CONTENTS IN BRIEF

1	Introduction	1
2	Forecasting and Demand Modeling	5
3	Deterministic Inventory Models	29
4	Stochastic Inventory Models	63
5	Multi-Echelon Inventory Models	117
6	Dealing with Uncertainty in Inventory Optimization	143
7	Facility Location Models	183
8	Dealing with Uncertainty in Facility Location	209
9	Process Flexibility	241
10	The Bullwhip Effect	255
11	Supply Chain Contracts	277
12	Auctions	305
Ар	pendix A: Multiple-Chapter Problems	321
Ар	pendix B: How to Write Proofs: A Short Guide	327
Appendix C: Helpful Formulas		337
Appendix D: Lagrangian Relaxation 3		341
Bibliography 34		

vii

CONTENTS

List	t of Figu	ires		xvii
List	of Tabl	les		xxi
Pre	face			xxiii
1	Intro	duction		1
	1.1	Overvi	ew of Supply Chain Management	1
	1.2	Levels	of Decision Making in Supply Chain Management	3
	1.3	Applic	ations of Supply Chain Management	3
2	Forecasting and Demand Modeling			5
	2.1	Introdu	iction	5
	2.2	Classic	al Demand Forecasting Methods	6
		2.2.1	Moving Average	6
		2.2.2	Exponential Smoothing	7
		2.2.3	Linear Regression	10
	2.3	Deman	d Modeling Techniques	11
	2.4	Bass D	iffusion Model	12
		2.4.1	The Model	13
				ix

х CONTENTS

		2.4.2	Discrete-Time Version	15
		2.4.3	Parameter Estimation	16
		2.4.4	Extensions	16
	2.5	Leading	g Indicator Approach	17
	2.6	Discret	e Choice Models	20
		2.6.1	Introduction to Discrete Choice	20
		2.6.2	The Multinomial Logit Model	22
		2.6.3	Example Application to Supply Chain Management	23
		Problem	ns	24
3	Deter	ministie	c Inventory Models	29
	3.1	Introdu	ction to Inventory Modeling	29
		3.1.1	Why Hold Inventory?	29
		3.1.2	Classifying Inventory Models	31
		3.1.3	Costs	33
		3.1.4	Inventory Level and Inventory Position	34
		3.1.5	Roadmap	35
	3.2	Continu	ous Review: The Economic Order Quantity Model	35
		3.2.1	Problem Statement	35
		3.2.2	Cost Function	36
		3.2.3	Optimal Solution	37
		3.2.4	Sensitivity to Q	40
		3.2.5	Order Lead Times	41
		3.2.6	Power-of-Two Policies	42
		3.2.7	The EOQ with Quantity Discounts	45
		3.2.8	The EOQ with Planned Backorders	51
	3.3	Periodi	c Review: The Wagner-Whitin Model	54
		3.3.1	Problem Statement	54
		3.3.2	Dynamic Programming Algorithm	55
		3.3.3	Extensions	57
		Problem	ns	58
4	Stoch	nastic Ir	wentory Models	63
	4.1	Prelimi	naries	63
	4.2	Deman	d Processes	65
	4.3	Continu	lous Review: (r, Q) Policies	65
		4.3.1	Problem Statement	65
		4.3.2	Approximate Model with Continuous Distribution	67

