Conic Relaxations for Spase Linear Regression

Hongbo Dong ${ }^{1}$

${ }^{1}$ Assistant Professor, Department of Mathematics, Washington State University, Pullman, WA

U.S.-Mexico Workshop on Optimization and Applications, Merida, Mexico, Jan. 5, 2016
Collaborators: Kun Chen and Jeff Linderoth.

Outline

Perspective relaxation and its projection

A minimax problem and its SDP formulation

Connection with Max-Cut and Goemans-Williamson rounding

Numerical Experiments

Outline

Perspective relaxation and its projection

A minimax problem and its SDP formulation

Connection with Max-Cut and Goemans-Williamson rounding

Numerical Experiments

Sparse linear regression

$$
\begin{equation*}
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{2}\|X \beta-y\|_{2}^{2}+\lambda\|\beta\|_{0} \tag{2}
\end{equation*}
$$

where $\|\beta\|_{0}:=\#\left\{i: \beta_{i} \neq 0\right\}$.

- Each row of X and corresponding entry of y is a sample of predictor and response variables;
- Quadratic form $\frac{1}{n} X^{T} X$ is the empirical covariance matrix of predictor random variables; (if independence among predictor vars is assumed, $\frac{1}{n} X^{\top} X \mapsto$ diagonal, as $n \mapsto+\infty$.)

Large literature on penalty functions

$$
\min _{\beta} \frac{1}{2}\|X \beta-y\|_{2}^{2}+\sum_{i} \rho\left(\beta_{i} ; \lambda, \delta\right) ;
$$

where δ is some other parameter that controls concavity, etc.

Figure: Penalty functions

We are interested in constructions in some lifted space and their projected form.

Some previous work in optimization community

- Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Mathematical Programming, Series A 74(2), 121-140 (1996)
- Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic optimization. Computational Optimization and Applications 43(1), 1-22 (2009)
- Zheng, X.J., Sun, X.L., and Li, D. Improving the performance of MIQP solvers for quadratic programs with cardinality and minimum threshold constraints: a semidefinite program approach, Informs Journal on Computing, http://dx.doi.org/10.1287/ijoc.2014.0592, (2014)
- Bertsimas, D., King, A., Mazumder, R.: Best subset selection via a modern optimization lens. submitted to Annals of Statistics (2014)
- M. Feng, J. E. Mitchell, J.-S. Pang, X. Shen, and A. Wächter Complementarity Formulations of IO-norm Optimization Problems, Technical Report, Sept. 2013.
- Pilanci, M., Wainwright, M.J., Ghaoui, L.E.: Sparse learning via Boolean relaxations. Mathematical Programming (Series B) 151, 63-87 (2015)

Binary indicator variables and perspective set

$$
z_{i}=\mathbb{I}_{\beta_{i} \neq 0}:= \begin{cases}1 & \text { if } \beta_{i} \neq 0, \\ 0 & \text { if } \beta_{i}=0 .\end{cases}
$$

Need big-M to formulate as MIQP in the original variable space.

Binary indicator variables and perspective set

$$
z_{i}=\mathbb{I}_{\beta_{i} \neq 0}:= \begin{cases}1 & \text { if } \beta_{i} \neq 0, \\ 0 & \text { if } \beta_{i}=0 .\end{cases}
$$

Need big-M to formulate as MIQP in the original variable space. However, with lifted variables $s_{i} \leftrightarrow \beta_{i}^{2}$ we have

$$
\begin{aligned}
\operatorname{conv}\left\{\left(\beta_{i}, s_{i}, z_{i}\right) \mid s_{i}=\right. & \left.\beta_{i}^{2}, z_{i}=\mathbb{I}_{\beta_{i} \neq 0}\right\}= \\
& \left\{\left(\beta_{i}, s_{i}, z_{i}\right) \mid s_{i} z_{i} \geq \beta_{i}^{2}, s_{i} \geq 0,0 \leq z_{i} \leq 1\right\} .
\end{aligned}
$$

Binary indicator variables and perspective set

$$
z_{i}=\mathbb{I}_{\beta_{i} \neq 0}:= \begin{cases}1 & \text { if } \beta_{i} \neq 0, \\ 0 & \text { if } \beta_{i}=0 .\end{cases}
$$

