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Example: 10 teams, CPLEX 11, Linux

Tried aggregator 1 time.
MIP Presolve eliminated 20 rows and 425 columns.
Reduced MIP has 210 rows, 1600 columns, and 9600 nonzeros.
Presolve time =    0.01 sec.
Clique table members: 170.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: none, using 1 thread.
Root relaxation solution time =    0.05 sec.

Nodes                                         Cuts/
Node  Left     Objective  IInf Best Integer     Best Node    ItCnt Gap

0     0      917.0000   140                    917.0000   1100         
0     0      924.0000   165                    Cuts: 50   1969         
0     0      924.0000   167                    Cuts: 17   2348         
0     0      924.0000   175                 Cliques: 14   2731         

*     0+    0                          924.0000      924.0000 2731    0.00%

Clique cuts applied:  16
Zero-half cuts applied:  3
Gomory fractional cuts applied:  1

Solution pool: 1 solution saved.

MIP - Integer optimal solution:  Objective =  9.2400000000e+02
Solution time =    0.41 sec.  Iterations = 2731  Nodes = 0
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Example: 10 teams, CPLEX 11, AIX
Tried aggregator 1 time.
MIP Presolve eliminated 20 rows and 425 columns.
Reduced MIP has 210 rows, 1600 columns, and 9600 nonzeros.
Presolve time =    0.00 sec.
Clique table members: 170.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: none, using 1 thread.
Root relaxation solution time =    0.18 sec.

Nodes                                         Cuts/
Node  Left     Objective  IInf Best Integer     Best Node    ItCnt Gap

0     0      917.0000   151                    917.0000   1053         
0     0      924.0000   152                    Cuts: 53   1801         
0     0      924.0000   161                 Cliques: 14   2336         
0     0      924.0000   163                 Cliques: 12   2609         
0     2      924.0000   163                    924.0000   2609         

*   100+   96                          952.0000      924.0000   12316    2.94%
1000   520      926.7273    85      952.0000      924.0000   97832    2.94%

*  1425     0      integral     0      924.0000      924.0000 122948    0.00%

Clique cuts applied:  12
Zero-half cuts applied:  4
Gomory fractional cuts applied:  2

Solution pool: 2 solutions saved.

MIP - Integer optimal solution:  Objective =  9.2400000000e+02
Solution time =   41.39 sec.  Iterations = 122948  Nodes = 1426
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Definition (1)

� Performance variability

� change in performance (solving time, # nodes, # 
iterations, …) 

� for the same model

� created by a change in the solver or the environment

� that is seemingly performance neutral 

� in short, change in performance we do not 
understand
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Definition (2)

� The topic of this talk is not (but is related to)

� Change in performance due to improving algorithms

� Change in performance due to change in MIP 
formulation for the same problem

� Change in performance due to change in data
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Questions

� What is the extent of variability?

� What are the causes of variability?

� Variability generator
� How to generate variability in order to study it?

� Solver
� What algorithms or implementations cause variability?
� Can we make solvers more robust and therefore faster?

� Model
� What characteristics make a model variable?

� What are the consequences of variability?
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Experimental setup (1)

� 368 models that solve to 0.01% gap between 10 and 
100 seconds with CPLEX 11

� Homogeneous set

� Large enough for statistical analysis

� Performance is measured as the number of simplex 
iterations

� We are really interested in the solving time

� But solving time is difficult to measure precisely

� The number of iterations is a better proxy than the number of 
nodes
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Experimental setup (2)

� For each model

� Performance with the original conditions
� niters(orig)

� Performance with perturbed conditions
� for i = 1...10 different instances of the same variability 

generator g
� niters(g,i)

� Variability (g) is estimated as 
� standard deviation of the sample 
� niters (g,i) / niters (orig), i = 1...10
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First variability generator:
permutations
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Definition and properties

� Random permutations of rows and columns

� Should be performance neutral

� Affects all components of the solver
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Distribution of variability (1)
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In practice, what does a variability of ‘v’ mean?

� Variability ~ 0.1: small and reasonable variations

� Variability ~ 1 : already quite large

� Variability > 10 : terrible

Variability
0.1053 0.89 1.08 0.86 1.02 0.89 0.88 0.87 0.98 1.09 1.13
0.0900 1.06 1.08 0.97 1.21 1.03 1 1.1 0.91 1.1 1.17
0.1183 0.96 1.18 0.88 0.85 0.88 1 0.96 1.09 0.82 1.08

Variability
0.9728 0.69 0.9 2.46 0.67 1.03 0.95 0.9 1.11 2.49 3.47
0.9448 1.7 0.4 2.39 0.9 0.74 0.63 0.35 0.51 3.14 0.81

Variability
10.4249 3.95 23.9 5.11 4.23 22.16 8.45 1.46 30.07 5.09 3.17
18.9003 3.78 2.1 2.35 1.92 3.02 3.72 62.29 1.41 3.5 1.48
88.7852 1.12 229.4 0.92 0.84 0.65 0.67 0.73 0.65 0.59 191.1
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Distribution of variability (2)

� Models for which v > 10
� The number computed is a poor estimation of the true 

variability for these models

� In the following, we truncate v > 10 to v = 10 to have a more 
“robust” estimate

15.8%1 < v <= 10

3.3%v > 10

64.4%0.1 < v <= 1

16.6%v <= 0.1

0.29Median (v)
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Distribution of variability (3)
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Are permutations really performance neutral?

