
Stochastic Newton and quasi-Newton Methods for
Large-Scale Convex and Non-Convex Optimization

Donald Goldfarb

Department of Industrial Engineering and Operations Research
Columbia University

Joint with Robert Gower, Peter Richtárik, Shiqian Ma, Xiao Wang and Wei Liu

U.S.-Mexico Workshop on Optimization and its Applications
2016

Merida, January 4, 2016

1 / 31

Outline

Newton-like and quasi-Newton methods for convex stochastic
optimization problems using limited memory block BFGS
updates.

Quasi-Newton methods for nonconvex stochastic optimization
problems using damped limited memory BFGS updates.

In both cases the objective functions can be expressed as the
sum of a huge number of functions of an extremely large
number of variables.

We present numerical results on problems from machine
learning.

2 / 31

Related work on L-BFGS for Stochastic Optimization

P1 N.N. Schraudolph, J. Yu and S.Günter. A stochastic quasi-Newton
method for online convex optim. Int’l. Conf. AI & Stat., 2007

P2 A. Bordes, L. Bottou and P. Gallinari. SGD-QN: Careful
quasi-Newton stochastic gradient descent. JMLR vol. 10, 2009

P3 R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer. A stochastic
quasi-Newton method for large-scale optim. arXiv1401.7020v2,
2014

P4 A. Mokhtari and A. Ribeiro. RES: Regularized stochastic BFGS
algorithm. IEEE Trans. Signal Process., no. 10, 2014.

P5 A. Mokhtari and A. Ribeiro. Global convergence of online limited
memory BFGS. to appear in J. Mach. Learn. Res., 2015.

P6 P. Moritz, R. Nishihara, M.I. Jordan. A linearly-convergent
stochastic L-BFGS Algorithm, 2015 arXiv:1508.02087v1

P7 X. Wang, S. Ma, D. Goldfarb and W. Liu. Stochastic quasi-Newton
methods for nonconvex stochastic optim. 2015, submitted.

(the first 6 papers are for strongly convex problems, the last one is
for nonconvex problems) 3 / 31

Stochastic optimization

Stochastic optimization

min f (x) = E[f (x , ξ)], ξ is random variable

Or finite sum (with fi (x) ≡ f (x , ξi) for i = 1, . . . , n and very
large n)

min f (x) =
1

n

n∑
i=1

fi (x)

f and ∇f are very expensive to evaluate; e.g., SGD methods
randomly choose a random subset S ⊂ [n] and evaluate

fS(x) =
1

|S|
∑
i∈S

fi (x) and ∇fS(x) =
1

|S|
∑
i∈S
∇fi (x)

Essentially, only noisy info about f , ∇f and ∇2f is available

Challenge: how to design a method that takes advantage of
noisy 2nd-order information?

4 / 31

Part 1: Using 2nd-order information

Assumption: f (x) = 1
n

∑n
i=1 fi (x) is strongly convex and twice

continuously differentiable.

Choose (compute) a sketching matrix Sk (the columns of Sk
are a set of directions).

Following Byrd, Hansen, Nocedal and Singer, we do not use
differences in noisy gradients to estimate curvature, but rather
compute the action of the sub-sampled Hessian on Sk . i.e.,

compute Yk = 1
|T |

∑
i∈T ∇2fi (x)Sk , where T ⊂ [n].

We choose T = S

5 / 31

block BFGS

Given Hk = B−1
k , the block BFGS method computes a ”least

change” update to the current approximation Hk to the inverse
Hessian matrix ∇2f (x) at the current point x , by solving

min ‖H − Hk‖
s.t., H = H>, HYk = Sk .

This gives the updating formula (analgous to the updates derived
by Broyden, Fletcher, Goldfarb and Shanno).

Hk+1 = (I−Sk [S>k Yk]−1Y>k)Hk(I−Yk [S>k Yk]−1S>k)+Sk [S>k Yk]−1S>k

or, by the Sherman-Morrison-Woodbury formula:

Bk+1 = Bk − BkSk [S>k BkSk]−1S>k Bk + Yk [S>k Yk]−1Y>k

6 / 31

Limited Memory Block BFGS

After M block BFGS steps starting from Hk+1−M , one can express
Hk+1 as

Hk+1 = VkHkV
T
k + SkΛkS

T
k

= VkVk−1Hk−1V
T
k−1Vk + VkSk−1Λk−1S

T
k−1V

T
k + SkΛkS

T
k

...