Need big-M to formulate as MIQP in the original variable space. However, with lifted variables $s_{i} \leftrightarrow \beta_{i}^{2}$ we have

$$
\begin{aligned}
\operatorname{conv}\left\{\left(\beta_{i}, s_{i}, z_{i}\right) \mid s_{i}=\right. & \left.\beta_{i}^{2}, z_{i}=\mathbb{I}_{\beta_{i} \neq 0}\right\}= \\
& \left\{\left(\beta_{i}, s_{i}, z_{i}\right) \mid s_{i} z_{i} \geq \beta_{i}^{2}, s_{i} \geq 0,0 \leq z_{i} \leq 1\right\} .
\end{aligned}
$$

Perspective relaxation by diagonal splitting ($\delta_{i} \in \mathbb{R}_{+}^{p}$ s.t. $\left.X^{\top} X-\operatorname{diag}(\delta) \succeq 0\right)$

$$
\begin{array}{ll}
\min _{b, z} & \frac{1}{2} b^{T}\left(X^{\top} X-\operatorname{diag}(\delta)\right) b-\left(X^{\top} y\right)^{T} b+\frac{1}{2} \sum_{i} \delta_{i} s_{i}+\lambda \sum_{i} z_{i} \\
\text { s.t., } & s_{i} z_{i} \geq b_{i}^{2}, s_{i} \geq 0,0 \leq z_{i} \leq 1 \forall i .
\end{array}
$$

Fully solves the $\ell_{2}-\ell_{0}$ problem if $X^{\top} X$ were diagonal,

Assumption: $X^{\top} X \succ 0$

- In order for our relaxations later to be meaningful, we assume the quadratic form in our objective function $X^{T} X$ is positive definite, (e.g. more data points than dimension of β).
- If this is not the case, (e.g. $p>n$), an additional regularization term $\mu\|\beta\|_{2}^{2}$ must be added. In statistics, this technique is called "stabilization", and is the basic idea of elastic net.

Perspective relaxation: the equivalent projected form

$$
\min _{b} \frac{1}{2}\|X b-y\|_{2}^{2}+\sum_{i} \rho_{\delta_{i}, \lambda}\left(b_{i}\right),
$$

where

$$
\rho_{\delta_{i}, \lambda}\left(b_{i}\right)=\min _{s_{i} i \geq b_{i}^{2}, s_{i} \geq 0, z_{i} \in[0,1]} \frac{1}{2} \delta_{i}\left(s_{i}-b_{i}^{2}\right)+\lambda z_{i} .
$$

Can find explicit form of $\rho_{\delta_{i}, \lambda}\left(b_{i}\right)$.

$$
\rho_{\delta_{i}, \lambda}\left(b_{i}\right)= \begin{cases}\sqrt{2 \delta_{i} \lambda}\left|b_{i}\right|-\frac{1}{2} \delta_{i} b_{i}^{2}, & \text { if } \delta_{i} b_{i}^{2} \leq 2 \lambda ; \tag{PR:penalty}\\ \lambda, & \text { if } \delta_{i} b_{i}^{2}>2 \lambda .\end{cases}
$$

Concave in terms of b_{i} on $[0,+\infty), \delta_{i}$ controls "concavity". Also concave in terms of δ_{i} for fixed b_{i}.

Rediscovery of Minimax Concave Penalty

(a) Penalty function

(b) Penalty gradient

In [Zhang, 2010], MCP is intuitively constructed by: find a C^{1} function on $[0,+\infty)$

- has positive direction derivative at $0+$;
- becomes flat after a threshold;
- minimize the max concavity.
- all δ_{i} are the same, and this parameter is tuned by some heuristics.

A convex relaxation in [Pilanci, Wainwright \& Ghaoui, 2015]

$$
\min _{\beta} \frac{1}{2}\|X \beta-y\|_{2}^{2}+\rho\|\beta\|_{2}^{2}+\lambda\|\beta\|_{0}
$$

Using Fenchel conjugacy, [Pilanci et al., 2015] derived convex relaxation:

$$
\min _{\beta} \frac{1}{2}\|X \beta-y\|_{2}^{2}+2 \lambda \sum_{i} H\left(\frac{\sqrt{\rho} \beta_{i}}{\sqrt{\lambda}}\right)
$$

where $H(t)$ is called reverse Huber penalty

$$
H(t)= \begin{cases}|t| & i f|t| \leq 1 \\ \frac{t^{2}+1}{2}, & \text { otherwise }\end{cases}
$$

