Stochastic Newton and quasi-Newton Methods for Large-Scale Convex and Non-Convex Optimization

Donald Goldfarb

Department of Industrial Engineering and Operations Research
Columbia University
Joint with Robert Gower, Peter Richtárik, Shiqian Ma, Xiao Wang and Wei Liu
U.S.-Mexico Workshop on Optimization and its Applications 2016
Merida, January 4, 2016

Outline

- Newton-like and quasi-Newton methods for convex stochastic optimization problems using limited memory block BFGS updates.
- Quasi-Newton methods for nonconvex stochastic optimization problems using damped limited memory BFGS updates.
- In both cases the objective functions can be expressed as the sum of a huge number of functions of an extremely large number of variables.
- We present numerical results on problems from machine learning.

Related work on L-BFGS for Stochastic Optimization

P1 N.N. Schraudolph, J. Yu and S.Günter. A stochastic quasi-Newton method for online convex optim. Int'l. Conf. AI \& Stat., 2007

P2 A. Bordes, L. Bottou and P. Gallinari. SGD-QN: Careful quasi-Newton stochastic gradient descent. JMLR vol. 10, 2009
P3 R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-Newton method for large-scale optim. arXiv1401.7020v2, 2014

P4 A. Mokhtari and A. Ribeiro. RES: Regularized stochastic BFGS algorithm. IEEE Trans. Signal Process., no. 10, 2014.
P5 A. Mokhtari and A. Ribeiro. Global convergence of online limited memory BFGS. to appear in J. Mach. Learn. Res., 2015.

P6 P. Moritz, R. Nishihara, M.I. Jordan. A linearly-convergent stochastic L-BFGS Algorithm, 2015 arXiv:1508.02087v1
P7 X. Wang, S. Ma, D. Goldfarb and W. Liu. Stochastic quasi-Newton methods for nonconvex stochastic optim. 2015, submitted.
(the first 6 papers are for strongly convex problems, the last one is for nonconvex problems)

Stochastic optimization

- Stochastic optimization

$$
\min f(x)=\mathbb{E}[f(x, \xi)], \quad \xi \text { is random variable }
$$

- Or finite sum (with $f_{i}(x) \equiv f\left(x, \xi_{i}\right)$ for $i=1, \ldots, n$ and very large n)

$$
\min f(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)
$$

- f and ∇f are very expensive to evaluate; e.g., SGD methods randomly choose a random subset $\mathcal{S} \subset[n]$ and evaluate

$$
f_{\mathcal{S}}(x)=\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} f_{i}(x) \quad \text { and } \quad \nabla f_{\mathcal{S}}(x)=\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \nabla f_{i}(x)
$$

- Essentially, only noisy info about $f, \nabla f$ and $\nabla^{2} f$ is available
- Challenge: how to design a method that takes advantage of noisy 2 nd-order information?

Part 1: Using 2nd-order information

- Assumption: $f(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)$ is strongly convex and twice continuously differentiable.
- Choose (compute) a sketching matrix S_{k} (the columns of S_{k} are a set of directions).
- Following Byrd, Hansen, Nocedal and Singer, we do not use differences in noisy gradients to estimate curvature, but rather compute the action of the sub-sampled Hessian on S_{k}. i.e.,
- compute $Y_{k}=\frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} \nabla^{2} f_{i}(x) S_{k}$, where $\mathcal{T} \subset[n]$.
- We choose $\mathcal{T}=\mathcal{S}$

block BFGS

Given $H_{k}=B_{k}^{-1}$, the block BFGS method computes a "least change" update to the current approximation H_{k} to the inverse Hessian matrix $\nabla^{2} f(x)$ at the current point x, by solving

$$
\begin{array}{ll}
\min & \left\|H-H_{k}\right\| \\
\text { s.t., } & H=H^{\top}, \quad H Y_{k}=S_{k} .
\end{array}
$$

This gives the updating formula (analgous to the updates derived by Broyden, Fletcher, Goldfarb and Shanno).

$$
H_{k+1}=\left(I-S_{k}\left[S_{k}^{\top} Y_{k}\right]^{-1} Y_{k}^{\top}\right) H_{k}\left(I-Y_{k}\left[S_{k}^{\top} Y_{k}\right]^{-1} S_{k}^{\top}\right)+S_{k}\left[S_{k}^{\top} Y_{k}\right]^{-1} S_{k}^{\top}
$$

or, by the Sherman-Morrison-Woodbury formula:

$$
B_{k+1}=B_{k}-B_{k} S_{k}\left[S_{k}^{\top} B_{k} S_{k}\right]^{-1} S_{k}^{\top} B_{k}+Y_{k}\left[S_{k}^{\top} Y_{k}\right]^{-1} Y_{k}^{\top}
$$

