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Introduction

I During start-up, shut-down or normal operation, optimal dynamic transitions among products are normally
required to achieve an operation target in the best possible way.

I The problem consists in computing the time domain values of the control variables u(t) such that the
system response y(t) attains a desired value embedded in an objective function Ω(y, u).

I Optimal product transitions can be calculated systematically by setting the product transition problem as a
dynamic optimization problem.

I Most of these optimization algorithm assume that the gradient of the objective function and related
constraints are someway available.

I There are some practical optimization problems where derivatives are not available or are not reliable
making impossible or undesirable to use gradient-based optimization techniques.

I Such situations has to do with either real industrial or lab-scale processes or with normally huge models
embedded in simulation platforms.

I We deal with extensions of trust-region methods, which are a subset of deterministic DFO algorithms, to
address the solution optimization problems where no model gradient information is available.
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Antonio Flores-Tlacuahuac Department of Chemical Engineering Universidad Iberoamericana México with colaborations from: Israel Negrellos-OrtizProduct Dynamic Transitions Using A Derivative-Free Optimization Approach



Introduction

I During start-up, shut-down or normal operation, optimal dynamic transitions among products are normally
required to achieve an operation target in the best possible way.

I The problem consists in computing the time domain values of the control variables u(t) such that the
system response y(t) attains a desired value embedded in an objective function Ω(y, u).

I Optimal product transitions can be calculated systematically by setting the product transition problem as a
dynamic optimization problem.

I Most of these optimization algorithm assume that the gradient of the objective function and related
constraints are someway available.

I There are some practical optimization problems where derivatives are not available or are not reliable
making impossible or undesirable to use gradient-based optimization techniques.

I Such situations has to do with either real industrial or lab-scale processes or with normally huge models
embedded in simulation platforms.

I We deal with extensions of trust-region methods, which are a subset of deterministic DFO algorithms, to
address the solution optimization problems where no model gradient information is available.
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Traditional Optimal Model-based dynamic transitions

Take a dynamic system from an initial point to a final point in the
best possible way

u

y

y
initial

y
end

time time

Dynamic System
u(t) y(t)
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Common Approaches for Solving Dynamic Optimization Problems

DAE Optimization Variational Approach

Sequential Approach

Multiple Shooting Simultaneous Approach

Pontryagin

Inefficient for constrained problems

state variables

Discretize some

Handles instabilities

Large NLP

Discretize Controls

Small NLP

Can not handle instabilities properly

state variables

Discretize all

NLP problem

Efficient for constrained problems

Large NLP

Handles instabilities

Antonio Flores-Tlacuahuac Department of Chemical Engineering Universidad Iberoamericana México with colaborations from: Israel Negrellos-OrtizProduct Dynamic Transitions Using A Derivative-Free Optimization Approach



Discretizing ODEs using Orthogonal Collocation
Given an ODE system:

dx

dt
= f(x, u, p), x(0) = xinit

where x(t) are the system states, u(t) is the manipulated variable and p are the system parameters.

The aim is to approximate the behaviour of x and u by Lagrange interpolation polynomials (of orders K + 1 and

K, respectively) at collocation or discretization points tk:

xk+1(t) =
K∑

k=0

xk`
x
k(t), `

x
k(t) =

K∏
j=0
j 6=k

t− tj

tk − tj

uk(t) =
K∑

k=1

uk`
u
k(t), `

u
k(t) =

K∏
j=1
j 6=k

t− tj

tk − tj

xN+1(tk) = xk, uN(tk) = uk �
�
�

�
�
�

�
�
�
�

�
�
�
�

F(x)

x

Collocation
points

true behavior

approximated behavior

Therefore replacing into the original ODE system, we get the system residual R(tk):

R(tk) =
K∑

j=0

xj
d`j(tk)

dt
− f(xk, uk, p) = 0, k = 1, ..,K
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Transformation of a Dynamic Optimization problem into a NLP

