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Sparse linear regression

min
β∈Rp

1

2
‖Xβ − y‖2

2 + λ‖β‖0 (`2-`0)

where ‖β‖0 := #{i : βi 6= 0}.

min
β∈Rp

1

2

∥∥∥∥∥∥∥∥∥
 X


n×p

β

p×1

−

y


n×1

∥∥∥∥∥∥∥∥∥
2

2

+ λ‖β‖0

I Each row of X and corresponding entry of y is a sample of
predictor and response variables;

I Quadratic form 1
nXTX is the empirical covariance matrix of

predictor random variables; (if independence among predictor
vars is assumed, 1

nXTX 7→ diagonal, as n 7→ +∞.)
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Large literature on penalty functions

min
β

1

2
‖Xβ − y‖2

2 +
∑
i

ρ(βi ;λ, δ);

where δ is some other parameter that controls concavity, etc.

βi−2 −1 1 2

1

2

(a) ρ(βi ;λ, δ) = λ|βi |

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

bi

ρ
δ
i
(b

i
)

δ i = 0 .02

δ i = 0 .9

(b) Minimax Concave Penalty

Figure: Penalty functions

We are interested in constructions in some lifted space and their
projected form.
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Binary indicator variables and perspective set

zi = Iβi 6=0 :=

{
1 if βi 6= 0,

0 if βi = 0.

Need big-M to formulate as MIQP in the original variable space.

However, with lifted variables si ↔ β2
i we have

conv
{

(βi , si , zi )
∣∣si = β2

i , zi = Iβi 6=0

}
={

(βi , si , zi )
∣∣sizi ≥ β2

i , si ≥ 0, 0 ≤ zi ≤ 1
}
.

Perspective relaxation by diagonal splitting (δi ∈ Rp
+ s.t.

XTX − diag(δ) � 0)

min
b,z

1

2
bT (XTX − diag(δ))b − (XT y)Tb +

1

2

∑
i

δi si + λ
∑
i

zi

s.t., sizi ≥ b2
i , si ≥ 0, 0 ≤ zi ≤ 1 ∀i .

Fully solves the `2-`0 problem if XTX were diagonal.
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Assumption: XTX � 0

I In order for our relaxations later to be meaningful, we assume
the quadratic form in our objective function XTX is positive
definite, (e.g. more data points than dimension of β).

I If this is not the case, (e.g. p > n), an additional
regularization term µ‖β‖2

2 must be added. In statistics, this
technique is called “stabilization”, and is the basic idea of
elastic net.
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Perspective relaxation: the equivalent projected form

min
b

1

2
‖Xb − y‖2

2 +
∑
i

ρδi ,λ(bi ), (PRδ : reg)

where

ρδi ,λ(bi ) = min
sizi≥b2

i ,si≥0,zi∈[0,1]

1

2
δi
(
si − b2

i

)
+ λzi .

Can find explicit form of ρδi ,λ(bi ).

ρδi ,λ(bi ) =

{√
2δiλ|bi | − 1

2δib
2
i , if δib

2
i ≤ 2λ;

λ, if δib
2
i > 2λ.

(PR:penalty)

Concave in terms of bi on [0,+∞), δi controls “concavity”. Also
concave in terms of δi for fixed bi .
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Rediscovery of Minimax Concave Penalty
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In [Zhang, 2010], MCP is intuitively constructed by: find a C 1

function on [0,+∞)

I has positive direction derivative at 0+;
I becomes flat after a threshold;
I minimize the max concavity.
I all δi are the same, and this parameter is tuned by some

heuristics.
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A convex relaxation in [Pilanci, Wainwright & Ghaoui,
2015]

min
β

1

2
‖Xβ − y‖2

2 + ρ‖β‖2
2 + λ‖β‖0

Using Fenchel conjugacy, [Pilanci et al., 2015] derived convex
relaxation:

min
β

1

2
‖Xβ − y‖2

2 + 2λ
∑
i

H

(√
ρβi√
λ

)
where H(t) is called reverse Huber penalty

H(t) =

{
|t| if |t| ≤ 1
t2+1

2 , otherwise
.
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Derivation using perspective relaxation

min
β

1

2
‖Xβ − y‖2

2 + ρ‖β‖2
2 + λ‖β‖0

min
β

1

2
‖Xβ − y‖2

2 + ρBii + λzi , s.t. Biizi ≥ β2
i , zi ∈ [0, 1]

min
β

1

2
‖Xβ − y‖2

2 + min
zi∈[0,1]

ρ
β2
i

zi
+ λzi

where

min
zi∈[0,1]