Derivation using perspective relaxation

$$
\begin{aligned}
\min _{\beta} & \frac{1}{2}\|X \beta-y\|_{2}^{2}+\rho\|\beta\|_{2}^{2}+\lambda\|\beta\|_{0} \\
\min _{\beta} & \frac{1}{2}\|X \beta-y\|_{2}^{2}+\rho B_{i i}+\lambda z_{i}, \text { s.t. } B_{i i} z_{i} \geq \beta_{i}^{2}, z_{i} \in[0,1] \\
\min _{\beta} & \frac{1}{2}\|X \beta-y\|_{2}^{2}+\min _{z_{i} \in[0,1]} \rho \frac{\beta_{i}^{2}}{z_{i}}+\lambda z_{i}
\end{aligned}
$$

where

$$
\min _{z_{i} \in[0,1]} \rho \frac{\beta_{i}^{2}}{z_{i}}+\lambda z_{i}=\left\{\begin{array}{ll}
2 \sqrt{\rho \lambda}\left|\beta_{i}\right| & \text { if } \sqrt{\frac{\rho}{\lambda}}\left|\beta_{i}\right| \leq 1 \\
\frac{1}{2} \rho \beta_{i}^{2}+\lambda, & \text { otherwise }
\end{array}=2 \lambda H\left(\frac{\sqrt{\rho} \beta_{i}}{\sqrt{\lambda}}\right)\right.
$$

[Pilanci et. al., 2015] also proposed a convex relaxation (an SDP) for ℓ_{0} constrained case, which can also be equivalently derived by perspective relaxation in a constrained form.

Parameter selection for general perspective relaxation

Recall the diagonal splitting form,

$$
\begin{array}{ll}
\min _{b, z} & \frac{1}{2} b^{T}\left(X^{T} X-\operatorname{diag}(\delta)\right) b-\left(X^{T} y\right)^{T} b+\frac{1}{2} \sum_{i} \delta_{i} s_{i}+\lambda \sum_{i} z_{i} \\
\text { s.t., } & s_{i} z_{i} \geq b_{i}^{2}, s_{i} \geq 0,0 \leq z_{i} \leq 1 \quad \forall i
\end{array}
$$

δ is a $p \times 1$ vector. How do we choose parameter vector δ given this large degree of freedom?

Parameter selection for general perspective relaxation

Recall the diagonal splitting form,

$$
\begin{array}{ll}
\min _{b, z} & \frac{1}{2} b^{T}\left(X^{T} X-\operatorname{diag}(\delta)\right) b-\left(X^{T} y\right)^{T} b+\frac{1}{2} \sum_{i} \delta_{i} s_{i}+\lambda \sum_{i} z_{i} \\
\text { s.t., } & s_{i} z_{i} \geq b_{i}^{2}, s_{i} \geq 0,0 \leq z_{i} \leq 1 \quad \forall i
\end{array}
$$

δ is a $p \times 1$ vector. How do we choose parameter vector δ given this large degree of freedom?

Intuition: It is a convex relaxation iff $X^{\top} X-\boldsymbol{\operatorname { d i a g }}(\delta) \succeq 0$.

- Want δ "large" such that $X^{\top} X-\operatorname{diag}(\delta)$ has zero eigenvalues, however such δ is not unique;

Outline

Perspective relaxation and its projection

A minimax problem and its SDP formulation

Connection with Max-Cut and Goemans-Williamson rounding

Numerical Experiments

A Minimax formulation

$$
\inf _{b} \frac{1}{2}\|X b-y\|_{2}^{2}+\sup _{\delta \in \mathbb{R}_{+}^{p}}\left\{\sum_{i} \rho_{\delta_{i}, \lambda}\left(b_{i}\right) \mid X^{T} X-\operatorname{diag}(\delta) \succeq 0\right\}
$$

or equivalently

$$
\inf _{b} \sup _{\delta \in \mathbb{R}_{+}^{p}}\left\{\left.\frac{1}{2}\|X b-y\|_{2}^{2}+\sum_{i} \rho_{\delta_{i}, \lambda}\left(b_{i}\right) \right\rvert\, X^{T} X-\operatorname{diag}(\delta) \succeq 0\right\}
$$

Interpretation:

- Use pointwise supremum of all penalty functions that maintains convexity;
- As sup of convex functions is convex, outer minimization is still a convex problem.

