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Mixed-Integer PDE-Constrained Optimization (MIPDECO)
PDE-constrained MIP ... u = u(t, x , y , z) ⇒ infinite-dimensional!

t is time index; x , y , z are spatial dimensions
minimize

u,w
F(u,w)

subject to C(u,w) = 0
u ∈ U , and w ∈ Zp (integers),

u(t, x , y , z): PDE states, controls, & design parameters

w discrete or integral variables

MIPDECO Warning

w = w(t, x , y , z) ∈ Z may be
infinite-dimensional integers!

It’s a MIP, Jim,
but not as we know it!

3 / 41



Mixed-Integer PDE-Constrained Optimization (MIPDECO)
PDE-constrained MIP ... u = u(t, x , y , z) ⇒ infinite-dimensional!

t is time index; x , y , z are spatial dimensions
minimize

u,w
F(u,w)

subject to C(u,w) = 0
u ∈ U , and w ∈ Zp (integers),

u(t, x , y , z): PDE states, controls, & design parameters

w discrete or integral variables

MIPDECO Warning

w = w(t, x , y , z) ∈ Z may be
infinite-dimensional integers!

It’s a MIP, Jim,
but not as we know it!

3 / 41



Grand-Challenge Applications of MIPDECO

Topology optimization [Sigmund and Maute, 2013]

Nuclear plant design: select core types &
control flow rates [Committee, 2010]

Well-selection for remediation of
contaminated sites [Ozdogan, 2004]

Design of next-generation solar cells
[Reinke et al., 2011]

Design of wind-farms [Zhang et al., 2013]

Scheduling for disaster recovery:
oil-spills [You and Leyffer, 2010]

& wildfires [Donovan and Rideout, 2003]

Design & control of gas networks,
[De Wolf and Smeers, 2000, Martin et al., 2006, Zavala, 2014]

Design of accelerators ... many more
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Source Inversion as MIP with PDE Constraints

Simple Example: Locate number of sources to match observation ū

minimize
u,w

J =
1

2

∫
Ω

(u − ū)2dΩ least-squares fit

subject to −∆u =
∑
k,l

wkl fkl in Ω Poisson equation∑
k,l

wkl ≤ S and wkl ∈ {0, 1} source budget

with Dirichlet boundary conditions u = 0 on ∂Ω.

E.g. Gaussian source term, σ > 0, centered at (xk , yl)

fkl(x , y) := exp

(
−‖(xk , yl)− (x , y)‖2

σ2

)
,

Motivated by porous-media flow application to determine number
of boreholes, [Ozdogan, 2004, Fipki and Celi, 2008]
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Source Inversion as MIP with PDE Constraints

Consider 2D example with Ω = [0, 1]2 and discretize PDE:

5-point finite-difference stencil; uniform mesh h = 1/N

Denote ui ,j ≈ u(ih, jh) approximation at grid points



minimize
u,w

Jh =
h2

2

N∑
i ,j=0

(ui ,j − ūi ,j)
2

subject to
4ui ,j − ui ,j−1 − ui ,j+1 − ui−1,j − ui+1,j

h2
=

N∑
k,l=1

wkl fkl(ih, jh)

u0,j = uN,j = ui ,0 = ui ,N = 0
N∑

k,l=1

wkl ≤ S and wkl ∈ {0, 1}

⇒ finite-dimensional (convex) MIQP
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Source Inversion as MIP with PDE Constraints

Potential source locations (blue dots) on 16× 16 mesh
Create target ū using red square sources
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Source Inversion as MIP with PDE Constraints
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Mixed-Integer PDE-Constrained Optimization (MIPDECO)


minimize

u,w
F(u,w)

subject to C(u,w) = 0
u ∈ U , and w ∈ Zp (integers),

u(t, x , y , z): PDE states, controls, & design parameters

w discrete or integral variables

Towards a problem characterization

Type of PDE: different classes of PDEs
e.g. elliptic, parabolic, hyperbolic, nonlinear, ...

