Inversion, history matching, clustering and linear algebra

Andrew R. Conn

arconn@us.ibm.com

IBM T.J. Watson Research Center

January, 2016, 4-8, Tenth U.S.-Mexico Workshop on Optimization and its Applications,

Merida, Mexico

Automatic History Matching

B History matching

$$
\begin{aligned}
& \hat{m}=\underset{m}{\operatorname{argmin}}\|\underset{\text { data misfit }}{F}(m 44, y)-d(y)\|_{3}^{2}+\underset{\text { reguarization }}{R} \\
& \text { s.t. } \quad d(y)=F(m, y)+U(\mu \\
& \text { constraints }
\end{aligned}
$$

ß Static model parameters

$$
m_{s} \equiv\{\kappa, \phi, \mathrm{~K}\}
$$

$ß$ Dynamic model state

$$
m_{d} \equiv\{p, S, \mathrm{~K}\}
$$

$ß$ Observed data

$$
d=\left\{p^{w}, S^{w}, q^{p, w}, \mathrm{~K}\right\}+\cup ́
$$

ß Simulation (observation)

$$
F(m)=\left\{p, S, q^{p}, \mathrm{~K}\right\}
$$

Tenth U.S.-Mexico Workshop on Optimization and its Applications
ßTypically an undetermined least-squares problem
ß"Classical" fit based on local well data. Many good fits.
ßThe vast null space means the problem is intrinsically ill-posed
ßOur purpose is to predict the future based upon (past) data.
ßVery few of the fits will do this successfully
ßNeed to make the problem less underdetermined
Two obvious things one should do
ßListen to and incorporate what the geologists can tell us
ßUse more global data than just the well-logs
If relevant and possible
ßUse smart linear algebra and updating

Integration of 4D seismic data into reservoir models

Use more global data than just the well-logs

	spatial resolution		temporal	alignment
	areal	vertical	resolution	
	low	high	high	geological layers - simulation grid
production data	High	low	low	seismic trace grid

Compensate for the spatial sparsity of the production data via seismic information

Furthermore we can exploit existing adjoint functionality of modern simulators by transforming the seismic data to "equivalent" pseudo-wells
IMPORTANT FOR THE OPTIMIZATION

First Trick : change into something you can solve

Adjoint (Derivative) Based History Matching with Virtual Wells
Advanced industrial simulators offer adjoint /derivative computation capability for wells

- Idea: Use virtual wells that mimic the
- (interpreted) saturation measurement
- of seismic information. So we have adjoints.

Impact on simulated fluid flows can be marginalized by:

- Volumetric sample of insignificant size does not interfere with fluids flow simulation
- Using a very short time-step when a saturation 'measurement' is conducted
- Shutting in virtual-wells when no
 measurement is taken

COMBINED PRODUCTION DATA \& 4D SEISMIC

4D seismic

Prediction from initial geological model

- Combined History Matching of production and 4D seismic leads to significant improvement in model performance (x10 improved match)
- Highly efficient workflow (hours replacing months)
- Understanding of boundaries and reservoir connectivity

Combined production - 4D History Match

The Practical effect of an underdetermined problem

DECISION RELEVANT PRIOR SAMPLING - THE FUTURE

- ... with very different predictions and predicted Net Present Value

producer 4

injector 2

injector 5

producer 5

injector 3

injector 6

producer 6

REDUCED ORDER MASS FLUX REPRESENTATION

 ß For each realization mass flux vector fields is computed $\dot{F}_{i}(x, y, z ; t)$
$ß$ Fluxes capture chief characteristics of dynamics, yet, 4D vector fields are of a large dimension ($3 \times$ grid cells x time steps)
ß Clustering in such large dimensional space is intractable
$ß$ Instead, reduced order representation of each flux is considered

Defining measures of similarity

Mass Flux Representation in Reduced Space

- Singular value decomposition of vector fields from all realizations enables reduced order representation

$$
U \Sigma V^{i}=\left[\dot{'}_{1}(x, y, z ; t), \dot{F}_{2}(x, y, z ; t), \mathrm{K}, \dot{F}_{n}(x, y, z ; t)\right]
$$

REPRESENTATION COEFFICIENTS

Assessing Clustering Results

DENDOGRAM OF WATER+OIL FLUX (short simulations Low Perm)

ß Flux clustering pick up complete spectrum of training rock models
$ß$ Big question! do these clusters provide different production scenarios?