Original dynamic optimization problem

min
x,u

φ(x, u)

s.t.
dx(t)

dt
= F (x(t), u(t), t, p)

x(0) = x0

g(x(t), u(t), p) ≤ 0

h(x(t), u(t), p) = 0

xl ≤ x ≤ xu

ul ≤ u ≤ uu

Discretized NLP

min
xk,uk

φ(xk, uk)

s.t.
K∑

j=0

xj
˙̀
j(tk)− F (xk, uk) = 0, k = 1, ...,K

x0 = x(0)

g(xk, uk, p) ≤ 0, k = 1, ...,K
h(xk, uk, p) = 0, k = 1, ...,K

xl ≤ x ≤ xu

ul ≤ u ≤ uu
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Approximation of a Dynamic Optimization Problem using
Orthogonal Collocation on Finite Elements

Sometimes it is convenient to use Orthogonal Collocation on Finite
Elements to approximate the behavior of systems exhibiting fast
dynamics.

S
ta

te

First element Second Element Third Element

Time

Points

Collocation
Internal System behavior

min
xk,uk

φ(x, u)

s.t.

K∑
j=0

xij
˙̀
j(τk)− hiF (xik, uik) = 0,

i=1,...,NE
k = 1, ...,NC

x10 = x(0)

g(xik, uik, p) = 0, i = 1, ...,NE; k = 1, ..,NC

xl
ij ≤ xij ≤ xu

ij, i = 1, ...,NE; k = 1, ..,NC

ul
ij ≤ uij ≤ uu

ij, i = 1, ...,NE; k = 1, ..,NC

where NE is the number of finite elements, NC is the number of internal collocation points, hi is the length of each

element.
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Example: Dynamic optimal transition between two steady-states:
Hicks CSTR

dC

dt
=

1− C

θ
− k10e−N/TC

dT

dt
=

yf − T

θ
+ k10e−N/TC− αU(T− yc)

Parameter values
θ 20 Residence time

Tf 300 Feed temperature
J 100 (−∆H)/(ρCp)

k10 300 Preexponential factor
cf 7.6 Feed concentration
Tc 290 Coolant temperature

α 1.95x10−4 Heat transfer area
N 5 E1/(RJcf )

Desired Transition B→ A
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Cooling flowrate

D
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e
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re

y1=0.0944, y2=0.7766, u=340 (s)
y1=0.1367, y2=0.7293, u=390 (s)
y1=0.1926, y2=0.6881, u=430 (u)
y1=0.2632, y2=0.6519, u=455 (u)

A 

B 
C 

D 

Desired dynamic transition
C T U

Initial (B) 0.1367 0.7293 390
Final (A) 0.0944 0.7766 340

C = Concentration (c/cf ), T = temperature (Tr/Jcf ), yc = Coolant temperature ( Tc/Jcf ), yf = feed

temperature (Tf/Jcf ), U = Cooling flowrate. c and Tr are nondimensionless concentration and reactor

temperature.
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Dynamic Transitions profiles for the Hicks CSTR example

As objective function the requirement of minimum transition time between the initial and final steady-states will be
imposed:

Min

∫ tf

0

{
α1(C(t)− Cdes)2 + α2(T(t)− Tdes)2 + α3(U(t)− Udes)2

}
dt
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DFO Approaches for Product Transitions

I Unconstrained optimization problem with penalized model.

I Product transition problems were solved using a dynamic
model to compare NLP and DFO solutions.

I The constrained dynamic optimization problem was
transformed into an unconstrained optimization problem,

I The set of ODE constraints related were approximated using
the transcription approach.

I Optimization problems solved using nonlinear optimization
codes and the BOBYQA DFO solver.

I Product transitions are open-loop or off-line control policies.
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Antonio Flores-Tlacuahuac Department of Chemical Engineering Universidad Iberoamericana México with colaborations from: Israel Negrellos-OrtizProduct Dynamic Transitions Using A Derivative-Free Optimization Approach



DFO Approaches for Product Transitions

I Unconstrained optimization problem with penalized model.

I Product transition problems were solved using a dynamic
model to compare NLP and DFO solutions.

I The constrained dynamic optimization problem was
transformed into an unconstrained optimization problem,

I The set of ODE constraints related were approximated using
the transcription approach.

I Optimization problems solved using nonlinear optimization
codes and the BOBYQA DFO solver.

