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Sparse linear regression
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where || 3|0 := #{i : ;i # 0}.
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» Each row of X and corresponding entry of y is a sample of
predictor and response variables;

» Quadratic form %XTX is the empirical covariance matrix of
predictor random variables; (if independence among predictor
vars is assumed, %XTX > diagonal, as n — +00.)
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Large literature on penalty functions

o
min EHXB—yH%ﬂLZp(B;;A,c?):

where § is some other parameter that controls concavity, etc.
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Figure: Penalty functions

(b) Minimax Concave Penalty

We are interested in constructions in some lifted space and their

projected form.
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Binary indicator variables and perspective set

: 1 if B £0,
zi =1lg.20:=
P70 Y0 if g =o0.

Need big-M to formulate as MIQP in the original variable space.
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Binary indicator variables and perspective set

: 1 if B £0,
zi =1lg.20:=
BT N0 if g =o.

Need big-M to formulate as MIQP in the original variable space.
However, with lifted variables s; «» 5,2 we have

conv {(B;,si,z)|si = B7,zi = Ig.z0} =
{(Bi,si,zi)|sizi > 87,51 > 0,0 < z < 1}.
Perspective relaxation by diagonal splitting (d; € Ri s.t.
XTX — diag(6) = 0)
LTt . T AT 1
min 5bT(XTX — diag(8))b— (XTy)Tb+ 5 Zd;s; + AZZ,
s.t., sizi>b?, 5;>0,0<z <1 Vi

Fully solves the £>-fy problem if X7 X were diagonal.



Assumption: XX = 0

> In order for our relaxations later to be meaningful, we assume
the quadratic form in our objective function X7 X is positive
definite, (e.g. more data points than dimension of f3).

» If this is not the case, (e.g. p > n), an additional
regularization term p|3]|3 must be added. In statistics, this
technique is called “stabilization”, and is the basic idea of
elastic net.
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Perspective relaxation: the equivalent projected form

1
min §\|Xb—Y||§+ZP<5,-,A(bi), (PRs : reg)

1
where

1(5,’ (S,' — b,2) + Az;.

p6i1>\(bi) = min
S,‘Z,‘Zb?,S,’ZO,Z,’G[O,l] 2

Can find explicit form of ps, x(b;).

V26 \|bi| — 36;b2, if §;b7 < 2);

PR:penalt
A if ;b7 > 2. (PR:penalty)

psA(bi) = {

Concave in terms of b; on [0,400), §; controls “concavity”. Also
concave in terms of d; for fixed b;.
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Rediscovery of Minimax Concave Penalty

i
[

O (bi)/0b;

by = 0.02

(a) Penalty function (b) Penalty gradient

In [Zhang, 2010], MCP is intuitively constructed by: find a C?
function on [0, +00)

» has positive direction derivative at 0+;
» becomes flat after a threshold,;

> minimize the max concavity.
| 2

all §; are the same, and this parameter is tuned by some
heuristics.

10/28



A convex relaxation in [Pilanci, Wainwright & Ghaoui,
2015]

1
min 5 1X5 - Y13+ pllBIIZ + AllBllo

Using Fenchel conjugacy, [Pilanci et al., 2015] derived convex
relaxation:

1 pBi
mn 15—y + A3 K (Y%

where H(t) is called reverse Huber penalty

H(t):{m iflt| <1

2 . .
£rl ' otherwise
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Derivation using perspective relaxation

1
min [ X8 = y[l5+ ol Bz + AllBllo

B
min 1HXﬁ —y|3 4 pBji 4+ Azi, s.t. Bjzi > 32,z €[0,1]
52 .y2 PDii 1y 2L Dpsp Z— My 4 )
1 . B7
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min SIXB =yl + min p7 -+ Az
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2 2VpA f\f <1
min pﬂ— + Az AAil il = 2 \H( \fﬁl)
z€[0,1] 2p52 + A\, otherwise VA

[Pilanci et. al., 2015] also proposed a convex relaxation (an SDP)
for £y constrained case, which can also be equivalently derived by
perspective relaxation in a constrained form.
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Parameter selection for general perspective relaxation

Recall the diagonal splitting form,

) 1 T T . T T 1
min 5 b7 (XTX — diag(9))b — (XTy) b+2zi:5,-s,-+)\zi:z;

s.t., sjzj > b,-2, 55>0,0< 2z <1 Vi

0 is a p x 1 vector. How do we choose parameter vector § given
this large degree of freedom?
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Parameter selection for general perspective relaxation

Recall the diagonal splitting form,

in LpT(xT ; T ATp L L
min 5bT(XTX — diag(6))b — (XTy) b+ 5 Zd,-s,- + )\Zz,-
s.t., sjzj > b,-2, 55>0,0< 2z <1 Vi

0 is a p x 1 vector. How do we choose parameter vector § given
this large degree of freedom?