Assessing Clustering Results

Dendograms based on OIL+WAT fluxes (Low Perm)

$ß$ A very narrow window of time (well modulations are key) is used and still we're able to pick up long-term trends in production data $ß$ Representatives can now be extracted

Field Water Production

- Size of initial ensemble can readily be reduced by orders of magnitude
- Each representative can be regarded as a sample from a density function
- This density function can further be used for History Matching, model maturation
- Practicality is not compromised as no full simulations are performed

Smart linear algebra and updating

AUGMENTED SINGULAR VALUE DECOMPOSITION (SVD)

BLet A be an augmentation of the matrices the matrices $A_{1} \in^{\circ}{ }^{m_{1} \times n} A_{2} \in^{\circ m_{2} \times n}$

$$
A=\left[\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right] \in \odot^{\circ\left(m_{1}+m_{2}\right) \times n}
$$

$ß$ Let the SVD decomposition of these matrices be given by:

$$
\begin{aligned}
& A_{1}=U_{1} S_{1} V_{1}^{*} \\
& A_{2}=U_{2} S_{2} V_{2}^{*}
\end{aligned}
$$

with $U_{i} \in{ }^{\circ m_{i} \times n}, S_{i} \in{ }^{0 n \times n}, V_{i} \in{ }^{0 n \times n}$

B We seek the decomposition $A=U S V^{*}$ of the augmented matrix A

AUGMENTED SVD - FORMULATION

ßBy definition

$$
{\underset{K}{*} A V=\left(V S^{*} U^{*}\right)\left(U S V^{*}\right) V=V S^{2} .}^{2}
$$

ß Starting with

$$
\underset{K}{A_{K}^{*} A V}=\left[\begin{array}{ll}
A_{1}^{*} & A_{2}^{*}
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
A_{2}
\end{array}\right] V=\left[\begin{array}{c}
\underset{M_{1}}{A_{2}^{*}} \\
A_{M_{2}}^{*} A_{1} \\
A_{M_{2}}^{*} A_{2}
\end{array}\right] V=V S^{2}
$$

ß Then solve the (relatively small) eigen-problem $K V=V S^{2}$
$ß U$ is then be given by

$$
U=A V S^{-1}=\left(U S V^{*}\right) V S^{-1}
$$

In our context we can ignore the reduction in stability

AUGMENTED SVD - FORMULATION

B Note that here, we can save some computation by utilizing the small $n \times n$ (number of columns) product

$$
A_{1}^{*} A_{1}=M_{1}
$$

from the previous run, and therefore, we retain the product

$$
A_{2}^{*} A_{2}=M_{2}
$$

for future use
$ß$ This process can be repeated further giving $M_{1}, M_{2}, \ldots, M_{k}$

$$
\left[M_{1}+M_{2}+\mathrm{K}+M_{k}\right] V=V S^{2}
$$

BLet us assume that a set of $n<m$ model realizations $A \in^{\circ} m \times n$
$ß$ Further assume their effective rank k is relatively small $k=n$

$$
\left\|A-U^{(k)} S^{(k)} V^{(k) i}\right\|_{2} \leq \delta_{k}
$$

BPartition A into s subsets for which we can effectively compute their SVD

$$
A=\left[A_{1}, A_{2}, \ldots, A_{s}\right]
$$

BSVD of each can be computed in parallel

$$
U_{1} S_{1} V_{1}^{i}=A_{1}, \quad U_{2} S_{2} V_{2}^{i}=A_{2}, \quad \ldots, \quad U_{s} S_{s} V_{s}^{i}=A_{s}
$$