Class of Integers: binary, general integers, etc

Type of Objective: functional form of objective

Type of Constraints: characterize c/s other than PDE

Discretization: discretization method & CUTEr classification
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Mesh-Independent & Mesh-Dependent Integers

Definition (Mesh-Independent & Mesh-Dependent Integers)

1 The integer variables are mesh-independent, iff number of
integer variables is independent of the mesh.

2 The integer variables are mesh-dependent, iff the number of
integer variables depends on the mesh.

Mesh-Independent

Manageable tree size

Theory possible

Mesh-Dependent

Exploding tree size

Theory???

... also mixed: mesh-dependent in time, t, but not space
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Theoretical Challenges of MIPDECO

Functional Analysis (mesh-dependent integers)

Denis Ridzal: What function space is w(x , y) ∈ {0, 1}?

Consistently approximate w(x , y) ∈ {0, 1} as h→ 0?

Conjecture: {w(x , y) ∈ {0, 1}} 6= L2(Ω)
... e.g. binary support of Cantor set not integrable

Likely need additional regularity assumptions

Coupling between Discretization & Integers

Discretization scheme (e.g. upwinding for wave equation) depends
on direction of flow (integers).

Application: gas network models with flow reversals
. . . open postdoc position at Argonne!
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Computational Challenges of MIPDECO

Approaches for humongous branch-and-bound trees
... e.g. 3D topology optimization with 109 binary variables

Warm-starts for PDE-constrained optimization (nodes)

Guarantees for nonconvex (nonlinear) PDE constraints
... factorable programming approach hopeless for 109 vars!

log

^

31

2

2x x

x

*

+

... f (x1, x2) = x1 log(x2) + x3
2
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MIPDECO: Two Cultures Collide

Observation

PDE-optimization & MIP developed separately
⇒ different assumptions, methodologies, and

computational kernels!

PDE-Optimization Mixed-Integer Programming

Obtain good solutions efficiently Deliver certificate of optimality

Nonlinear optimization:
Newton’s method

Combinatorial optimization:
branch-and-cut

Iterative Krylov solvers Factors & rank-one updates

Run on bleeding-edge HPC Limited HPC developments

Potential for Disaster, or Opportunity for Innovation!
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Source Inversion as MIP with PDE Constraints

Find number and location of sources to match observation ū

minimize
u,w

J =
1

2

∫
Ω

(u(w)− ū)2dΩ least-squares fit

subject to −∆u =
∑
k,l

wkl fkl in Ω Poisson equation∑
k,l

wkl ≤ S and wkl ∈ {0, 1} source budget

MIP with convex quadratic objective on Ω = [0, 1]2

5-point finite-difference stencil; uniform mesh h = 1/N

Denote ui ,j ≈ u(ih, jh) approximation at grid points
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Cool MIPDECO Trick: Eliminating the PDE

Discretized PDE constraint (Poisson equation)

4ui ,j − ui ,j−1 − ui ,j+1 − ui−1,j − ui+1,j

h2
=
∑
k,l

wkl fkl(ih, jh), ∀i , j

⇔ Au =
∑

wkl fkl , where wkl ∈ {0, 1} only appear on RHS!

Elimination of PDE and states u(x , y , z)

Au =
∑
k,l

wkl fkl ⇔ u = A−1

∑
k,l

wkl fkl

 =
∑
k,l

wklA
−1fkl

Solve n2 � 2n PDEs: u(kl) := A−1fkl

Eliminate u =
∑

k,l wklu
(kl) from Source Inversion
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Cool MIPDECO Trick: Eliminating the PDE

Eliminating u =
∑

k,l wklu
(kl) in MINLP gives:

minimize
w

Jh =
h2

2

N∑
i ,j=0

∑
k,l

wklu
(kl)
ij − ūi ,j

2

subject to
N∑

k,l=1

wkl ≤ S and wkl ∈ {0, 1}

Eliminates the states u (N2 variables)

Eliminates the PDE constraint (N2 constraints)

... generalizes to other PDEs (with integer controls on RHS)