Max-min problem

$$
\begin{equation*}
\sup _{\delta \in \mathbb{R}_{+}^{p}} \inf _{b}\left\{\left.\frac{1}{2}\|X b-y\|_{2}^{2}+\sum_{i} \rho_{\delta_{i}, \lambda}\left(b_{i}\right) \right\rvert\, X^{\top} X-\operatorname{diag}(\delta) \succeq 0\right\} . \tag{Sup-Inf}
\end{equation*}
$$

Interpretation:

- Inner minimization problem is always a convex relaxation for $\left(\ell_{2}-\ell_{0}\right)$;
- How to choose the parameter vector δ to maximize the lower bound?

Max-min problem

$$
\begin{equation*}
\sup _{\delta \in \mathbb{R}_{+}^{p}} \inf _{b}\left\{\left.\frac{1}{2}\|X b-y\|_{2}^{2}+\sum_{i} \rho_{\delta_{i}, \lambda}\left(b_{i}\right) \right\rvert\, X^{T} X-\operatorname{diag}(\delta) \succeq 0\right\} \tag{Sup-Inf}
\end{equation*}
$$

Interpretation:

- Inner minimization problem is always a convex relaxation for $\left(\ell_{2}-\ell_{0}\right)$;
- How to choose the parameter vector δ to maximize the lower bound?
In literature of perspective relaxation, e.g. [Billionnet and Elloumi, 2007] or [Zheng, Sun and Li, 2014], this "tightest lower bound" can be computed using a semidefinite relaxation.
- We show it is also the case here, an SDP relaxation computes a saddle point for (Inf-Sup) and (Sup-Inf);
- All "sup" and "inf" are attained given $X^{\top} X \succ 0$.

Existence of saddle point

Let $C=\left\{\delta \in \mathbb{R}_{+}^{p} \mid X^{T} X-\operatorname{diag}(\delta) \succeq 0\right\}, D:=\mathbb{R}^{p}$

$$
K(\delta, b):= \begin{cases}\frac{1}{2}\|X b-y\|_{2}^{2}+\sum_{i} \rho_{\delta_{i}, \lambda}\left(b_{i}\right), & \forall \delta \in C \tag{1}\\ -\infty, & \forall \delta \notin C\end{cases}
$$

Theorem (Theorem 37.6 in Convex Analysis, Rockafellar) Let $K(\delta, b)$ be a closed proper concave-convex function with effective domain $C \times D$. If both of the following conditions,

1. The convex functions $K(\delta, \cdot)$ for $\delta \in \mathbf{r i}(C)$ have no common direction of recession;
2. The convex functions $-K(\cdot, b)$ for $b \in \mathbf{r i}(D)$ have no common direction of recession;
are satisfied, then K has a saddle-point in $C \times D$. In other words, there exists $\left(\delta^{*}, b^{*}\right) \in C \times D$, such that

$$
\inf _{b \in D} \sup _{\delta \in C} K(\delta, b)=\sup _{\delta \in C} \inf _{b \in D} K(\delta, b)=K\left(\delta^{*}, b^{*}\right)
$$

SDP relaxation - primal and dual form

$$
\begin{align*}
\min _{b, z, B} & \frac{1}{2}\left\langle X^{T} X, B\right\rangle-y^{T} X b+\lambda \sum_{i} z_{i} \tag{SDP}\\
\text { s.t. } & \left(\begin{array}{cc}
1 & b^{T} \\
b & B
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
z_{i} & b_{i} \\
b_{i} & B_{i i}
\end{array}\right) \succeq 0, \quad \forall i . \\
\max _{\epsilon \in \mathbb{R}, \delta, t \in \mathbb{R}^{p}} & -\frac{1}{2} \epsilon \\
\text { s.t. } & \left(\begin{array}{cc}
\epsilon \\
-X^{\top} y-t \quad & X^{\top} X-y^{T} X-t^{T} \\
\operatorname{diag}(\delta)
\end{array}\right) \succeq 0 \tag{DSDP}\\
& \left(\begin{array}{cc}
2 \lambda & t_{i} \\
t_{i} & \delta_{i}
\end{array}\right) \succeq 0, \forall i
\end{align*}
$$

Strong duality holds by strict feasibility of (SDP).