I Product transitions are open-loop or off-line control policies.
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I Model Predictive control using black box dynamic modeling

I Optimal closed-loop transitions can be efficiently assessed using Model Predictive Control (MPC)
techniques.

I MPC is a closed-loop control technique well suited for the control of nonlinear systems using a
receding horizon approach.

I A set of values of the input or manipulated variables (i.e. u1, . . . , uN) are computed such that
the output or controlled variables (i.e. x1, . . . , xM) are forced towards target or desired values.

I Commonly, only the first control action u1 is applied to the controlled system.

I When a new measurement becomes available, the control scenario is moved ahead by a time

equivalent to the sampling time and the procedure is repeated until the target values are obtained.

sp
y
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2u
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Antonio Flores-Tlacuahuac Department of Chemical Engineering Universidad Iberoamericana México with colaborations from: Israel Negrellos-OrtizProduct Dynamic Transitions Using A Derivative-Free Optimization Approach



I Model Predictive control using black box dynamic modeling
I Optimal closed-loop transitions can be efficiently assessed using Model Predictive Control (MPC)

techniques.

I MPC is a closed-loop control technique well suited for the control of nonlinear systems using a
receding horizon approach.

I A set of values of the input or manipulated variables (i.e. u1, . . . , uN) are computed such that
the output or controlled variables (i.e. x1, . . . , xM) are forced towards target or desired values.

I Commonly, only the first control action u1 is applied to the controlled system.

I When a new measurement becomes available, the control scenario is moved ahead by a time

equivalent to the sampling time and the procedure is repeated until the target values are obtained.

sp
y

1
u

2u

3
u

1 2 3 Tnu
control horizon

T
nt

prediction horizon

tk

y
k

y
1

y
2

y
3

^
^

^

^

time
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I DFO algorithms can be used when a dynamic model or derivatives of the underlying systems are not
available.

I We deploy a kind of DFO algorithms based on using trust-region optimization techniques.

I In the case of DFO trust-region methods the objective function is approximated by a quadratic function.

I Such an approximation of the objective function is built using only input and output information .

I Using DFO techniques no information, in the form of an explicit dynamic model or their related derivatives,
is required for the dynamic optimization of processing systems.

I We only require (a) input/output information of the controlled system and (b) solving the dynamic
optimization problem by approximating the objective function using DFO trust-region optimization
techniques.

I The issue consists in formulating an objective function which mimics the model predictive control approach
used when a dynamic model is available.

Ω =
N∑
i=1

[(xi − x f )2 + (ui − uf )2] + λx

N∑
i=1

[∆xi ]
2 + λu

N∑
i=1

[∆ui ]
2

where the superscript f stands for final, desired or target values, λx , λu are penalties impossed on
variations of the magnitude of the states and the manipulated variables, respectively.

I The aim of the last two terms is to penalize for large changes in both the states and manipulated variable
values.

∆xi = xi − xi−1

∆ui = ui − ui−1
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Antonio Flores-Tlacuahuac Department of Chemical Engineering Universidad Iberoamericana México with colaborations from: Israel Negrellos-OrtizProduct Dynamic Transitions Using A Derivative-Free Optimization Approach



I DFO algorithms can be used when a dynamic model or derivatives of the underlying systems are not
available.

I We deploy a kind of DFO algorithms based on using trust-region optimization techniques.

I In the case of DFO trust-region methods the objective function is approximated by a quadratic function.

I Such an approximation of the objective function is built using only input and output information .

I Using DFO techniques no information, in the form of an explicit dynamic model or their related derivatives,
is required for the dynamic optimization of processing systems.

I We only require (a) input/output information of the controlled system and (b) solving the dynamic
optimization problem by approximating the objective function using DFO trust-region optimization
techniques.

I The issue consists in formulating an objective function which mimics the model predictive control approach
used when a dynamic model is available.

Ω =
N∑
i=1

[(xi − x f )2 + (ui − uf )2] + λx

N∑
i=1

[∆xi ]
2 + λu

N∑
i=1

[∆ui ]
2

where the superscript f stands for final, desired or target values, λx , λu are penalties impossed on
variations of the magnitude of the states and the manipulated variables, respectively.

I The aim of the last two terms is to penalize for large changes in both the states and manipulated variable
values.