Simplified model is quadratic knapsack problem
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Numerical Experience with Source Inversion

Find number and location of sources to match observation ū

minimize
u,w

J =
1

2

∫
Ω

(u(w)− ū)2dΩ least-squares fit

subject to −∆u =
∑
k,l

wkl fkl in Ω Poisson equation∑
k,l

wkl ≤ S and wkl ∈ {0, 1} source budget

MIP with convex quadratic objective

Computational Experiments:

1 Test NLP-plus-rounding heuristic versus MINLP
2 Effect of mesh-dependent vs. mesh-independent integers

Mesh-independent: pick sources from 36 potential locations
Mesh-dependent: all nodes are potential locations

3 Effect of state-elimination trick
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1st Example Mixed-Integer PDE-Constrained Optimization

Potential source locations (blue dots) on 16× 16 mesh
Create target ū using red square sources
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Approach 1: NLP-Solve, Knapsack Rounding, and MIP

Knapsack Rounding

1 Solve continuous relaxation using NLP solver

2 Round largest S locations, wi , to one & set all others to zero

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Error in States ubar(x,y) - u(x,y) & Source Location ×10

-3

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Error in States ubar(x,y) - u(x,y) & Source Location ×10

-3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Knapsack-rounded NLP (left) and MINLP (right)

MINLP solution better: NLP-err = 0.0388 > 0.0307 = MIP-err
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Mesh-Independent Source Inversion: MINLP Solvers

Number of Nodes and CPU time for Increasing Mesh Sizes

Mesh-Size
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Number of Nodes independent of mesh size!

MINLP & Minotaur: filterSQP runs out of memory for N ≥ 32

BonminOA takes roughly 100 iterations ... quadratic objective
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Mesh-Dependent (all) Source Inversion: MINLP Solvers

Number of Nodes and CPU time for Increasing Mesh Sizes
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Number of nodes explodes with mesh size!

OA <BREAK> after 130,000 seconds
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Elimination of States & PDEs: Source Inversion

CPU Time for Increasing Mesh Sizes: Simplified vs. Original Model

Mesh-Size
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Eliminating PDEs is two orders of magnitude faster!
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Elimination of States & PDEs: Source Inversion

CPU Time for Increasing Mesh Sizes: Simplified vs. Original Model

8× 8 16× 16 32× 32

Presolve Time 0.05 1.30 62.51
Simplified Model 0.18 0.50 2.38

Total Simplified 0.23 1.80 64.89

Full PDE Model 2.10 29.43 1013.21

... using NLP solve for PDE (inefficient)

Presolve is cheap ... simplified model solves much faster!
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First Conclusions: Source Inversion

Numerical Results

Solve mesh-independent problems with coarse discretization

Mesh-dependent instances cannot be solved

Outer Approximation (Bon-OA) inefficient for these instances

Trick # 1: elimination of states and PDE constraint

Nonlinear solvers run into storage issues

... not surprising: MIPDECO trees grow like tribbles!
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Control Regularization: Not All Norms Are Equal

Robin Boundary Control [OPTPDE, 2014] & [Tröltzsch, 1984]

minimize
u,w

‖u − ud‖2
L2(Ω) + α ‖w‖2

Lx

subject to ut −∆u = 0 in [0,T ] × Ω

u(0, x) = 0 in Ω and ∂u
∂x (t, 0) = 0 in (0,T )

∂u

∂x
(t, 1) = b(w(t)− u(t, 1)) in (0,T )

w(t) ∈ {−1, 0, 1}

L1 or L2 regularization term for control w(t) ∈ {−1, 0, 1}?