			CONTENTS	xi
		4.3.3	EOQB Approximation	73
		4.3.4	Exact Model with Discrete Distribution	73
	4.4	Periodi	c Review with Zero Fixed Costs: Base-Stock Policies	75
		4.4.1	Base-Stock Policies	76
		4.4.2	Single Period: The Newsvendor Model	76
		4.4.3	Finite Horizon	85
		4.4.4	Infinite Horizon	88
	4.5	Periodi	c Review with Non-Zero Fixed Costs: (s, S) Policies	90
		4.5.1	(s,S) Policies	90
		4.5.2	Single Period	91
		4.5.3	Finite Horizon	91
		4.5.4	Infinite Horizon	92
	4.6	Policy (Optimality	95
		4.6.1	Zero Fixed Costs: Base-Stock Policies	95
		4.6.2	Non-Zero Fixed Costs: (s, S) Policies	100
		Problem	ns	107
5	Multi-Echelon Inventory Models			117
	5.1	Introdu	ction	117
		5.1.1	Multi-Echelon Network Topologies	118
		5.1.2	Stochastic vs. Guaranteed Service	120
	5.2	Stochas	tic Service Models	121
		5.2.1	Serial Systems	121
		5.2.2	Exact Approach for Serial Systems	122
		5.2.3	Heuristic Approach for Serial Systems	124
		5.2.4	Other Network Topologies	125
	5.3	Guaran	teed Service Models	127
		5.3.1	Introduction	127
		5.3.2	Demand	128
		5.3.3	Single-Stage Network	128
		5.3.4	Serial Systems	130
		5.3.5	Tree Systems	132
		5.3.6	Solution Method	134
		Problem	ns	139
6	Deali	ng with	Uncertainty in Inventory Optimization	143
	6.1	Introdu	ction	143
	6.2	The Ris	sk-Pooling Effect	143

xii	CONTENTS

	6.2.1	Overview	143
	6.2.2	Problem Statement	144
	6.2.3	Decentralized System	144
	6.2.4	Centralized System	145
	6.2.5	Comparison	145
	6.2.6	Magnitude of Risk-Pooling Effect	146
	6.2.7	Final Thoughts	148
6.3	Postpo	nement	148
	6.3.1	Introduction	148
	6.3.2	Optimization Model	149
	6.3.3	Relationship to Risk Pooling	150
6.4	Transs	hipments	151
	6.4.1	Introduction	151
	6.4.2	Problem Statement	152
	6.4.3	Expected Cost	153
	6.4.4	Benefits of Transshipments	156
6.5	Introdu	action to Supply Uncertainty	158
6.6	Invento	bry Models with Disruptions	159
	6.6.1	The EOQ Model with Disruptions	160
	6.6.2	The Newsvendor Problem with Disruptions	163
6.7	Invento	bry Models with Yield Uncertainty	167
	6.7.1	The EOQ Model with Yield Uncertainty	168
	6.7.2	The Newsvendor Problem with Yield Uncertainty	170
6.8	The Ri	sk-Diversification Effect	171
	6.8.1	Problem Statement	171
	6.8.2	Notation	172
	6.8.3	Optimal Solution	172
	6.8.4	Mean and Variance of Optimal Cost	172
	6.8.5	Supply Disruptions and Stochastic Demand	174
	Proble	ms	174
Faci	lity Loca	ation Models	183
7.1	Introduction		183
7.2		ncapacitated Fixed-Charge Location Problem	185
	7.2.1	Problem Statement	185
	7.2.2	Formulation	186
	7.2.3	Solution Methods	188
	7.2.4	Lagrangian Relaxation	189

7

			CONTENTS	xiii
		7.2.5	Capacitated Version	197
	7.3	A Mult	i-Echelon, Multi-Commodity Model	198
		7.3.1	Introduction	198
		7.3.2	Problem Statement	199
		7.3.3	Formulation	200
		7.3.4	Lagrangian Relaxation	201
		Problem	ms	202
8	Deali	ng with	Uncertainty in Facility Location	209
	8.1	Introdu	iction	209
	8.2	The Lo	cation Model with Risk Pooling	210
		8.2.1	Introduction	210
		8.2.2	Problem Statement	211
		8.2.3	Notation	211
		8.2.4	Objective Function	212
		8.2.5	NLIP Formulation	213
		8.2.6	Lagrangian Relaxation	214
		8.2.7	Column Generation	221
	8.3	Stochas	stic and Robust Location Models	223
		8.3.1	Introduction	223
		8.3.2	The Stochastic Fixed-Charge Location Problem	224
		8.3.3	The Minimax Fixed-Charge Location Problem	226
	8.4	A Facil	lity Location Model with Disruptions	228
		8.4.1	Introduction	228
		8.4.2	Notation	230
		8.4.3	Formulation	232
		8.4.4	Lagrangian Relaxation	233
		8.4.5	Tradeoff Curves	235
		Probler	ns	236
9	Process Flexibility			241
	9.1	Introduction		
	9.2	Flexibility Design Guidelines		243
	9.3	A Proc	ess Flexibility Optimization Model	247
		9.3.1	Formulation	247
		9.3.2	Lagrangian Relaxation	249
		Problei	ns	251