Limited Memory Block BFGS

After M block BFGS steps starting from H_{k+1-M}, one can express H_{k+1} as

$$
\begin{aligned}
H_{k+1} & =V_{k} H_{k} V_{k}^{T}+S_{k} \Lambda_{k} S_{k}^{T} \\
& =V_{k} V_{k-1} H_{k-1} V_{k-1}^{T} V_{k}+V_{k} S_{k-1} \Lambda_{k-1} S_{k-1}^{T} V_{k}^{T}+S_{k} \Lambda_{k} S_{k}^{T} \\
& \vdots \\
& =V_{k: k+1-M} H_{k+1-M} V_{k: k+1-M}^{T}+\sum_{i=k}^{k+1-M} V_{k: i+1} S_{i} \Lambda_{i} S_{i}^{T} V_{k: i+1}^{T}
\end{aligned}
$$

where

$$
\begin{equation*}
V_{k}=\left(I-S_{k} \Lambda_{k} Y_{k}^{T}\right) \tag{1}
\end{equation*}
$$

and $\Lambda_{k}=\left(S_{k}^{T} Y_{k}\right)^{-1}$ and $V_{k: i}=V_{k} \cdots V_{i}$.

Limited Memory Block BFGS

- Hence, when the number of variables d is large, instead of storing the $d \times d$ matrix H_{k}, we store the previous M block curvature pairs

$$
\left(S_{k+1-M}, Y_{k+1-M}\right), \ldots,\left(S_{k}, Y_{k}\right)
$$

- Then, analogously to the standard L-BFGS method, for any vector $v \in \mathbb{R}^{d}, H_{k} v$ can be computed efficiently using a two-loop block recursion (in $O\left(M p(d+p)+p^{3}\right)$ operations), if all $S_{i} \in \mathbb{R}^{d \times p}$.

Intuition

- Limited memory - least change aspect of BFGS is important
- Each block update acts like a sketching procedure.

Choices for the Sketching Matrix S_{k}

We employ one of the following strategies

- Gaussian: $S_{k} \sim \mathcal{N}(0, I)$ has Gaussian entries sampled i.i.d at each iteration.
- Previous search directions s_{i} delayed: Store the previous L search directions $S_{k}=\left[s_{k+1-L}, \ldots, s_{k}\right]$ then update H_{k} only once every L iterations.
- Self-conditioning: Sample the columns of the Cholesky factors L_{k} of H_{k} (i.e., $L_{k} L_{k}^{T}=H_{k}$) uniformly at random. Fortunately we can maintain and update L_{k} efficiently with limited memory.
The matrix S is a sketching matrix, in the sense that we are sketching the, possibly very large equation $\nabla^{2} f(x) H=I$ to which the solution is the inverse Hessian. Left multiplying by S^{T} compresses/sketches the equation yielding $S^{T} \nabla^{2} f(x) H=S^{T}$.

Stochastic Variance Reduced Gradients

- Stochastic methods converge slowly near the optimum due to the variance of the gradient estimates $\nabla f_{\mathcal{S}}(x)$; hence requiring a decreasing step size.
- We use the control variates approach of Johnson and Zhang (2013) for a SGD method SVRG.
- It uses $\nabla f_{\mathcal{S}}\left(x_{t}\right)-\nabla f_{\mathcal{S}}\left(w_{k}\right)+\nabla f\left(w_{k}\right.$, where w_{k} is a reference point, in place of $\nabla f_{\mathcal{S}}\left(x_{t}\right)$.
- w_{k}, and the full gradient, are computed after each full pass of the data, hence doubling the work of computing stochastic gradients.
- Other SGD variance reduction techniques have been recently proposes including the methods: SAG, SAGA, SDCA, S2GD.

