ← xk + s∗, ∆k+1 ≥ ∆k . Compute new κ-fully
linear approximations gk+1, Hk+1 at xk .

4 If unsuccessful, xk+1 ← xk . At least one of ∆k+1 < ∆k , compute
new κ- fully linear approximations gk+1, Hk+1 at xk .

5 k ← k + 1.
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In Pictures - A Single Iteration and TR Subproblem
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Success ratio:
f (xk)− f (xk + s∗)

mk(xk)−mk(xk + s∗)
> η > 0

What if at each k we only have have an estimate fk of f (xk) and f +
k of

f (xk + x+), generated by our estimator f (xk , ωk)?
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A Stochastic DFO-TR Framework

What if at each k we only have have an estimate fk of f (xk) and f +
k of

f (xk + x+), generated by our estimator f (xk , ωk)?

Initialize x0, ∆0 > 0, and some random gradient(Hessian) approximation
g0(H0) at x0.
While TRUE:

1 s∗ ← arg min
s∈B(0,∆k )

mk(s) where mk(s) = f (xk) + gT
k s + 1

2s
THks

2 If
fk − f +

k

mk(xk)−mk(xk + x+)
> η > 0 , declare a successful iteration.

3 If successful, xk+1 ← xk + x+, ∆k+1 ≥ ∆k . Compute new random
approximations gk+1, Hk+1 at xk+1.

4 If unsuccessful, xk+1 ← xk . At least one of ∆k+1 < ∆k , compute
new random approximations gk+1, Hk+1 at xk+1.

5 k ← k + 1.
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What Could Go Wrong - A Peek At Analysis

Recall, success determined by
fk − f +

k

mk(xk)−mk(xk + x+)
> η > 0

Images on this slide and next from Ruobing Chen’s PhD thesis.
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Some Definitions

We just saw that we need good models and good estimates for success.
Moreover, we need to be very wary of FALSE successes!
Good models:

Definition

A sequence of random models {Mk} is said to be α-probabilistically κ-fully
linear with respect to the corresponding sequence {B(Xk ,∆k)} if the
events

Ik = {Mk is a κ-fully linear model of f on B(Xk ,∆k)}

satisfy the condition
P(Ik |FM

k−1) ≥ α,

where FM
k−1 is the σ-algebra generated by M0, · · · ,Mk−1.

Matt Menickelly (Lehigh) US-Mexico Workshop January 5, 2016 19 / 26



Some Definitions

We just saw that we need good models and good estimates for success.
Moreover, we need to be very wary of FALSE successes!
Good models:

Definition

A sequence of random models {Mk} is said to be α-probabilistically κ-fully
linear with respect to the corresponding sequence {B(Xk ,∆k)} if the
events

Ik = {Mk is a κ-fully linear model of f on B(Xk ,∆k)}

satisfy the condition
P(Ik |FM

k−1) ≥ α,

where FM
k−1 is the σ-algebra generated by M0, · · · ,Mk−1.

Matt Menickelly (Lehigh) US-Mexico Workshop January 5, 2016 19 / 26



Some Definitions

We just saw that we need good models and good estimates for success.
Good estimates:

Definition

The estimates f 0
k and f +

k are said to be εF -accurate estimates of f (xk) and f (xk + x+
k ),

respectively, for a given δk provided

|f 0
k − f (xk)| ≤ εF δ2

k and |f +
k − f (xk + x+

k )| ≤ εF δ2
k .

Definition

A sequence of random estimates {F 0
k ,F

+
k } is said to be β-probabilistically εF -accurate

with respect to the corresponding sequence {Xk ,∆k ,X
+
k } if the events

Jk = {F 0
k ,F

+
k are εF -accurate estimates of f (xk) and f (xk + x+

k ), respectively, for ∆k}

satisfy the condition
P(Jk |FM·F

k−1/2) ≥ β,

where εF is a fixed constant and FM·F
k−1/2 is the σ-algebra generated by M0, · · · ,Mk and

F0, · · · ,Fk−1.
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The Key Point

1 Model accuracy and estimate accuracy are both pegged to ∆k .
2 Probabilities α, β are constants - noise can be “occasionally

dominating”

3 Analysis follows DFO-TR framework, additionally define r.v.
Φk = νf (Xk) + (1− ν)∆2

k , ν ∈ (0, 1)
4 Prove E[Φk+1 − Φk |FM·F

k−1 ] ≤ −C∆2
k < 0 (see the 1D pictures from

before)
5 So, Φk is a supermartingale. A bit more math, conclude from this

that ∆k → 0. By enforcing ∆k < η2‖gk‖ on successful iterations,

Theorem (Rough Statement - Chen, M., Scheinberg 2015)

There exist α, β ∈ (0, 1) and εF > 0 dependent on f and algorithmic
parameters so that if {Mk} is α-probabilistically κ-fully linear and
{F 0

k ,F
+
k } is β-probabilistically εF -accurate, then almost surely

‖∇f (X k)‖ → 0.
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A simple experiment - Function computation failures

Consider minimizing

f (x) =
n∑

i=1

(xi − 1)2.

but whenever for a given i , |xi − 1| < ε, we replace (xi − 1)2 with

fi (x) =

{
(xi − 1)2 w.p. 1− σ
10000 w.p. σ

Use DFO-TR method with quadratic interpolation models.
Interpolation models built on random points within the current TR.
Initial point: x0 = 0.

Good models :α ≥ ((1− σ)n)
(n+1)(n+2)

2 .
Good estimates : β ≥ ((1− σ)n)2.
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A simple experiment - Function computation failures

Comparing theory to practice:
Our theory predicts in red the least allowable value of 1− σ for which our
algorithm will guarantee convergence.
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How do I construct my models?

Interpolation model of noisyfcn(x,y)
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5

Larson, Billups (2013) - Poised
sets for regression

Shashaani, Hashemi, Pasupathy
(2015) - ASTRO-DF - Poised
sets for interpolation, adaptive
sampling

Random regression model of noisyfcn(x,y)

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

y

-5

-4

-3

-2

-1

0

1

2

3

4

5

Scheinberg, M. (to appear)
Uniform random sampling
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α-probabilistically fully linear model sequences

Rough statement of a theorem:

Theorem

Let α ∈ (0, 1). Let f̃ (x) be an unbiased estimator of f (x) with standard deviation σ.
Suppose you have p pairs {(x i , f̃ (x i ))}pi=1 where the x i are drawn from a uniform
distribution on B(0,∆) and p ≥ max{κ′/∆4, 16(n + 2)2 max{2n, ln(1/(1− α))}}. Let ŵ
denote the solution to

min
w

p∑
i=1

(f̃ (x i )− 〈w , x i 〉)2.

Then, with probability at least α,

sup
x∈B(0,∆)

|f (x)− 〈ŵ , x〉| ≤ κ∆2,

where κ, κ′depend only on Lipschitz constants, n, σ, α, and numerical constants.
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Conclusions and Future Work

Conclusions:

1 We proposed a method STORM for unconstrained stochastic
optimization and proved a first-order stationarity result

2 Noise can occasionally be arbitrarily bad (“occasionally dominating”)

Future/Ongoing Work:

1 Applying this work to various learning contexts (see: Katya’s
presentation)

2 Theoretical convergence rates? Rates for random model methods
explored by Cartis and Scheinberg.
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