Intuition: It is a convex relaxation iff XX — diag(§) = 0.

» Want § “large” such that X7 X — diag(§) has zero
eigenvalues, however such § is not unique;
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A minimax problem and its SDP formulation
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A Minimax formulation

Imc*IIXb yl3 + sup {Zpa A

SeRP

)IXTX — diag(s) > 0}.

(Inf-Sup)

i
or equivalently

. 1 ,
inf sup {2HXb — I3+ paal

b))|XTX — diag(6) = 0} .
SeRA

(Inf-Sup)

i

Interpretation:

» Use pointwise supremum of all penalty functions that
maintains convexity;

» As sup of convex functions is convex, outer minimization is
still a convex problem.
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Max-min problem

sup mf{HXb YI5+ D psa(bi)

)|IXTX — diag(6) =0 ¢ .
SN

I (Sup-Inf)
Interpretation:
> Inner minimization problem is always a convex relaxation for
(€2-o);
» How to choose the parameter vector § to maximize the lower
bound?
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Max-min problem

)|IXTX — diag() = 0} .

SN i

sup mf{HXb Y5+ psal
(Sup-Inf)

Interpretation:
> Inner minimization problem is always a convex relaxation for
(€2-o);
» How to choose the parameter vector § to maximize the lower
bound?

In literature of perspective relaxation, e.g. [Billionnet and Elloumi,
2007] or [Zheng, Sun and Li, 2014], this “tightest lower bound”
can be computed using a semidefinite relaxation.

» We show it is also the case here, an SDP relaxation computes
a saddle point for (Inf-Sup) and (Sup-Inf);

» All “sup” and “inf" are attained given XX > 0.

16
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Existence of saddle point
Let C = {0 € RE|XTX — diag(6) = 0}, D :=RP

K(3,b) := {2 1Xb = 13+ X; ps.a (b)), :2 Z g _
~ oo,

Theorem (Theorem 37.6 in Convex Analysis, Rockafellar)
Let K(4,b) be a closed proper concave-convex function with
effective domain C x D. If both of the following conditions,
1. The convex functions K(9,-) for § € ri(C) have no common
direction of recession;
2. The convex functions —K(-, b) for b € ri(D) have no common
direction of recession;

are satisfied, then K has a saddle-point in C x D. In other words,
there exists (0%, b*) € C x D, such that

mfsupde-supme&b 0%, b*).
bGDéeC( ) sup Inf (6,b) = K(6%,b")
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SDP relaxation - primal and dual form

o lyoT T
thI,TB §<X X,B>—y Xb—i—)\Zz,,
! SDP
se (PP ) mo (7 b)) mo wi .
tly 8)=01p B,) =0 i
1
max — —€
€€R,5,tERP 2
T T
€ —y'X -t
—
ot <—XTy—t XTX—diag(5)>_0’ (DSDP)

2\t .
-
( ti 5i> = 0,0,

Strong duality holds by strict feasibility of (SDP).
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SDP solves the minimax pair

Theorem

Assume XT X = 0, a saddle point for the minimax pair (Inf-Sup)
and (Sup-Inf) can be obtained by solving (SDP) and (DSDP).

Let (b*,z*, B*) and (¢*, 6%, t*) be optimal solutions to (SDP) and
(DSDP) respectively, then (6%, b*) is a saddle point for (Inf-Sup)
and (Sup-Inf).

» Goal:
max K(d, b%) = Cspp = min K(47, b);

> It suffices to show maxs; (pr(s) = (spp = Cpp(s+), both cases
of < are proved by analyzing the relaxations.
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Connection with Max-Cut and Goemans-Williamson rounding
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Two level formulation of (¢,-£)

(¢2-£o) is equivalent to

. .1 . >
min min | Xdiag(u)z —y5 + X Z z.

