
1

Performance variability
in

mixed integer programming

Emilie Danna
ILOG CPLEX R&D
edanna@ilog.com

MIP 2008

2

Example: 10 teams, CPLEX 11, Linux

Tried aggregator 1 time.
MIP Presolve eliminated 20 rows and 425 columns.
Reduced MIP has 210 rows, 1600 columns, and 9600 nonzeros.
Presolve time = 0.01 sec.
Clique table members: 170.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: none, using 1 thread.
Root relaxation solution time = 0.05 sec.

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 917.0000 140 917.0000 1100
0 0 924.0000 165 Cuts: 50 1969
0 0 924.0000 167 Cuts: 17 2348
0 0 924.0000 175 Cliques: 14 2731

* 0+ 0 924.0000 924.0000 2731 0.00%

Clique cuts applied: 16
Zero-half cuts applied: 3
Gomory fractional cuts applied: 1

Solution pool: 1 solution saved.

MIP - Integer optimal solution: Objective = 9.2400000000e+02
Solution time = 0.41 sec. Iterations = 2731 Nodes = 0

3

Example: 10 teams, CPLEX 11, AIX
Tried aggregator 1 time.
MIP Presolve eliminated 20 rows and 425 columns.
Reduced MIP has 210 rows, 1600 columns, and 9600 nonzeros.
Presolve time = 0.00 sec.
Clique table members: 170.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: none, using 1 thread.
Root relaxation solution time = 0.18 sec.

Nodes Cuts/
Node Left Objective IInf Best Integer Best Node ItCnt Gap

0 0 917.0000 151 917.0000 1053
0 0 924.0000 152 Cuts: 53 1801
0 0 924.0000 161 Cliques: 14 2336
0 0 924.0000 163 Cliques: 12 2609
0 2 924.0000 163 924.0000 2609

* 100+ 96 952.0000 924.0000 12316 2.94%
1000 520 926.7273 85 952.0000 924.0000 97832 2.94%

* 1425 0 integral 0 924.0000 924.0000 122948 0.00%

Clique cuts applied: 12
Zero-half cuts applied: 4
Gomory fractional cuts applied: 2

Solution pool: 2 solutions saved.

MIP - Integer optimal solution: Objective = 9.2400000000e+02
Solution time = 41.39 sec. Iterations = 122948 Nodes = 1426

4

Definition (1)

� Performance variability

� change in performance (solving time, # nodes, #
iterations, …)

� for the same model

� created by a change in the solver or the environment

� that is seemingly performance neutral

� in short, change in performance we do not
understand

5

Definition (2)

� The topic of this talk is not (but is related to)

� Change in performance due to improving algorithms

� Change in performance due to change in MIP
formulation for the same problem

� Change in performance due to change in data

6

Questions

� What is the extent of variability?

� What are the causes of variability?

� Variability generator
� How to generate variability in order to study it?

� Solver
� What algorithms or implementations cause variability?
� Can we make solvers more robust and therefore faster?

� Model
� What characteristics make a model variable?

� What are the consequences of variability?

7

Experimental setup (1)

� 368 models that solve to 0.01% gap between 10 and
100 seconds with CPLEX 11

� Homogeneous set

� Large enough for statistical analysis

� Performance is measured as the number of simplex
iterations

� We are really interested in the solving time

� But solving time is difficult to measure precisely

� The number of iterations is a better proxy than the number of
nodes

8

Experimental setup (2)

� For each model

� Performance with the original conditions
� niters(orig)

� Performance with perturbed conditions
� for i = 1...10 different instances of the same variability

generator g
� niters(g,i)

� Variability (g) is estimated as
� standard deviation of the sample
� niters (g,i) / niters (orig), i = 1...10

9

First variability generator:
permutations

10

Definition and properties

� Random permutations of rows and columns

� Should be performance neutral

� Affects all components of the solver

11

Distribution of variability (1)

12

In practice, what does a variability of ‘v’ mean?

� Variability ~ 0.1: small and reasonable variations

� Variability ~ 1 : already quite large

� Variability > 10 : terrible

Variability
0.1053 0.89 1.08 0.86 1.02 0.89 0.88 0.87 0.98 1.09 1.13
0.0900 1.06 1.08 0.97 1.21 1.03 1 1.1 0.91 1.1 1.17
0.1183 0.96 1.18 0.88 0.85 0.88 1 0.96 1.09 0.82 1.08

Variability
0.9728 0.69 0.9 2.46 0.67 1.03 0.95 0.9 1.11 2.49 3.47
0.9448 1.7 0.4 2.39 0.9 0.74 0.63 0.35 0.51 3.14 0.81

Variability
10.4249 3.95 23.9 5.11 4.23 22.16 8.45 1.46 30.07 5.09 3.17
18.9003 3.78 2.1 2.35 1.92 3.02 3.72 62.29 1.41 3.5 1.48
88.7852 1.12 229.4 0.92 0.84 0.65 0.67 0.73 0.65 0.59 191.1

13

Distribution of variability (2)

� Models for which v > 10
� The number computed is a poor estimation of the true

variability for these models

� In the following, we truncate v > 10 to v = 10 to have a more
“robust” estimate

15.8%1 < v <= 10

3.3%v > 10

64.4%0.1 < v <= 1

16.6%v <= 0.1

0.29Median (v)

14

Distribution of variability (3)

15

Are permutations really performance neutral?