The Basic Algorithm

Algorithm 0.1: Stochastic Variable Metric Learning with SVRG

Input: $H_{-1} \in \mathbb{R}^{d \times d}, w_{0} \in \mathbb{R}^{d}, \eta \in \mathbb{R}_{+}, s=$ subsample size, $q=$ sample action size and m
for $k=0, \ldots$, max_iter do

$$
\mu=\nabla f\left(w_{k}\right)
$$

$$
x_{0}=w_{k}
$$

$$
\text { for } t=0, \ldots, m-1 \text { do }
$$

Sample $\mathcal{S}_{t}, \mathcal{T}_{t} \subseteq[n]$ i.i.d from a distribution \mathcal{S}
Compute the sketching matrix $S_{t} \in \mathbb{R}^{d \times q}$
Compute $\nabla^{2} f_{\mathcal{S}}\left(x_{t}\right) S_{t}$
$H_{t}=$ update_metric $\left(H_{t-1}, S_{t}, \nabla^{2} f_{\mathcal{T}}\left(x_{t}\right) S_{t}\right)$
$d_{t}=-H_{t}\left(\nabla f_{\mathcal{S}}\left(x_{t}\right)-\nabla f_{\mathcal{S}}\left(w_{k}\right)+\mu\right)$
$x_{t+1}=x_{t}+\eta d_{t}$
end
Option I: $w_{k+1}=x_{m}$
Option II: $w_{k+1}=x_{i}, i$ selected uniformly at random from $[m]$;
14 end

Convergence - Assumptions

There exist constants $\lambda, \Lambda \in \mathbb{R}_{+}$such that

- f is λ-strongly convex

$$
\begin{equation*}
f(w) \geq f(x)+\nabla f(x)^{T}(w-x)+\frac{\lambda}{2}\|w-x\|_{2}^{2} \tag{2}
\end{equation*}
$$

- f is Λ-smooth

$$
\begin{equation*}
f(w) \leq f(x)+\nabla f(x)^{T}(w-x)+\frac{\Lambda}{2}\|w-x\|_{2}^{2} \tag{3}
\end{equation*}
$$

- These assumptions imply that

$$
\begin{equation*}
\lambda I \preceq \nabla^{2} f_{\mathcal{S}}(w) \preceq \Lambda I, \quad \text { for all } x \in \mathbb{R}^{d}, \mathcal{S} \subseteq[n] \tag{4}
\end{equation*}
$$

- from which we can prove that there exist constants $\gamma, \Gamma \in \mathbb{R}_{+}$ such that for all k we have

$$
\begin{equation*}
\gamma I \preceq H_{k} \preceq \Gamma I . \tag{5}
\end{equation*}
$$

Linear Convergence

Theorem

Suppose that the Assumptions hold. Let w_{*} be the unique minimizer of $f(w)$. Then in our Algorithm, we have for all $k \geq 0$ that

$$
\mathbb{E} f\left(w_{k}\right)-f\left(w_{*}\right) \leq \rho^{k} \mathbb{E} f\left(w_{0}\right)-f\left(w_{*}\right),
$$

where the convergence rate is given by

$$
\rho=\frac{1 / 2 m \eta+\eta \Gamma^{2} \Lambda(\Lambda-\lambda)}{\gamma \lambda-\eta \Gamma^{2} \Lambda^{2}}<1
$$

assuming we have chosen $\eta<\gamma \lambda /\left(2 \Gamma^{2} \Lambda^{2}\right)$ and that we choose m large enough to satisfy

$$
m \geq \frac{1}{2 \eta\left(\gamma \lambda-\eta \Gamma^{2} \Lambda(2 \Lambda-\lambda)\right)}
$$

which is a positive lower bound given our restriction on η.

gisette-scale $d=5,000, n=6,000$

covtype-libsvm-binary $d=54, n=581,012$

Higgs $d=28, n=11,000,000$

SUSY $d=18, n=3,548,466$

epsilon-normalized $d=2,000, n=400,000$

rcv1-training $d=47,236, n=20,242$

url-combined $d=3,231,961, n=2,396,130$

zero-real-sim-L2 $d=20,958, n=72,309$

Contributions

- New metric learning framework. A block BFGS framework for gradually learning the metric of the underlying function using a sketched form of the subsampled Hessian matrix
- New limited memory block BFGS method. May also be of interest for non-stochastic optimization
- Several sketching matrix possibilities.

Part 2: Nonconvex stochastic optimization

- Most stochastic quasi-Newton optimization methods are for strongly convex problems; this is needed to ensure a curvature condition required for the positive definiteness of $B_{k}\left(H_{k}\right)$
- This is not possible for nonconvex problem
- In deterministic setting, one can do line search to guarantee the curvature condition, and hence the positive definiteness of $B_{k}\left(H_{k}\right)$
- Line search is not possible for stochastic optimization
- To address these issues we develop a stochastic damped L-BFGS method:

Stochastic quasi-Newton (SQN) for nonconvex problem

$$
\min f(x) \equiv \mathbb{E}[F(x, \xi)]
$$

Assumptions
[AS1] f is continuously differentiable; f is bounded below; ∇f is Lipschitz continuous with constant L
[AS2] For any iteration k, we have stochastic gradient satisfies

$$
\begin{aligned}
& \mathbb{E}_{\xi_{k}}\left[\nabla f\left(x_{k}, \xi_{k}\right)\right]=\nabla f\left(x_{k}\right) \\
& \mathbb{E}_{\xi_{k}}\left[\left\|\nabla f\left(x_{k}, \xi_{k}\right)-\nabla f\left(x_{k}\right)\right\|^{2}\right] \leq \sigma^{2}
\end{aligned}
$$

[AS3] Exist positive constants C_{l}, C_{u}, such that

$$
C_{l} I \preceq H_{k} \preceq C_{u} I, \quad \text { for any } k
$$

[AS4] H_{k} depends only on $\xi_{[k-1]}$, i.e., on all the random samples in iterations $1,2, \ldots, k-1$.

How to generate H_{k} to satisfy AS3 and AS4?

- Let $y_{k}=\frac{1}{m} \sum_{i=1}^{m}\left(\nabla f\left(x_{k+1}, \xi_{k, i}\right)-\nabla f\left(x_{k}, \xi_{k, i}\right)\right)$ and define

$$
\bar{y}_{k}=\theta_{k} y_{k}+\left(1-\theta_{k}\right) B_{k} s_{k},
$$

where θ_{k} is calculated through:

$$
\theta_{k}= \begin{cases}1, & \text { if } s_{k}^{\top} y_{k} \geq 0.25 s_{k}^{\top} B_{k} s_{k}, \\ \left(0.75 s_{k}^{\top} B_{k} s_{k}\right) /\left(s_{k}^{\top} B_{k} s_{k}-s_{k}^{\top} y_{k}\right), & \text { if } s_{k}^{\top} y_{k}<0.25 s_{k}^{\top} B_{k} s_{k} .\end{cases}
$$

- Update H_{k} : (replace y_{k} by \bar{y}_{k})

$$
H_{k+1}=\left(I-\rho_{k} s_{k} \bar{y}_{k}^{\top}\right) H_{k}\left(I-\rho_{k} \bar{y}_{k} s_{k}^{\top}\right)+\rho_{k} s_{k} s_{k}^{\top}
$$

where $\rho_{k}=1 / s_{k}^{\top} \bar{y}_{k}$

- Implement in a limited memory version

Numerical Experiments

- A nonconvex SVM problem with a sigmoid loss function

$$
\min _{x \in \mathbb{R}^{n}} f(x):=\mathbb{E}_{u, v}[1-\tanh (v\langle x, u\rangle)]+\lambda\|x\|_{2}^{2}
$$

- $u \in \mathbb{R}^{n}$: feature vector; $v \in\{-1,1\}$: corresponding label.
- $\lambda=10^{-4}$ in our experiment
- RCV1 dataset: Reuters newswire articles from 1996-1997.
- A simplified version: 9625 articles classified into four categories "C15", "ECAT", "GCAT" and "MCAT", each with 2022, 2064, 2901 and 2638 articles, respectively.
- Binary classification: predict if an article is in "MCAT" and "ECAT".
- Label: 1 if a given word in "MCAT" or "ECAT", -1 otherwise.
- 60% of the articles - training data; 40% - testing data.
- Problem dimension: 29992 (number of distinct words)

Figure: Comparison of SdLBFGS variants with different memory size on RCV1 dataset. The step size of SdLBFGS is $\alpha_{k}=10 / k$ and the batch size is $m=100$.

Figure: Comparison of SGD and SdLBFGS with different batch size on RCV1 dataset. For SdLBFGS the step size is $\alpha_{k}=10 / k$ and the memory size is $p=10$. For SGD the step size is $\alpha_{k}=20 / k$.

Figure: Comparison of correct classification percentage by SGD and SdLBFGS with different batch size on RCV1 dataset. For SdLBFGS the step size is $\alpha_{k}=10 / k$ and the memory size is $p=10$. For SGD the step size is $\alpha_{k}=20 / k$.

Figure: The average number of damped steps over 10 runs of SdLBFGS. Here the maximum number of iterations is set as 1000 and step size is 10/k.

Contributions

- Our contributions:
- A general framework of SQN for nonconvex problem
- Convergence guarantee
- Complexity analysis for random output and constant step size
- Stochastic damped L-BFGS falls into the framework
- Future work for nonconvex problems:
- develop a damped limited memory block BFGS method
- Variance reduction techniques?