= Vk:k+1−MHk+1−MV T
k:k+1−M +

k+1−M∑
i=k

Vk:i+1SiΛiS
T
i V T

k:i+1,

where
Vk = (I − SkΛkY

T
k) (1)

and Λk = (ST
k Yk)−1 and Vk:i = Vk · · ·Vi .

7 / 31

Limited Memory Block BFGS

Hence, when the number of variables d is large, instead of
storing the d × d matrix Hk , we store the previous M block
curvature pairs

(Sk+1−M ,Yk+1−M) , . . . , (Sk ,Yk) .

Then, analogously to the standard L-BFGS method, for any
vector v ∈ Rd , Hkv can be computed efficiently using a
two-loop block recursion (in O(Mp(d + p) + p3) operations),
if all Si ∈ Rd×p.

Intuition

Limited memory - least change aspect of BFGS is important

Each block update acts like a sketching procedure.

8 / 31

Choices for the Sketching Matrix Sk

We employ one of the following strategies

Gaussian: Sk ∼ N (0, I) has Gaussian entries sampled i.i.d at
each iteration.

Previous search directions si delayed: Store the previous L
search directions Sk = [sk+1−L, . . . , sk] then update Hk only
once every L iterations.

Self-conditioning: Sample the columns of the Cholesky factors
Lk of Hk (i.e., LkL

T
k = Hk) uniformly at random. Fortunately

we can maintain and update Lk efficiently with limited
memory.

The matrix S is a sketching matrix, in the sense that we are
sketching the, possibly very large equation ∇2f (x)H = I to which
the solution is the inverse Hessian. Left multiplying by ST

compresses/sketches the equation yielding ST∇2f (x)H = ST .

9 / 31

Stochastic Variance Reduced Gradients

Stochastic methods converge slowly near the optimum due to
the variance of the gradient estimates ∇fS(x); hence requiring
a decreasing step size.

We use the control variates approach of Johnson and Zhang
(2013) for a SGD method SVRG.

It uses ∇fS(xt)−∇fS(wk) +∇f (wk , where wk is a reference
point, in place of ∇fS(xt) .

wk , and the full gradient, are computed after each full pass of
the data, hence doubling the work of computing stochastic
gradients.

Other SGD variance reduction techniques have been recently
proposes including the methods: SAG, SAGA, SDCA, S2GD.

10 / 31

The Basic Algorithm

11 / 31

Algorithm 0.1: Stochastic Variable Metric Learning with SVRG

Input: H−1 ∈ Rd×d , w0 ∈ Rd , η ∈ R+, s = subsample size, q = sample
action size and m

1 for k = 0, . . . , max iter do
2 µ = ∇f (wk)
3 x0 = wk

4 for t = 0, . . . ,m − 1 do
5 Sample St , Tt ⊆ [n] i.i.d from a distribution S
6 Compute the sketching matrix St ∈ Rd×q

7 Compute ∇2fS(xt)St
8 Ht =update metric(Ht−1,St ,∇2fT (xt)St)
9 dt = −Ht (∇fS(xt)−∇fS(wk) + µ)

10 xt+1 = xt + ηdt
11 end
12 Option I: wk+1 = xm
13 Option II: wk+1 = xi , i selected uniformly at random from [m];

14 end

11 / 31

Convergence - Assumptions

There exist constants λ,Λ ∈ R+ such that

f is λ–strongly convex

f (w) ≥ f (x) +∇f (x)T (w − x) +
λ

2
‖w − x‖2

2 , (2)

f is Λ–smooth

f (w) ≤ f (x) +∇f (x)T (w − x) +
Λ

2
‖w − x‖2

2 , (3)

These assumptions imply that

λI � ∇2fS(w) � ΛI , for all x ∈ Rd ,S ⊆ [n], (4)

from which we can prove that there exist constants γ, Γ ∈ R+

such that for all k we have

γI � Hk � ΓI . (5)

12 / 31

Linear Convergence

Theorem

Suppose that the Assumptions hold. Let w∗ be the unique
minimizer of f (w). Then in our Algorithm, we have for all k ≥ 0
that

Ef (wk)− f (w∗) ≤ ρkEf (w0)− f (w∗),

where the convergence rate is given by

ρ =
1/2mη + ηΓ2Λ(Λ− λ)