10	The I	Bullwhip Effect	255
	10.1	Introduction	255
	10.2	Proving the Existence of the Bullwhip Effect	258
		10.2.1 Demand Signal Processing	259
		10.2.2 Rationing Game	263
		10.2.3 Order Batching	265
		10.2.4 Price Speculation	268
	10.3	Reducing the Bullwhip Effect	269
		10.3.1 Demand Signal Processing	269
		10.3.2 Rationing Game	270
		10.3.3 Order Batching	271
		10.3.4 Price Speculation	271
	10.4	Centralizing Demand Information	272
		10.4.1 Centralized System	272
		10.4.2 Decentralized System	273
		Problems	274
11	Supp	bly Chain Contracts	277
	11.1	Introduction	277
	11.2	Introduction to Game Theory	278
	11.3	Notation	280
	11.4	Preliminary Analysis	280
	11.5	The Wholesale Price Contract	283
	11.6	The Buyback Contract	288
	11.7	The Revenue Sharing Contract	294
	11.8	The Quantity Flexibility Contract	296
		Problems	299
12	Auct	ions	305
	12.1	Introduction	305
	12.2	The English Auction	307
	12.3	Combinatorial Auctions	309
		12.3.1 The Combinatorial Auction Problem	310
		12.3.2 Solving the Set-Packing Problem	311
		12.3.3 Truthful Bidding	313
		12.3.4 The Vickrey-Clarke-Groves Auction	313

	CONTENTS	XV		
Appendix A: Multiple-Chapter Problems 321				
	Problems	321		
Appendix	B: How to Write Proofs: A Short Guide	327		
B .1	How to Prove Anything	327		
B.2	Types of Things You May Be Asked to Prove	329		
B.3	Proof Techniques	331		
	B.3.1 Direct Proof	331		
	B.3.2 Proof by Contradiction	332		
	B.3.3 Proof by Mathematical Induction	333		
	B.3.4 Proof by Cases	334		
B.4	Other Advice	334		
Appendix	C: Helpful Formulas	337		
C.1	Standardizing Normal Random Variables	337		
C.2	Loss Functions	338		
	C.2.1 General Distributions	338		
	C.2.2 Standard Normal Distribution	338		
	C.2.3 Non-Standard Normal Distributions	338		
C.3	Differentiation of Integrals	339		
	C.3.1 Variable of Differentiation Not in Integral Limits	339		
	C.3.2 Variable of Differentiation in Integral Limits	339		
C.4	Geometric Series	339		
C.5	Normal Distributions in Microsoft Excel	340		
C.6	Partial Means	340		
A	D. Lawrennian Delavation	044		
••	D: Lagrangian Relaxation	341		
D.1	Overview	341		
D.2	Bounds	342		
D.3	Subgradient Optimization	344		
D.4	Stopping Criteria	346		
D.5	Other Problem Types	346		
	D.5.1 Inequality Constraints	347		
	D.5.2 Maximization Problems	347		
D.6	Branch and Bound	347		
D.7	Algorithm Summary	348		