ρ
β2
i

zi
+ λzi =

{
2
√
ρλ|βi | if

√
ρ
λ |βi | ≤ 1

1
2ρβ

2
i + λ, otherwise

= 2λH(

√
ρβi√
λ

)

[Pilanci et. al., 2015] also proposed a convex relaxation (an SDP)
for `0 constrained case, which can also be equivalently derived by
perspective relaxation in a constrained form.
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Parameter selection for general perspective relaxation

Recall the diagonal splitting form,

min
b,z

1

2
bT (XTX − diag(δ))b − (XT y)Tb +

1

2

∑
i

δi si + λ
∑
i

zi

s.t., sizi ≥ b2
i , si ≥ 0, 0 ≤ zi ≤ 1 ∀i .

δ is a p × 1 vector. How do we choose parameter vector δ given
this large degree of freedom?

Intuition: It is a convex relaxation iff XTX − diag(δ) � 0.

I Want δ “large” such that XTX − diag(δ) has zero
eigenvalues, however such δ is not unique;
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A Minimax formulation

inf
b

1

2
‖Xb − y‖2

2 + sup
δ∈Rp

+

{∑
i

ρδi ,λ(bi )

∣∣∣∣∣XTX − diag(δ) � 0

}
.

(Inf-Sup)
or equivalently

inf
b

sup
δ∈Rp

+

{
1

2
‖Xb − y‖2

2 +
∑
i

ρδi ,λ(bi )

∣∣∣∣∣XTX − diag(δ) � 0

}
.

(Inf-Sup)
Interpretation:

I Use pointwise supremum of all penalty functions that
maintains convexity;

I As sup of convex functions is convex, outer minimization is
still a convex problem.

15 / 28



Max-min problem

sup
δ∈Rp

+

inf
b

{
1

2
‖Xb − y‖2

2 +
∑
i

ρδi ,λ(bi )

∣∣∣∣∣XTX − diag(δ) � 0

}
.

(Sup-Inf)
Interpretation:

I Inner minimization problem is always a convex relaxation for
(`2-`0);

I How to choose the parameter vector δ to maximize the lower
bound?

In literature of perspective relaxation, e.g. [Billionnet and Elloumi,
2007] or [Zheng, Sun and Li, 2014], this “tightest lower bound”
can be computed using a semidefinite relaxation.

I We show it is also the case here, an SDP relaxation computes
a saddle point for (Inf-Sup) and (Sup-Inf);

I All “sup” and “inf” are attained given XTX � 0.
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Existence of saddle point
Let C =

{
δ ∈ Rp

+

∣∣XTX − diag(δ) � 0
}

, D := Rp

K (δ, b) :=

{
1
2 ‖Xb − y‖2

2 +
∑

i ρδi ,λ(bi ), ∀δ ∈ C

−∞, ∀δ /∈ C
. (1)

Theorem (Theorem 37.6 in Convex Analysis, Rockafellar)

Let K (δ, b) be a closed proper concave-convex function with
effective domain C × D. If both of the following conditions,

1. The convex functions K (δ, ·) for δ ∈ ri(C ) have no common
direction of recession;

2. The convex functions −K (·, b) for b ∈ ri(D) have no common
direction of recession;

are satisfied, then K has a saddle-point in C × D. In other words,
there exists (δ∗, b∗) ∈ C × D, such that

inf
b∈D

sup
δ∈C

K (δ, b) = sup
δ∈C

inf
b∈D

K (δ, b) = K (δ∗, b∗).
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SDP relaxation - primal and dual form

min
b,z,B

1

2

〈
XTX ,B

〉
− yTXb + λ

∑
i

zi ,

s.t.

(
1 bT

b B

)
� 0,

(
zi bi

bi Bii

)
� 0, ∀i .

(SDP)

max
ε∈R,δ,t∈Rp

− 1

2
ε

s.t.

(
ε −yTX − tT

−XT y − t XTX − diag(δ)

)
� 0,(

2λ ti
ti δi

)
� 0,∀i ,

(DSDP)

Strong duality holds by strict feasibility of (SDP).
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SDP solves the minimax pair

Theorem
Assume XTX � 0, a saddle point for the minimax pair (Inf-Sup)
and (Sup-Inf) can be obtained by solving (SDP) and (DSDP).
Let (b∗, z∗,B∗) and (ε∗, δ∗, t∗) be optimal solutions to (SDP) and
(DSDP) respectively, then (δ∗, b∗) is a saddle point for (Inf-Sup)
and (Sup-Inf).