Good Norms for MIPs

MIP’ers prefer polyhedral norms ... promote integrality

Old MIP trick: w2(t) = |w(t)| for w(t) ∈ {−1, 0, 1}
⇒ L1-norm same as L2-norm on binary variables!
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Not All Norms Are Equal

Consider Robin Boundary Control for increasing (x , t)-mesh

CPU for L2 Regularization

Mesh Minotaur B-BB B-Hyb B-OA

8x8 0.04 0.80 2.54 126.81
16x16 6.61 72.21 1305.00 Time
32x32 Time Time Time Time

CPU for L1 Regularization

Mesh Minotaur B-BB B-Hyb B-OA

8x8 0.03 0.48 0.21 0.04
16x16 0.11 3.62 0.66 0.20
32x32 0.18 62.66 3.53 0.74

L1 regularization is equivalent to L2, but faster

Many fewer nodes in tree-searches ⇒ solve up to 128× 128
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Problem 2: Actuator Placement and Operation [Falk Hante]

Goal: Control temperature with actuators

Select sequence of control inputs (actuators)

Choose continuous control (heat/cool) at locations

Match prescribed temperature profile

... “de-mist bathroom mirror with hair-drier”

Potential Actuator Locations l = 1, . . . , L
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Problem 2: Actuator Placement and Operation
Find optimal sequence of actuators, wl(t), and controls, vl(t):

minimize
u,v ,w

‖u(tf , ·)‖2
Ω + 2‖u‖2

T×Ω + 1
500‖v‖

2
T

subject to
∂u

∂t
− κ∆u =

L∑
l=1

vl(t)fl in T × Ω

wl(t) ∈ {0, 1},
L∑

l=1

wl(t) ≤W , ∀t ∈ T

Lwl(t) ≤ vl(t) ≤ Uwl(t), ∀l = 1, . . . , L, ∀t ∈ T

where

fl(x , y) =
1√
2πσ

exp

(
−‖(x , y)− (xl , yl)‖2)

2σ

)
point-source for actuators at (xl , yl) ... movies!
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Topology Design of Cloaking Devices/Scatterers

Design of cloaking device on domain Ω

Cloak subdomain Ω0 (red dashes) by
preventing (complex) wave from
entering domain

Design scatterer in subdomain Ω̂
...w(x , y) ∈ {0, 1}
PDE: 2D Helmholtz (over C) with
Robin boundary conditions

Incident wave is exp(ik0y) for
wavelength k0 = 6π

where i =
√
−1

Romulan Warbird

Scatterer
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Topology Design of Cloaking Devices/Scatterers

Control: w = w(x , y) in Ω̂
States: u = u(x , y) in Ω
Target: u0 = u0(x , y) in Ω0

minimize
u,v ,w

J(u) = 1
2‖u + u0‖2

2,Ω0

subject to −∆u − k2
0 (1 + qw)u = k2

0qwu0 in Ω
∂u
∂n − ik0u = 0 on ∂Ω

w ∈ {0, 1} in Ω̂.

Discretization: finite-differences with l = 3 nodes per scatter
element, w(x , y).
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Strip Rounding Heuristic

Cannot solve on reasonable mesh/domain with any MINLP solver.

Algorithm: Strip Rounding Heuristic
Solve continuous relaxation & initialize i = 1
for i=1,...,N do

Round a strip w(xi , yj) for all j
Resolve relaxation with w(xk , y) fixed for all k ≤ i

end

Round fractional w(x , y) following direction of wave
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Results for Strip Rounding

Scatterer, w(x , y) States u(x , y)

... resolve PDE on finer mesh for fixed controls
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... Solution Not Physical!

Coarse States Resolved States
... not clear we’re getting the correct physics!
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Conclusions

Mixed-Integer PDE-Constrained Optimization (MIPDECO)

Class of challenging problems with important applications

Subsurface flow: oil recovery or environmental remediation
Design and operation of gas-/power-networks

On-going work: Building library of test problems

Classification: mesh-dependent vs. mesh-independent

Elimination of PDE and state variables u(t, x , y , z)

Discretized PDEs ⇒ huge MINLPs ... push solvers to limit

Need new ideas, solvers, software for real applications

Outlook and Extensions

Consider multi-level in space (network) and time

Move toward truly multi-level approach similar to PDEs

... our five-year mission ...
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To boldly go where no optimizer has gone before ...

... to explore strange new PDEs & MIPs!
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