SDP solves the minimax pair

Theorem
Assume $X^{\top} X \succ 0$, a saddle point for the minimax pair (Inf-Sup) and (Sup-Inf) can be obtained by solving (SDP) and (DSDP). Let $\left(b^{*}, z^{*}, B^{*}\right)$ and $\left(\epsilon^{*}, \delta^{*}, t^{*}\right)$ be optimal solutions to (SDP) and (DSDP) respectively, then $\left(\delta^{*}, b^{*}\right)$ is a saddle point for (Inf-Sup) and (Sup-Inf).

- Goal:

$$
\max _{\delta \in C} K\left(\delta, b^{*}\right)=\zeta_{S D P}=\min _{b \in \mathbb{R}^{p}} K\left(\delta^{*}, b\right) ;
$$

- It suffices to show $\max _{\delta} \zeta_{P R(\delta)}=\zeta_{S D P}=\zeta_{P R\left(\delta^{*}\right)}$, both cases of \leq are proved by analyzing the relaxations.

Outline

Perspective relaxation and its projection
 A minimax problem and its SDP formulation

Connection with Max-Cut and Goemans-Williamson rounding

Numerical Experiments

Two level formulation of $\left(\ell_{2}-\ell_{0}\right)$

$\left(\ell_{2}-\ell_{0}\right)$ is equivalent to

$$
\min _{u \in \mathbb{R}^{p}} \min _{z \in\{0,1\}^{p}} \frac{1}{2}\|X \operatorname{diag}(u) z-y\|_{2}^{2}+\lambda \sum_{i} z_{i} .
$$

Reformulation

$$
\min _{u \in \mathbb{R}^{p}} \min _{z \in\{0,1\}^{p}} \frac{1}{2}\left\langle Q(u),\left[\begin{array}{cc}
1 & z^{T} \\
z & z z^{T}
\end{array}\right]\right\rangle,
$$

where

$$
Q(u)=\left[\begin{array}{cc}
y^{\top} y & -y^{\top} X \operatorname{diag}(u) \\
-\mathbf{d i a g}(u) X^{\top} y & \operatorname{diag}(u) X^{\top} X \operatorname{diag}(u)+2 \lambda I
\end{array}\right]
$$

The inner problem is a quadratic program with binary variables (BQP).

Replacing the inner BQP with its SDP relaxation

$$
\begin{align*}
\min _{u \in \mathbb{R}^{p}} \min _{z, Z} & \frac{1}{2}
\end{aligned} \begin{aligned}
&\left\langle Q(u),\left[\begin{array}{cc}
1 & z^{T} \\
z & Z
\end{array}\right]\right\rangle \tag{2LvISDP}\\
& \text { s.t. }\left[\begin{array}{cc}
1 & z^{T} \\
z & Z
\end{array}\right] \succeq 0, Z_{i i}=z_{i}, \forall i .
\end{align*}
$$

It turns out, that this two level problem is equivalent to our relaxation (SDP). Given $\left(b^{*}, B^{*}, z^{*}\right)$ to be an optimal solution to (SDP), we can recover an optimal solution to

$$
u_{i}^{*}=\left\{\begin{array}{ll}
\frac{B_{i i}^{*}}{b_{i}^{*}} & \text { if } b_{i}^{*} \neq 0 \\
1 & \text { if } b_{i}^{*}=0
\end{array}, Z_{i j}^{*}=\left\{\begin{array}{ll}
\frac{B_{i j}^{*} b_{i}^{*} b_{j}^{*}}{B_{i j}^{*} B_{j j}^{*}}, & \text { if } B_{i i} B_{j j} \neq 0 \\
0 & \text { if } B_{i i} B_{j j}=0
\end{array} .\right.\right.
$$

Then can apply the Goemans-Williamson rounding to $\left(z^{*}, Z^{*}\right)$ to generate a binary vector $\hat{z}^{G W}$. An approximate solution to ($\ell_{2}-\ell_{0}$) is then constructed as

$$
\beta_{i}:=u_{i}^{*} \hat{z}^{G W} .
$$

Outline

Perspective relaxation and its projection

A minimax problem and its SDP formulation

Connection with Max-Cut and Goemans-Williamson rounding

Numerical Experiments

Exact recovery rate - PWG vs. Iasso

An experiment in [Pilanci, Wainwright \& El Ghaoui, 2015]: generate X with i.i.d $\mathrm{N}(0,1)$ entries, $y=X \beta_{\text {true }}+\epsilon$, where ϵ has i.i.d. $N\left(0, \gamma^{2}\right)$ entries. Solve convex relaxations of

$$
\min _{\beta} \frac{1}{2 n}\|X \beta-y\|_{2}^{2}+\rho\|\beta\|_{2}^{2} \text { s.t. }\|\beta\|_{0} \leq k .
$$

