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Motivation: Cable-Trench Problems

• A single commodity must be supplied to a set of customers from a
central supply point.

• We want to design a network, possibly obeying capacity and other side
constraints.

• In the Cable-Trench Problem, we consider both

– the cost of construction (the sum of lengths of all links), and
– the latency of the resulting network (the sum of length multiplied by

demand carried for all links).

• These are competing objectives for which we would like to analyze the
tradeoff.

• We can formulate this problem as a biobjective integer program.
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Solutions for a Small CTP Instance
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Biobjective Mixed-integer Programs

A biobjective or bicriterion mixed-integer program (BMIP) is an optimization
problem of the form

vmax f(x)
subject to x ∈ X,

where

• f : Rn → R2 is the (bicriterion) objective function, and

• X ⊂ Zp × Rn−p is the feasible region, usually defined to be

{x ∈ Zp × Rn−p | gi(x) ≤ 0, i = 1, . . . , m}

for functions gi : Rn → R, i = 1, . . . , m.

The vmax operator indicates that we are interested in generating the efficient
solutions (defined next).
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Some Definitions

• x1 ∈ X dominates x2 ∈ X if fi(x1) ≥ fi(x2) for i = 1, 2 and at least
one inequality is strict.

• If both inequalities are strict the dominance is strong (otherwise weak).

• Any x ∈ X not dominated by any other member of X is said to be
efficient.

• The set of outcomes is defined to be Y = f(X) ⊂ R2.

• In outcome space, BMIP can be restated as

vmax y
subject to y ∈ f(X),

• If x ∈ X is efficient, then y = f(x) is Pareto.

• For simplicity, we work in outcome space.

• Our goal is to generate the set of all Pareto outcomes.
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Illustrating Pareto Outcomes

6/6/06



MIP 2006 7

Probing Algorithms

• A wide array of algorithms for generating Pareto outcomes have been
proposed.

• We will focus on probing algorithms that scalarize the objective, i.e.,
replace it with a single criterion.

• Such algorithms reduce solution of a BMIP to a series of MIPs.

• The main factor in the running time is the number of probes.

• The most obvious scalarization is the weighted sum objective.

• We replace the original objective with

max
y∈f(X)

βy1 + (1− β)y2

to obtain a parameterized family of MIPs.
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Supported Outcomes

• Optimal solutions to weighted sum MIPs are extreme points of conv(YE).

• Such outcomes are called supported outcomes.

• The set of all supported outcomes can easily be generated by solving a
sequence of MIPs.

• Every supported outcome is Pareto, but the converse is not true.

• This makes it difficult as a tool to generate all Pareto outcomes.

• Chalmet (1986) suggested restricting the subproblems so that each
Pareto outcome is supported on some subregion.

• Using this technique, it is possible to generate all Pareto outcomes.
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Quick Example

vmax [8x1, x2]

s.t. 7x1 + x2≤ 56

28x1 + 9x2≤ 252

3x1 + 7x2≤ 105

x1, x2≥ 0
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The Weighted Chebyshev Norm

• To generate unsupported outcomes, we replace the weighted sum
objective with a weighted Chebyshev norm (WCN) objective.

• The Chebyshev norm (l∞ norm) in R2 is defined by ‖y‖∞ =
max{|y1|, |y2|}.

• The weighted Chebyshev norm with weight 0 ≤ β ≤ 1 is defined by
‖y‖∞ = max{β|y1|, (1− β)|y2|}.

• The ideal point y∗ is (y∗1, y
∗
2) where y∗i = maxx∈X(f(x))i.

• Methods based on the WCN select outcomes with minimum WCN
distance from the ideal point by solving

min
y∈f(X)

{‖y∗ − y‖β
∞}. (1)

• Bowman (1976) showed that every Pareto outcome is a solution to (1)
for some 0 ≤ β ≤ 1.

• The converse only holds if the instance is uniformly dominant.
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Illustrating the WCN

ideal point
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Uniform Dominance

• Members of X that are not strongly dominated by some efficient solution
are called weakly dominated.

• Weakly dominated solutions are optimal to (1) for some β.

• If X does not contain any weakly dominated solutions, then the instance
is said to be uniformly dominant.

• The assumption of uniform dominance simplifies computation
substantially, but is not satisfied in most practical settings.