� Performance on permuted vs. original models

� +30% more time

� +8% more branch & bound nodes

� +13% more simplex iterations

� Why?
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Locality

� Cache misses when solving the root LP on permuted vs. original 
models (measured with cachegrind):

� The increase in cache misses is a good candidate to explain the 
increase in time per iteration and time per node

� We presume the locality also affects the discrete components of 
the MIP solver

+13%

+36%

Geometric mean

~200 cycles

~10 cycles

Impact of one 
cache miss

+4%

+34%

Median

L2 data cache

L1 data cache
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Quantifying locality: matrix dispersion
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Matrix dispersion and permutations

� +91% dispersion on permuted models 
compared to original models

� The order of rows and columns chosen by a human 
modeler creates matrices with a small dispersion

� But no correlation between the increase in 
dispersion and the performance degradation
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Permutations: SCIP

� SCIP with CPLEX as the LP solver

� Subset of 135 models: models that solve to 
0.01% gap with SCIP in less than 500 seconds
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Permutations: SCIP vs. CPLEX

� Variability and performance need to be interpreted together

� SCIP is about 4 times slower than CPLEX on this subset of 135 
models (and about 20 times slower on the entire set of 368 models)

� No correlation between variability for CPLEX and SCIP

12.6%13.3%1 < v <= 10

2.2%

76.3%

8.1%

0.29

CPLEX

1.5%

66.7%

19.3%

0.24

SCIP

v > 10

0.1 < v <= 1

v <= 0.1

Median (v)
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Second variability generator: 
random generator initialization
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Definition and properties

� Change the seed of the random number 
generator

� Should really be performance neutral

� Affects mainly heuristics

� But once the path is changed, everything is affected

� Experiments with CPLEX on Linux and AIX
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Comparison of variabilities

Correlation = 0.7 (0.59 without truncation)
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Difference between AIX and Linux?

� Correlation = 0.51 (0.04 without truncation)
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Third variability generator: 
degenerate pivots
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Definition and properties

� Make a few random dual degenerate pivots at 
the root

� The root LP basis is different, therefore all LP-
based components that follow give different 
results: cuts, branching, most heuristics, …

� Cannot be applied to some problems

� Either there are no degenerate pivots

� Or CPLEX refuses to do those pivots for numerical 
reasons
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Comparison of variabilities

� Correlation = 0.53 (0.93 without truncation)
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Conclusions on variability generators (1)

� No clear winner: each generator has its advantages 
and drawbacks

YesNoNoYesApplies to all types of 
problems

YesAlmostNoYesAffects all components 
of the solver

Yes / No

Yes

Degenerate 

pivots

NoYesYesMany instances of the 
generator can be 
applied

YesYesNoPerformance 

neutral

Change 

of 

platform

Seed for 

random generator

PermutationsGenerator 

/ 

property
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Conclusions on variability generators (2)

� Variability depends on the model and the solver

� Given a model and a solver, variability does not 
depend much on the generator
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Causes of variability



31

Possible causes

� Component of the solver

� Heuristics, branching, cuts, …

� Aspect of optimization

� Is obtaining the optimal solution less or more robust 
than proving its optimality?

� Characteristic of the model

� Landscape of optimal solutions, numerical instability, 
…
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Variability when the optimal solution is known
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Variability when the optimal solution is known

� Finding the optimal solution is a significant cause of 
variability, especially for extreme cases

4.6%6.2%1 < v <= 10

2.4%

39.4%

51.9%

0.1019

CPLEX without 
MIP start

0.5%

29.1%

65.8%

0.0001

CPLEX with the 
optimal MIP start

v > 10

0.1 < v <= 1

v <= 0.1

Median (v)
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Variability and number of alternative optima

� No correlation
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Variability and numerical instability

� No correlation
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Conclusions on causes of variability

� One known factor: finding the optimal solution

� Many unknown causes

� Future work: looking at the correlation between 
variability and a given model characteristic is simplistic

� The correlation is very much influenced by extreme cases

� Variability might be determined by several factors at once

� Looking in more details at the results (did not find the essential 
cut, did not find the optimal solution, did not branch on the right 
variable, …?) should give more insight
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Consequences of variability
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Consequences for benchmarking (1)

� The performance difference between code A 
and code B measures

� The true effect of the code change 

� Noise (variability)

� The analysis of benchmarking results needs to 
distinguish between the two
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Consequences for benchmarking (2)

� Large model sets

� Or, artificially increase the size of test sets with a variability 
generator

� Statistical analysis of results
� The majority of papers use descriptive statistics

� Performance profiles are a step in the right direction

� But benchmarking observations provide only an estimation of 
the true effect

� Therefore, we need inferential statistics (statistical tests, 
confidence intervals, …) to answer questions such as: 

� How likely is it that the performance difference observed is 
created by variability rather than by my algorithmic change?
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Consequences for R&D

� Variability is annoying

� But it is an opportunity for 

� performance improvement

� better understanding what makes optimization hard 
in practice