Directly searching for dual certificate of exact recovery

Consider a variant of (SDP)

$$
\begin{align*}
\min _{b \in \mathbb{R}^{\rho}, B \in \mathcal{S}^{\mathcal{P}}} & \frac{1}{2}\left\langle\left[\begin{array}{cc}
y^{\top} y & -y^{\top} X \\
-X^{\top} y & \rho I_{p}+X^{\top} X
\end{array}\right],\left[\begin{array}{cc}
1 & b^{T} \\
b & B
\end{array}\right]\right\rangle \\
\text { s.t. } & {\left[\begin{array}{cc}
1 & b^{\top} \\
b & B
\end{array}\right] \succeq 0 } \tag{cons}\\
& {\left[\begin{array}{cc}
z_{i} & b_{i} \\
b_{i} & B_{i i}
\end{array}\right] \succeq 0, \forall i, \quad \sum_{i=1}^{p} z_{i} \leq k . }
\end{align*}
$$

Use the KKT conditions to derive a bisection search to search for a dual certificate that a solution $\left(b^{*}, B^{*}, z^{*}\right)$ where z^{*} is a binary vector corresponding to the correct support of $\beta_{\text {true }}$. If such a certificate found, then b^{*} solves $\left(\ell_{2}-\ell_{0}\right)$.

Bisection search for dual certificate

Theorem

Let $S \subseteq\{1, \ldots, n\},|S|=k$ and z^{*} be a binary vector such that $z_{i}^{*}=1, \forall i \in S$ and $z_{i}^{*}=0, \forall i \notin S$. Further let b^{*} be the optimal solution of the ridge regression in the restricted subspace, i.e.,

$$
b^{*} \in \arg \min _{\beta \in \mathbb{R}^{p}}\left\{\|X \beta-y\|_{2}^{2}+\rho\|\beta\|_{2}^{2} \mid \beta_{j}=0, \forall j \notin S\right\}
$$

Then $\left(b^{*}, b^{*} b^{* T}, z^{*}\right)$ is optimal to (SDP cons $)$ if and only if the there is $\mu>0$ such that

$$
f(\mu):=\lambda_{\max }\left\{\left[\begin{array}{cc}
D_{S}(\mu) & 0 \tag{2}\\
0 & D_{\bar{S}}(\mu)
\end{array}\right]-X^{T} X-\rho I_{p}\right\} \leq 0
$$

where $D_{S}(\mu)$ is diagonal with entries $\mu \rho^{2} v_{i}^{-2}, i=1, \ldots,|S|$, and similarly $D_{\bar{S}}(\lambda)$ is diagonal with entries $\mu^{-1} v_{i}^{2}, i=|S|+1, \ldots, p$, and $v_{i}=X_{i}^{T}\left(\rho I+X_{S} X_{S}^{T}\right)^{-1} y, \forall i$

SDP v.s. PWG

Summary and Some interesting questions

- Constructions in the lifted space corresponding to some concave regularizers;
- An SDP relaxation (with moderate complexity) appears to be attractive in recovering sparse signals.

Interesting questions:

- More elegant way to handle $n<p$, i.e., when $X^{T} X$ has non-trivial null space. (Patching perspective relaxation and ℓ_{1} norm in different subspaces?)
- Low rank approximation to (SDP)

$$
\min _{b, R}\|X b-y\|_{2}^{2}+\left\langle X^{T} X, R R^{T}\right\rangle+\lambda \sum_{j} \frac{b_{j}^{2}}{b_{j}^{2}+\ell_{j}^{T} \ell_{j}}
$$

where R is $p \times r$ with r carefully chosen, ℓ_{j} is the j-th row of matrix $R, j=1, \ldots, p$. For Max-Cut SDPs, [Burer, Monteiro \& Zhang, 2000], [Grippo, Palagi, Piacentini, Piccialli \& Rinaldi, 2010].