Reformulation

. .1 1z
weRP ze {01} 2 <Q(u), [z zzT] > ’

Q(u):[ yTy —y " Xdiag(u) ]
—diag(u)XTy diag(u)XT Xdiag(u) + 2\

The inner problem is a quadratic program with binary variables

(BQP).
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Replacing the inner BQP with its SDP relaxation

min min% <Q(u), E ZZTD (2LvISDP)

ueRr z,Z

1z .
't — . — .
s.t [z Z} =0,Z; = z,Vi

It turns out, that this two level problem is equivalent to our
relaxation (SDP). Given (b*, B*, z*) to be an optimal solution to
(SDP), we can recover an optimal solution to

LB b0 [EZE BBy A0,
u’- = i ) 7ZU = i = jj .
1 if b;k =0 0 if B,’,‘Bjj =0

Then can apply the Goemans-Williamson rounding to (z*, Z*) to
generate a binary vector 26", An approximate solution to (£2-)
is then constructed as

Bi = urzW.
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Numerical Experiments
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Exact recovery rate - PWG vs. lasso

An experiment in [Pilanci, Wainwright & EI Ghaoui, 2015]:
generate X with i.i.d N(0,1) entries, y = XBtue + €, where € has
i.i.d. N(0,~2) entries. Solve convex relaxations of

.1
min ZHXB—HI%HH[?H% s.t. [|Bllo < k.

Probability of Support Recovery

Sparse Regression

—e— Boolean Relaxation d=128

-o- LASSO d=64
-o- LASSO d=128
~o LASSO d=256

—%—Boolean Relaxation d=64 | |

—e— Boolean Relaxation d=256 | |

Control Parameter ¢ :n= ¢ k log(d)
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Directly searching for dual certificate of exact recovery

Consider a variant of (SDP)

. 1 yTy —yTX 1 b’
min Y T T ’
berr,Besr 2 \ |=X'y pl,b+X'X|’|b B
1 b
s.t. [b B} >0 (SDPeons)
zi b P
[b; B;;] >0, Vi, z;z; < k.

Use the KKT conditions to derive a bisection search to search for a
dual certificate that a solution (b*, B*, z*) where z* is a binary
vector corresponding to the correct support of Bipe. If such a
certificate found, then b* solves (£2-£p).
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Bisection search for dual certificate

Theorem

Let S C{1,...,n}, |S| = k and z* be a binary vector such that
z; =1,Yie Sandz: =0,Vi¢ S. Further let b* be the optimal
solution of the ridge regression in the restricted subspace, i.e.,

b € arg min {|[X5 = yll> + pllBll2 | 8 = 0.%) ¢ S}

Then (b*, b*b*T, z*) is optimal to (SDPcops) if and only if the
there is p > 0 such that

F(11) = Amax { [DSO(“) D;EM)] ~XTX - p/p} <0, (2

where Ds(p) is diagonal with entries ,u,p2vl._2 i=1,..,]S| and
similarly Dz(\) is diagonal with entries = *v?,i =|S|+1,...,p,

and v = X" (pl + XSXST)_l y, Vi

N~
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SDP v.s. PWG

Number of data points vs. recovery rate, p = 2
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SDP v.s. PWG

o
©

o
®

o
3

o
o

o
13

o
~

o
w

Probability of exact support recovery

— % -PWG d=64
— % - PWG d=128
— % - PWG d=256
— % -PWG d=512
—O— DCL d=64
—&—DCLd=128 ||
—O©— DCL d=256

—6—DCL d=512
I I I I I T T

3 4 5 6 7 8 9 10
Control parameter a: n = ak logd)

27 /28



SDP v.s. PWG

Number of data points vs. recovery rate, p = 4
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SDP v.s. PWG

Probability of exact support recovery
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SDP v.s. PWG

o
©

o
®
T

o
3
T

g
=)
T

o
13
T

o
~
T

o
w
T

¥ — % - PWG d=64
x’ ,/,’ ~ % - PWG d=128
S - % - PWG d=256 ||
y - % - PWG d=512
A —6— DCL d=64
, ﬁ —6—DCLd=128 |
N —6— DCL d=256
3// —O6—DCL d=512
. . . . . . ; :

T 2 3 4 5 6 7 8 9 10
Control parameter a: n = ak logd)

Probability of exact support recovery

0.2

0.1

27 /28



SDP v.s. PWG

Number of data points vs. recovery rate, p = 12
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Summary and Some interesting questions

» Constructions in the lifted space corresponding to some
concave regularizers;

» An SDP relaxation (with moderate complexity) appears to be
attractive in recovering sparse signals.

Interesting questions:

» More elegant way to handle n < p, i.e., when X7 X has
non-trivial null space. (Patching perspective relaxation and ¢;
norm in different subspaces?)

» Low rank approximation to (SDP)

b2
- 2 (xT Ty
where R is p x r with r carefully chosen, EJ- is the j-th row of
matrix R, j =1,..., p. For Max-Cut SDPs, [Burer, Monteiro
& Zhang, 2000], [Grippo, Palagi, Piacentini, Piccialli &
Rinaldi, 2010].
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