• The deal with this, we need to modify the algorithm.
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Ordering the Pareto Outcomes

• Eswaran (1989) suggested ordering the Pareto outcomes so that

– YE = {yp | 1 ≤ p ≤ N}, and
– if p < q, then yp

1 < yq
1 (and hence yp

2 > yq
2).

• For any Pareto outcome yp, if we define

βp = (y∗2 − yp
2)/(y∗1 − yp

1 + y∗2 − yp
2),

then yp is the unique optimal outcome for (1) with β = βp.

• For any pair of Pareto outcomes yp and yq with p < q, if we define

βpq = (y∗2 − yq
2)/(y∗1 − yp

1 + y∗2 − yq
2), (2)

then yp and yq are both optimal outcomes for (1) with β = βpq.

• This provides us with a notion of adjacency and breakpoints.
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Breakpoints Between Pareto Outcomes with the WCN
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Algorithms Based on the WCN

• Eswaran (1989) proposed an algorithm based on binary search over the
values of β, but the number of probes can be prohibitive.

• Solanki (1991) proposed an algorithm to generate an approximation to
the Pareto set using the WCN.

• The Solanki algorithm probes between pairs of known outcomes using a
procedure similar to that of Chalmet.

• We propose an algorithm that extends Solanki’s ideas.

• The WCN Algorithm

– is based on standard MILP solution techniques,
– can produce all Pareto outcomes with 2N − 1 probes, and
– can produce the breakpoints between solutions.
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The WCN Algorithm

Let P (β) be the parameterized subproblem defined by (1) for a given weight
β. The WCN algorithm is then:

Initialization Solve P (1) and P (0) to identify optimal outcomes y1 and
yN , respectively, and the ideal point y∗ = (y1

1, y
N
2 ). Set I = {(y1, yN)}.

Iteration While I 6= ∅ do:

1. Remove any (yp, yq) from I.
2. Compute βpq as in (2) and solve P (βpq). If the outcome is yp or yq,

then yp and yq are adjacent in the list (y1, y2, . . . , yN).
3. Otherwise, a new outcome yr is generated. Add (yp, yr) and (yr, yq)

to I.

This reduces solution of the original BMIP to solution of a sequence of
2N−1 subproblems, but still requires the assumption of uniform dominance.
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Solving P (β)

• Problem (1) is equivalent to

minimize z
subject to z ≥ β(y∗1 − y1),

z ≥ (1− β)(y∗2 − y2), and
y ∈ f(X).

(3)

• This is a MIP, which can be solved by standard methods.

• This reformulation can still produce weakly dominated outcomes.
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Relaxing the Uniform Dominance Requirement

• Dealing with weakly dominated outcomes is the most challenging aspect
of these methods.

• We need a method of preventing P (β) from producing weakly dominated
outcomes.

• Weakly dominated outcomes are the same WCN distance from the ideal
point as the outcomes they are dominated by.

• However, they are farther from the ideal point as measured by the lp
norm for p < ∞.

• One solution is to replace the WCN with the augmented Chebyshev norm
(ACN), defined by

‖(y1, y2)‖β,ρ
∞ = max{β|y1|, (1− β)|y2|}+ ρ(|y1|+ |y2|),

where ρ is a small positive number.
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Illustrating the ACN
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Solving P (β) with the ACN

• The problem of determining the outcome closest to the ideal point under
this metric is

min z + ρ(|y∗1 − y1|+ |y∗2 − y2|)
subject to z ≥ β(y∗1 − y1)

z ≥ (1− β)(y∗2 − y2)
y ∈ f(X).

(4)

• Because y∗k − yk ≥ 0 for all y ∈ f(X), the objective function can be
rewritten as

min z − ρ(y1 + y2).

• For fixed ρ > 0 small enough:

– all optimal outcomes for problem (4) are Pareto (in particular, they
are not weakly dominated), and

– for a given Pareto outcome y for problem (4), there exists 0 ≤ β̂ ≤ 1
such that y is the unique outcome to problem (4) with β = β̂.

• In practice, choosing a proper value for ρ can be problematic.
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Combinatorial Method for Eliminating Weakly
Dominated Solutions

• In the case of biobjective linear integer programs (BLIPs), we can employ
combinatorial methods.

• Such a strategy involves implicitly enumerating alternative optimal
solutions to P (β).

• Weakly dominated outcomes are eliminated with cutting planes during
the branch and bound procedure.

• Instead of pruning nodes that yield feasible outcomes immediately, we
continue to search for alternative optima that dominate the current
incumbent.