� Performance on permuted vs. original models

� +30% more time

� +8% more branch & bound nodes

� +13% more simplex iterations

� Why?

16

Locality

� Cache misses when solving the root LP on permuted vs. original
models (measured with cachegrind):

� The increase in cache misses is a good candidate to explain the
increase in time per iteration and time per node

� We presume the locality also affects the discrete components of
the MIP solver

+13%

+36%

Geometric mean

~200 cycles

~10 cycles

Impact of one
cache miss

+4%

+34%

Median

L2 data cache

L1 data cache

17

Quantifying locality: matrix dispersion

()
{ }

1)(0

2
)(

otherwise 0

0 and 0or 0 and 0 if 1

0 ,..1#

1

1

1 1
1,,

1,,

1,,1,,1,,

,

..1,..1,

≤≤

=

=

=≠≠==

≠∈=

=

∑

∑∑

=

−

= =
+

+

+++

==

ADispersion

nz
ADispersion

aaaa

aminz

aA

n

j
j

n

j

m

i
jji

jji

jijijijijji

jij

njmiji

δ

δ
δ

18

Matrix dispersion and permutations

� +91% dispersion on permuted models
compared to original models

� The order of rows and columns chosen by a human
modeler creates matrices with a small dispersion

� But no correlation between the increase in
dispersion and the performance degradation

19

Permutations: SCIP

� SCIP with CPLEX as the LP solver

� Subset of 135 models: models that solve to
0.01% gap with SCIP in less than 500 seconds

20

Permutations: SCIP vs. CPLEX

� Variability and performance need to be interpreted together

� SCIP is about 4 times slower than CPLEX on this subset of 135
models (and about 20 times slower on the entire set of 368 models)

� No correlation between variability for CPLEX and SCIP

12.6%13.3%1 < v <= 10

2.2%

76.3%

8.1%

0.29

CPLEX

1.5%

66.7%

19.3%

0.24

SCIP

v > 10

0.1 < v <= 1

v <= 0.1

Median (v)

21

Second variability generator:
random generator initialization

22

Definition and properties

� Change the seed of the random number
generator

� Should really be performance neutral

� Affects mainly heuristics

� But once the path is changed, everything is affected

� Experiments with CPLEX on Linux and AIX

23

Comparison of variabilities

Correlation = 0.7 (0.59 without truncation)

24

Difference between AIX and Linux?

� Correlation = 0.51 (0.04 without truncation)

25

Third variability generator:
degenerate pivots

26

Definition and properties

� Make a few random dual degenerate pivots at
the root

� The root LP basis is different, therefore all LP-
based components that follow give different
results: cuts, branching, most heuristics, …

� Cannot be applied to some problems

� Either there are no degenerate pivots

� Or CPLEX refuses to do those pivots for numerical
reasons

27

Comparison of variabilities

� Correlation = 0.53 (0.93 without truncation)

28

Conclusions on variability generators (1)

� No clear winner: each generator has its advantages
and drawbacks

YesNoNoYesApplies to all types of
problems

YesAlmostNoYesAffects all components
of the solver

Yes / No

Yes

Degenerate

pivots

NoYesYesMany instances of the
generator can be
applied

YesYesNoPerformance

neutral

Change

of

platform

Seed for

random generator

PermutationsGenerator

/

property

29

Conclusions on variability generators (2)

� Variability depends on the model and the solver

� Given a model and a solver, variability does not
depend much on the generator

30

Causes of variability

31

Possible causes

� Component of the solver

� Heuristics, branching, cuts, …

� Aspect of optimization

� Is obtaining the optimal solution less or more robust
than proving its optimality?

� Characteristic of the model

� Landscape of optimal solutions, numerical instability,
…

32

Variability when the optimal solution is known

33

Variability when the optimal solution is known

� Finding the optimal solution is a significant cause of
variability, especially for extreme cases

4.6%6.2%1 < v <= 10

2.4%

39.4%

51.9%

0.1019

CPLEX without
MIP start

0.5%

29.1%

65.8%

0.0001

CPLEX with the
optimal MIP start

v > 10

0.1 < v <= 1

v <= 0.1

Median (v)

34

Variability and number of alternative optima

� No correlation

35

Variability and numerical instability

� No correlation

36

Conclusions on causes of variability

� One known factor: finding the optimal solution

� Many unknown causes

� Future work: looking at the correlation between
variability and a given model characteristic is simplistic

� The correlation is very much influenced by extreme cases

� Variability might be determined by several factors at once

� Looking in more details at the results (did not find the essential
cut, did not find the optimal solution, did not branch on the right
variable, …?) should give more insight

37

Consequences of variability

38

Consequences for benchmarking (1)

� The performance difference between code A
and code B measures

� The true effect of the code change

� Noise (variability)

� The analysis of benchmarking results needs to
distinguish between the two

39

Consequences for benchmarking (2)

� Large model sets

� Or, artificially increase the size of test sets with a variability
generator

� Statistical analysis of results
� The majority of papers use descriptive statistics

� Performance profiles are a step in the right direction

� But benchmarking observations provide only an estimation of
the true effect

� Therefore, we need inferential statistics (statistical tests,
confidence intervals, …) to answer questions such as:

� How likely is it that the performance difference observed is
created by variability rather than by my algorithmic change?

40

Consequences for R&D

� Variability is annoying

� But it is an opportunity for

� performance improvement

� better understanding what makes optimization hard
in practice