XVI CONTENTS

Bibliography349Index359

LIST OF FIGURES

1.1	Schematic diagram of supply chain network.	2
1.2	Supply "chain."	3
2.1	Weight distribution.	8
2.2	Random demands with trend and seasonality.	10
2.3	Color TVs in the 1960s: Forecasts from Bass model and actual demands.	12
2.4	Bass diffusion curve.	13
2.5	An example of a leading-indicator product.	18
3.1	Inventory curve.	34
3.2	EOQ inventory curve.	37
3.3	Fixed, holding, and total costs as a function of Q .	38
3.4	Total purchase cost $c(Q)$ for Example 3.5.	46
3.5	Total cost curves for all-units quantity discount structure.	47
		xvii

XVIII LIST OF FIGURES

26	Tetal cost summer for in successful to satisfy diversity of the	40
3.6	Total cost curves for incremental quantity discount structure.	49
3.7	Total purchase $\cot c(Q)$ for modified all-units discounts structure.	51
3.8	EOQB inventory curve.	52
3.9	Wagner-Whitin network.	57
4.1	Inventory level (solid line) and inventory position (dashed line) under (r,Q) policy.	66
4.2	Expected inventory curve for (r, Q) policy.	68
4.3	DP results, $K = 0$: $y_t(x)$.	88
4.4	DP results, $K > 0$: $y_t(x)$.	93
4.5	Possible shapes of the function $H(y)$.	97
4.6	Non-convexity of $\theta_t(x)$.	102
4.7	K-convexity.	103
4.8	Properties of K-convex functions from Lemma 4.2.	103
4.9	Proof of Lemma 4.2.	104
5.1	Multi-echelon network topologies.	119
5.2	N-stage serial system in stochastic-service model.	121
5.3	Digital camera supply chain network.	127
5.4	Single-stage network.	129
5.5	N-stage serial system in guaranteed-service model.	130
5.6	Feasible region for two-stage system.	132
5.7	A counterexample to the "all-or-nothing" claim for tree systems.	134
5.8	Relabeling the network.	135
5.9	Example network for SSSPP DP algorithm.	137
6.1	Manufacturing process with postponement.	150
6.2	Possible realizations of transshipment and ending inventories.	154
6.3	EOQ inventory curve with disruptions.	161
6.4	EOQ inventory curve with yield uncertainty.	168
7.1	Facility location configurations. Squares represent facilities; circles represent customers.	184

LIST OF FIGURES XIX

8.1	Proof of Theorem 8.1(c).	217
8.2	Solution to problem (P_j) .	218
8.3	UFLP solution for 49-node data set.	229
8.4	UFLP solution for 49-node data set, after disruption of facility in Sacramento.	229
8.5	Reliable solution for 49-node data set.	231
8.6	Sample RFLP tradeoff curve.	236
9.1	Examples of flexibility configurations.	243
9.2	Two chaining structures.	246
9.3	Examples of different chaining structures for non-homogeneous demand case.	251
10.1	Increase in order variability in upstream supply chain stages.	256
10.2	Serial supply chain network.	258
10.3	Bullwhip effect simulation.	269
10.4	Bullwhip effect caused by price fluctuations.	270
11.1	Wholesale price and profits as a function of buyback credit.	293

LIST OF TABLES

2.1	Bass model parameters.	17
4.1	Sample demands and stockouts.	71
8.1	Disruption costs for optimal DCs.	230
10.1	Bounds on variability increase: Decentralized vs. centralized.	274
11.1	Payoffs for a sample game.	278
11.2	Payoffs after implementing a contract.	279
11.3	Contracting notation summary.	280
12.1	Valuations that induce non-truthful bidding.	313
12.2	Single-item VCG auction: Example.	315
12.3	Two-item VCG auction: Example.	316

xxi

FUNDAMENTALS OF SUPPLY CHAIN THEORY

Lawrence V. Snyder Lehigh University

Zuo-Jun Max Shen University of California, Berkeley

A JOHN WILEY & SONS, INC., PUBLICATION