∆xi = xi − xi−1

∆ui = ui − ui−1
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In summary, the computation of optimal product dynamic transitions using a DFO approach can be cast as follows:

min
u

Ω =
N∑
i=1

[(xi − x f )2 + (ui − uf )2] + λx

N∑
i=1

[∆xi ]
2 + λu

N∑
i=1

[∆ui ]
2

s.t. x l ≤ xi ≤ xu , i = 1, . . . ,N

ul ≤ ui ≤ uu , i = 1, . . . ,N

∆x l ≤ ∆xi ≤ ∆xu , i = 1, . . . ,N

∆ul ≤ ∆ui ≤ ∆uu , i = 1, . . . ,N

where the l and u superscripts stand for lower and upper bounds, respectively.
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Problem definition

Given:

I An objective function representing the target grade or product
plant transitions.

I A black box system (either industrial or laboratory system or
computer simulation) from which only input and output
information about the dynamic performance of such a system
is recorded.

I A set of simple box bound constraints on the system states.

I We assume that numerical values of the system derivatives of
the objective function are not available.
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Example 1: Fundamental differential equation

dy

dt
= −ay(t) + bu(t), a = b = 1

where y is the state variable, t is the independent variable, u is a control variable.

I Penalized state transition objective function, which includes the discretization of the dynamic mathematical
model, reads:

min Ω =
1

2

∫ 1

0
(y2 + u2)dt + F(y, ẏ, λ)

where F(y, ẏ, λ) stands for a function which represents the discretized dynamic model as a function of the
states (y), states derivates (ẋ) and penalty parameters (λ).

I Transitions as computed by the CONOPT NLP and the BOBYQA DFO solvers

I The vectors of initial [y0, u0] and target [y f , uf ] transition conditions are given by [−0.375, 1] and [3, 0],

respectively.
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where F(y, ẏ, λ) stands for a function which represents the discretized dynamic model as a function of the
states (y), states derivates (ẋ) and penalty parameters (λ).
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Example 2: Hicks reactor
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α 1.95e−4 Dimensionless heat transfer area
Tf 300 Feed temperature
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Tc 290 Coolant temperature
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I Objective function

min Ω =

∫ t

0
{(y1(t)−yd1 )2+(y2(t)−yd2 )2+(u(t)−ud)2}dt+F(y, ẏ, λ)

where y1 is the dimensionless concentration, y2 is the
dimensionless temperature and u is the cooling water flowrate,
the superscript d stands for desired or target values. The term
F(y, ẏ, λ) is a function representing the discretized dynamic
model.

I A product transition from steady-state B to the steady-state
A will be carried out.

I 10 finite elements with three internal collocation points were
used for the discretization of the dynamic model.
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Antonio Flores-Tlacuahuac Department of Chemical Engineering Universidad Iberoamericana México with colaborations from: Israel Negrellos-OrtizProduct Dynamic Transitions Using A Derivative-Free Optimization Approach



Example 3: ASPEN Binary distillation column

I Process simulators which have embedded powerful first-order mathematical models.

I An explicit dynamic model of the underlying system and or its gradient are not available.

I Limited optimization capabilities being most of them related to steady-state process simulation scenarios.

I Dynamic optimization algorithms are not available and are difficult to implement or are limited to a kind of
linear MPC techniques.

I A first-order dynamic model of a benzene/toluene binary distillation column was built using the ASPEN
Dynamics simulation environment.

I The equimolar feedstream is composed of a total flowrate of 1000 kmol/hr at 100 C and 2 bar. The
distillation column has 6 trays and total condenser. Moreover, the column operates at 1 bar constant
pressure and at reflux ratio of 1.4116.

I The rigorous vapor-liquid equilibrium RadFrac module in Aspen Plus was used to perform the steady-state
process simulation.

I The steady-state simulation of the process was exported to obtain a dynamic model of the binary

distillation column using the Flow Driven mode available in ASPEN.
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Antonio Flores-Tlacuahuac Department of Chemical Engineering Universidad Iberoamericana México with colaborations from: Israel Negrellos-OrtizProduct Dynamic Transitions Using A Derivative-Free Optimization Approach



Example 3: ASPEN Binary distillation column

I Process simulators which have embedded powerful first-order mathematical models.