I Goal:
max
δ∈C

K (δ, b∗) = ζSDP = min
b∈Rp

K (δ∗, b);

I It suffices to show maxδ ζPR(δ) = ζSDP = ζPR(δ∗), both cases
of ≤ are proved by analyzing the relaxations.
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Two level formulation of (`2-`0)

(`2-`0) is equivalent to

min
u∈Rp

min
z∈{0,1}p

1

2
‖Xdiag(u)z − y‖2

2 + λ
∑
i

zi .

Reformulation

min
u∈Rp

min
z∈{0,1}p

1

2

〈
Q(u),

[
1 zT

z zzT

]〉
,

where

Q(u) =

[
yT y −yTXdiag(u)

−diag(u)XT y diag(u)XTXdiag(u) + 2λI

]
The inner problem is a quadratic program with binary variables
(BQP).
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Replacing the inner BQP with its SDP relaxation

min
u∈Rp

min
z,Z

1

2

〈
Q(u),

[
1 zT

z Z

]〉
, (2LvlSDP)

s.t.

[
1 zT

z Z

]
� 0,Zii = zi ,∀i .

It turns out, that this two level problem is equivalent to our
relaxation (SDP). Given (b∗,B∗, z∗) to be an optimal solution to
(SDP), we can recover an optimal solution to

u∗i =

{
B∗
ii

b∗i
if b∗i 6= 0

1 if b∗i = 0
,Z ∗ij =


B∗
ij b

∗
i b

∗
j

B∗
ii B

∗
jj
, if BiiBjj 6= 0,

0 if BiiBjj = 0
.

Then can apply the Goemans-Williamson rounding to (z∗,Z ∗) to
generate a binary vector ẑGW . An approximate solution to (`2-`0)
is then constructed as

βi := u∗i ẑGW .
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Exact recovery rate - PWG vs. lasso
An experiment in [Pilanci, Wainwright & El Ghaoui, 2015]:
generate X with i.i.d N(0,1) entries, y = Xβtrue + ε, where ε has
i.i.d. N(0, γ2) entries. Solve convex relaxations of

min
β

1

2n
‖Xβ − y‖2

2 + ρ‖β‖2
2 s.t. ‖β‖0 ≤ k .
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Directly searching for dual certificate of exact recovery

Consider a variant of (SDP)

min
b∈Rp ,B∈Sp

1

2

〈[
yT y −yTX
−XT y ρIp + XTX

]
,

[
1 bT

b B

]〉
s.t.

[
1 bT

b B

]
� 0[

zi bi

bi Bii

]
� 0,∀i ,

p∑
i=1

zi ≤ k .

(SDPcons)

Use the KKT conditions to derive a bisection search to search for a
dual certificate that a solution (b∗,B∗, z∗) where z∗ is a binary
vector corresponding to the correct support of βtrue . If such a
certificate found, then b∗ solves (`2-`0).
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Bisection search for dual certificate

Theorem
Let S ⊆ {1, ..., n}, |S | = k and z∗ be a binary vector such that
z∗i = 1,∀i ∈ S and z∗i = 0,∀i /∈ S. Further let b∗ be the optimal
solution of the ridge regression in the restricted subspace, i.e.,

b∗ ∈ arg min
β∈Rp

{
‖Xβ − y‖2

2 + ρ‖β‖2
2

∣∣ βj = 0, ∀j /∈ S
}

Then (b∗, b∗b∗T , z∗) is optimal to (SDPcons) if and only if the
there is µ > 0 such that

f (µ) := λmax

{[
DS(µ) 0

0 DS̄(µ)

]
− XTX − ρIp

}
≤ 0, (2)

where DS(µ) is diagonal with entries µρ2v−2
i , i = 1, ..., |S |, and

similarly DS̄(λ) is diagonal with entries µ−1v 2
i , i = |S |+ 1, ..., p,

and vi = XT
i

(
ρI + XSXT

S

)−1
y , ∀i
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SDP v.s. PWG
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Summary and Some interesting questions
I Constructions in the lifted space corresponding to some

concave regularizers;
I An SDP relaxation (with moderate complexity) appears to be

attractive in recovering sparse signals.

Interesting questions:
I More elegant way to handle n < p, i.e., when XTX has

non-trivial null space. (Patching perspective relaxation and `1

norm in different subspaces?)
I Low rank approximation to (SDP)

min
b,R

‖Xb − y‖2
2 + 〈XTX ,RRT 〉+ λ

∑
j

b2
j

b2
j + `Tj `j

,

where R is p × r with r carefully chosen, `j is the j-th row of
matrix R, j = 1, ..., p. For Max-Cut SDPs, [Burer, Monteiro
& Zhang, 2000], [Grippo, Palagi, Piacentini, Piccialli &
Rinaldi, 2010].
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