γλ− ηΓ2Λ2
< 1,

assuming we have chosen η < γλ/(2Γ2Λ2) and that we choose m
large enough to satisfy

m ≥ 1

2η (γλ− ηΓ2Λ(2Λ− λ))
,

which is a positive lower bound given our restriction on η.
13 / 31

gisette-scale d = 5, 000, n = 6, 000

0 5 10 15 20 25 30

0.01

0.175

0.34

0.505

0.67
0.835

1

time (s)

e
rr

o
r

5 10 15 20 25 30

datapasses

LML_gauss_18_M_5

LMLpdd_18_M_5

LMLF_18_M_5

MNJ_b_78_bH_330

SVRG

Figure: limited-gisette

14 / 31

covtype-libsvm-binary d = 54, n = 581, 012

0 10 20 30 40

0.748

0.79

0.832

0.874

0.916

0.958

1

time (s)

e
rr

o
r

2 4 6 8 10

datapasses

LML_gauss_8_M_5

LMLpdd_8_M_5

LMLF_8_M_5

MNJ_b_763_bH_3815

SVRG

Figure: limited-covtype-libsvm-binary

15 / 31

Higgs d = 28, n = 11, 000, 000

0 50 100 150 200 250

0.933

0.947

0.96

0.973

0.987

1

time (s)

e
rr

o
r

1 1.2 1.4 1.6 1.8 2

datapasses

LML_gauss_4_M_5

LMLpdd_4_M_5

LMLF_4_M_5

MNJ_b_3317_bH_16585

SVRG

Figure: HIGGS

16 / 31

SUSY d = 18, n = 3, 548, 466

0 50 100 150 200 250

0.723

0.779

0.834

0.889

0.945

1

time (s)

e
rr

o
r

2 4 6 8

datapasses

MLgauss_3_M_5

MLprev_3_M_5

MLfact_3_M_5

MNJ

SVRG

Figure: SUSY

17 / 31

epsilon-normalized d = 2, 000, n = 400, 000

0 50 100 150 200 250

0.506

0.605

0.704

0.802

0.901

1

time (s)

e
rr

o
r

5 10 15

datapasses

LML_gauss_45_M_5

LMLpdd_45_M_5

LMLF_45_M_5

MNJ_b_633_bH_3165

SVRG

Figure: epsilon-normaliized

18 / 31

rcv1-training d = 47, 236, n = 20, 242

0 5 10 15 20 25

0.411

0.529

0.647

0.764

0.882

1

time (s)

e
rr

o
r

50 100 150 200 250

datapasses

MLgauss_15_M_5

MLprev_15_M_5

MLFact_15_M_5

MNJ_b_1000_bH_1000

SVRG

Figure: rcv1-train

19 / 31

url-combined d = 3, 231, 961, n = 2, 396, 130

0 20 40 60 80

0.163

0.302

0.442

0.581

0.721

0.86

1

time (s)

e
rr

o
r

1 1.2 1.4 1.6 1.8 2

datapasses

MLgauss_10_M_5

MLprev_10_M_5

MLFact_10_M_3

MNJ_b_1548_bH_7740

SVRG

Figure:

20 / 31

zero-real-sim-L2 d = 20, 958, n = 72, 309

0 5 10 15 20 25

0.341

0.473

0.605

0.736

0.868

1

time (s)

e
rr

o
r

20 40 60 80 100

datapasses

MLgauss_13_M_1

MLgauss_13_M_5

MLprev_13_M_5

MLFact_13_M_5

MNJ_b_1000_bH_1000

SVRG

MLprev_13_M_1

MLFact_13_M_1

MNJ_b_269_bH_1000

SVRG

Figure:

21 / 31

Contributions

New metric learning framework. A block BFGS framework for
gradually learning the metric of the underlying function using
a sketched form of the subsampled Hessian matrix

New limited memory block BFGS method. May also be of
interest for non-stochastic optimization

Several sketching matrix possibilities.

22 / 31

Part 2: Nonconvex stochastic optimization

Most stochastic quasi-Newton optimization methods are for
strongly convex problems; this is needed to ensure a curvature
condition required for the positive definiteness of Bk (Hk)

This is not possible for nonconvex problem

In deterministic setting, one can do line search to guarantee
the curvature condition, and hence the positive definiteness of
Bk (Hk)

Line search is not possible for stochastic optimization

To address these issues we develop a stochastic damped
L-BFGS method:

23 / 31

Stochastic quasi-Newton (SQN) for nonconvex problem

min f (x) ≡ E[F (x , ξ)]

Assumptions

[AS1] f is continuously differentiable; f is bounded below; ∇f
is Lipschitz continuous with constant L

[AS2] For any iteration k, we have stochastic gradient satisfies

Eξk [∇f (xk , ξk)] = ∇f (xk)
Eξk [‖∇f (xk , ξk)−∇f (xk)‖2] ≤ σ2

[AS3] Exist positive constants Cl , Cu, such that

Cl I � Hk � CuI , for any k

[AS4] Hk depends only on ξ[k−1], i.e., on all the random
samples in iterations 1, 2, . . . , k − 1.