I An explicit dynamic model of the underlying system and or its gradient are not available.

I Limited optimization capabilities being most of them related to steady-state process simulation scenarios.

I Dynamic optimization algorithms are not available and are difficult to implement or are limited to a kind of
linear MPC techniques.

I A first-order dynamic model of a benzene/toluene binary distillation column was built using the ASPEN
Dynamics simulation environment.

I The equimolar feedstream is composed of a total flowrate of 1000 kmol/hr at 100 C and 2 bar. The
distillation column has 6 trays and total condenser. Moreover, the column operates at 1 bar constant
pressure and at reflux ratio of 1.4116.

I The rigorous vapor-liquid equilibrium RadFrac module in Aspen Plus was used to perform the steady-state
process simulation.

I The steady-state simulation of the process was exported to obtain a dynamic model of the binary

distillation column using the Flow Driven mode available in ASPEN.
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Antonio Flores-Tlacuahuac Department of Chemical Engineering Universidad Iberoamericana México with colaborations from: Israel Negrellos-OrtizProduct Dynamic Transitions Using A Derivative-Free Optimization Approach



Example 3: ASPEN Binary distillation column

I Process simulators which have embedded powerful first-order mathematical models.

I An explicit dynamic model of the underlying system and or its gradient are not available.

I Limited optimization capabilities being most of them related to steady-state process simulation scenarios.

I Dynamic optimization algorithms are not available and are difficult to implement or are limited to a kind of
linear MPC techniques.

I A first-order dynamic model of a benzene/toluene binary distillation column was built using the ASPEN
Dynamics simulation environment.

I The equimolar feedstream is composed of a total flowrate of 1000 kmol/hr at 100 C and 2 bar. The
distillation column has 6 trays and total condenser. Moreover, the column operates at 1 bar constant
pressure and at reflux ratio of 1.4116.

I The rigorous vapor-liquid equilibrium RadFrac module in Aspen Plus was used to perform the steady-state
process simulation.

I The steady-state simulation of the process was exported to obtain a dynamic model of the binary

distillation column using the Flow Driven mode available in ASPEN.
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I Objective function: we use a MPC formulation for the objective function.

min Ω =
N∑
i=1

[(ci − cd )2 + (ui − ud )2] +
N∑
i=1

[∆ci ]
2 +

N∑
i=1

[∆ui ]
2

where c stands for the benzene mol fraction distillate stream which is the controlled variable, u stands for
the reflux ratio which is the manipulated variable, N is the prediction and control horizons, the superscript
d stands for desired or target values.

I Two product dynamic transitions: (a) the initial steady-state is given by [c0, u0]=[0.8, 1.4116], whereas

the target steady state is given by [cd , ud ]=[0.9, 5.86] and (b) then the product transition in the opposite
direction was done.

I We have assumed that on-line measurements of the benzene mol fraction in the distillate stream will be
available every hour.

I For implementing both product dynamic transitions we proceeded as follows. (1) First, we initialize the

simulation with the steady state conditions. (2) Then, change to dynamic mode and (3) run the dynamic

simulation for 1 hr, (4) stop the simulation, (5) use the values of reflux ratio and concentration in the DFO

BOBYQA solver as decision variables and solve the DFO problem; BOBYQA yields the new calculated

value of the reflux ratio to be implemented in the simulation environment. Repeat steps (3)-(5) when new

measurements become available until the target steady-state is reached.
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simulation with the steady state conditions. (2) Then, change to dynamic mode and (3) run the dynamic

simulation for 1 hr, (4) stop the simulation, (5) use the values of reflux ratio and concentration in the DFO

BOBYQA solver as decision variables and solve the DFO problem; BOBYQA yields the new calculated

value of the reflux ratio to be implemented in the simulation environment. Repeat steps (3)-(5) when new

measurements become available until the target steady-state is reached.
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Conclusions

I We have carried out optimal product dynamic transition
without the use of a explicit dynamic model.

I Using a MPC framework it becomes feasible to compute
on-line optimal transition policies.

I Future work: Dynamic transition of non-differentiable systems
and solving MINLP problems using a DFO approach.
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