ß Given singular values, we select the top singular entries

$$
\sum_{i} k_{i}=\mathrm{k}_{s} \geq \mathrm{k}
$$

$ß$ Reorthogonalize the union of the selected SVs

$$
\left[U_{1}^{\left(k_{1}\right)} S_{1}^{\left(k_{1}\right)} V_{1}^{\left(k_{1}\right) i}, U_{2}^{\left(k_{2}\right)} S_{2}^{\left(k_{2}\right)} V_{2}^{\left(k_{2}\right) i}, \ldots, U_{s}^{\left(k_{s}\right)} S_{s}^{\left(k_{s}\right)} V_{s}^{\left(k_{s}\right) i}\right]
$$

B $2^{\text {nd }}$ truncation can be performed now
ß The output would be $k_{T} \leq k_{s}$ ordered spanning vectors

BIf needed, randomly mix the remaining vectors for further distributed processing

BThe process is repeated until a sufficiently small set is obtained
B Finding a spanning set is a key problem for a broad range of numerical algorithms but for large scale matrices it is computationally intensive [of the order of $\min \left(\mathrm{m}^{2}, \mathrm{~m}^{2} \mathrm{n}\right)$ for $\mathrm{an} \mathbf{m} \times \mathrm{n}$ matrix] or even unattainable

MULTI-LEVEL DISTRIBUTED SPANNING SET - TEST

 CASE$ß A$ set is constructed of 50×20 random vectors
ß V ariability of additional 20 entries is simulated via noisy linear combination of the 50×20 set
ß 50x40 set was split into two 50×20 sets
$ß \underline{\text { M ore than }} 10$ SVDs were retain from each set

MULTI-LEVEL DISTRIBUTED SPANNING SET TRUNCATION ERROR

ß Following independent SVD and composition

residual truncated set

residual truncated distrbuted $\times 10^{-5}$

January 4-8, 2016, Merida, Mexico

Four Fundamental Unproved Theorems:

Asymptotics are rarely seen in practise but the best methods in theory are the best in practise.

A sensible person normally gives up on determining global optima (So a sensible nerson deesn't try to solve MINI Ps ???????)

Asymptotics are rarely seen in practise but the best methods in theory are the best in practise.

A sensible person normally gives up on determining global optima. It is always better to obtain and use derivatives if you can.

Asymptotics are rarely seen in practise but the best methods in theory are the best in practise.

A sensible person normally gives up on determining global optima. (So a sensible person doesn't try to solve MINLPs ???????)

It is always better to obtain and use derivatives if you can.

Simulated Annealing, Genetic Algorithms etc are usually for the ignorant or the desperate.

Asymptotics are rarely seen in practise but the best methods in theory are the best in practise.

A sensible person normally gives up on determining global optima. (So a sensible person doesn't try to solve MINLPs ???????)

It is always better to obtain and use derivatives if you can.
Simulated Annealing, Genetic Algorithms etc are usually for the ignorant or the desperate.

Asymptotics are rarely seen in practise but the best methods in theory are the best in practise.

A sensible person normally gives up on determining global optima. (So a sensible person doesn't try to solve MINLPs ???????)

It is always better to obtain and use derivatives if you can.
Simulated Annealing, Genetic Algorithms etc are usually for the ignorant or the desperate.

Algorithmic Background

Numerical Results: History Matching

50 layers of 2^{\prime} with 60×220 cells $20^{\prime} \times 10^{\prime}$
Up-scaled to $30 \times 110 \times 25$ cells of $80^{\prime} \times 40^{\prime} \times 4^{\prime}$
10 yrs production: 1 injector well, $1-4$ producers.
Optimize the number of wells and their locations to maximize the NPV of the field.

Algorithmic Background

Numerical Results (continued)

Number of variables being set is 14 continuous and 4 binary variables

Algorithmic Background

Numerical Results Compare NOMAD solutions \& ours

Run with 3 different tunings. The initial configuration is displayed at top left.

Algorithmic Background

Numerical Results (continued)

Number of variables being set is 4 continuous and 8 binary variables

Algorithmic Background

Numerical Results (continued)

Number of variables being set is 4 continuous and 8 binary variables