24 / 31

How to generate Hk to satisfy AS3 and AS4?

Let yk = 1
m

∑m
i=1(∇f (xk+1, ξk,i)−∇f (xk , ξk,i)) and define

ȳk = θkyk + (1− θk)Bksk ,

where θk is calculated through:

θk =

{
1, if s>k yk ≥ 0.25s>k Bksk ,

(0.75s>k Bksk)/(s>k Bksk − s>k yk), if s>k yk < 0.25s>k Bksk .

Update Hk : (replace yk by ȳk)

Hk+1 = (I − ρksk ȳ>k)Hk(I − ρk ȳks>k) + ρksks
>
k

where ρk = 1/s>k ȳk

Implement in a limited memory version

25 / 31

Numerical Experiments

A nonconvex SVM problem with a sigmoid loss function

min
x∈Rn

f (x) := Eu,v [1− tanh(v〈x , u〉)] + λ‖x‖2
2,

u ∈ Rn: feature vector; v ∈ {−1, 1}: corresponding label.

λ = 10−4 in our experiment

RCV1 dataset: Reuters newswire articles from 1996-1997.

A simplified version: 9625 articles classified into four
categories “C15”, “ECAT”, “GCAT” and “MCAT”, each with
2022, 2064, 2901 and 2638 articles, respectively.

Binary classification: predict if an article is in “MCAT” and
“ECAT”.

Label: 1 if a given word in “MCAT” or “ECAT”, -1 otherwise.

60% of the articles - training data; 40% - testing data.

Problem dimension: 29992 (number of distinct words)

26 / 31

0 100 200 300 400 500 600 700 800 900 1000
10

−5

10
−4

10
−3

10
−2

10
−1

Iteration

S
qu

ar
ed

 n
or

m
 o

f g
ra

di
en

t

SGD: β=10

SGD: β=20

SdLBFGS: p=0

SdLBFGS: p=1

SdLBFGS: p=3

SdLBFGS: p=5

SdLBFGS: p=10

SdLBFGS: p=20

0 100 200 300 400 500 600 700 800 900 1000

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

P
er

ce
nt

 c
or

re
ct

ly
 c

la
ss

ifi
ed

Figure: Comparison of SdLBFGS variants with different memory size on
RCV1 dataset. The step size of SdLBFGS is αk = 10/k and the batch
size is m = 100.

27 / 31

0 100 200 300 400 500 600 700 800 900 1000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration

S
qu

ar
ed

 n
or

m
 o

f g
ra

di
en

t

SGD: m=1

SGD: m=50

SGD: m=100

SdLBFGS: m=1

SdLBFGS: m=50

SdLBFGS: m=75

SdLBFGS: m=100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
−4

10
−3

10
−2

10
−1

10
0

SFO−calls

S
qu

ar
ed

 n
or

m
 o

f g
ra

di
en

t

Figure: Comparison of SGD and SdLBFGS with different batch size on
RCV1 dataset. For SdLBFGS the step size is αk = 10/k and the memory
size is p = 10. For SGD the step size is αk = 20/k .

28 / 31

0 100 200 300 400 500 600 700 800 900 1000

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

P
er

ce
nt

 c
or

ec
tly

 c
la

ss
ifi

ed

SGD: m=50

SGD: m=100

SdLBFGS: m=50

SdLBFGS: m=75

SdLBFGS: m=100

Figure: Comparison of correct classification percentage by SGD and
SdLBFGS with different batch size on RCV1 dataset. For SdLBFGS the
step size is αk = 10/k and the memory size is p = 10. For SGD the step
size is αk = 20/k .

29 / 31

1 3 5 10 20
0

1

2

3

4

5

6

7

8

Memory size (batch size m=50)

N
um

be
r

of
 d

am
pe

d
st

ep
s

1 50 75 100
0

2

6

10

100

308

1,000

Batch size (memory size p=10)

N
um

be
r

of
 d

am
pe

d
st

ep
s

Figure: The average number of damped steps over 10 runs of SdLBFGS.
Here the maximum number of iterations is set as 1000 and step size is
10/k .

30 / 31

Contributions

Our contributions:

A general framework of SQN for nonconvex problem
Convergence guarantee
Complexity analysis for random output and constant step size
Stochastic damped L-BFGS falls into the framework

Future work for nonconvex problems:

develop a damped limited memory block BFGS method
Variance reduction techniques?

31 / 31