• To do so, we determine which of the two constraints

z ≥ β(y∗1 − y1)

z ≥ (1− β)(y∗2 − y2)

from problem (1) is binding at ŷ.
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Combinatorial Method for Eliminating Weakly
Dominated Solutions (cont’d)

• Let ε1 and ε2 be such that if yr is a new outcome between yp and yq,
then yr

i ≥ min{yp
i , y

q
i }+ εi, for i = 1, 2.

• If the first constraint is binding, then the cut

y1 ≥ ŷ1 + ε1

is valid for any outcome that dominates ŷ.

• If the second constraint is binding, then the cut

y2 ≥ ŷ2 + ε2

is valid for any outcome that dominates ŷ.
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Hybrid Methods

• In practice, the ACN method is fast, but choosing the proper value of ρ
is problematic.

• Combinatorial methods are less susceptible to numerical difficulties, but
are slower.

• Combining the two methods improves running times and reduces
dependence on the magnitude of ρ.
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Other Enhancements to the Algorithm

• In Step 2, any new outcome yr will have yr
1 > yp

1 and yr
2 > yq

2.

• If no such outcome exists, then the subproblem solver must still re-prove
the optimality of yp or yq.

• Then it must be the case that

‖y∗ − yr‖βpq∞ + min{βpqε1, (1− βpq)ε2} ≤ ‖y∗ − yp‖βpq∞ = ‖y∗ − yq‖βpq∞

• Hence, we can impose an a priori upper bound of

‖y∗ − yp‖βpq∞ −min{βpqε1, (1− βpq)ε2}

when solving the subproblem P (βpq).

• With this upper bound, each subproblem will either be infeasible or
produce a new outcome.
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Using Warm Starting

• We have been developing methodology for warm starting branch and
bound computations.

• Because the WCN algorithm involves solving a sequence of slightly
modified MILPs, warm starting can be used.

• Three approaches

– Warm start from the result of the previous iteration.
– Solve a “base” problem first and warm each subsequent problem from

there.
– Warm start from the “closest” previously solved subproblem.

• In addition, we can optionally save the global cut pool from iteration to
iteration.
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Implementation

• A variety of algorithms have been implemented as extensions to the
SYMPHONY callable library.

• The subproblems are solved using a modified version of branch and cut.

– The user specifies a second objective.
– When using the WCN, SYMPHONY performs the required

reformulation.
– SYMPHONY can use either the ACN or the combinatorial method for

eliminating weakly dominated solutions.

• Solver features

– Can produce approximations to the Pareto set.
– Implements bisection search, WCN, ACN, and hybrid ACN.
– Can warm start subproblems.
– Can maintain a global cut pool between iterations.

• Available from COIN-OR (www.coin-or.org).
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Implementation: Code Sample

• Recall the example from earlier:

vmax [8x1, x2]

s.t. 7x1 + x2≤ 56

28x1 + 9x2≤ 252

3x1 + 7x2≤ 105

x1, x2≥ 0

• The following code solves this model using SYMPHONY.

int main(int argc, char **argv)
{

OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.setObj2Coeff(1, 1);
si.loadProblem();
si.multiCriteriaBranchAndBound();

}
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Computational Results: WCN versus Bisection Search
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Computational Results: Accuracy of ACN
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Computational Results: Running Time Comparison
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Example: Pareto Outcomes for att48
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Computational Results: Using Warm Starting to Solve
CNRP Instances

These are results using SYMPHONY to solve CNRP instances with two
different warm starting strategies.
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Parallelizing the WCN Algorithm

• Enumerating the entire Pareto set can be extremely difficult for hard
combinatorial problems.

• The WCN algorithm is, however, naturally parallelizable.

• A simple master-worker implementation

– The master keeps a queue of subproblems to be solved.
– When a worker becomes free, the master picks a subproblem off the

queue and sends it to the worker.
– The worker returns either
∗ Message that the subproblem is infeasible (a new breakpoint).
∗ Two new subproblems to be added to the queue.

– Continue until the queue is empty.

• This algorithm is a perfect candidate for solving on the computational
grid.

– It is coarse-grained and asynchronous.
– Subproblem descriptions consist of only a few parameters.
– Only the list of breakpoints and solutions generated so far are needed

to restart.
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Implementing the Parallel WCN Algorithm

• The algorithm was parallelized using MWBlackBox, a tool for deploying
simple master-worker algorithms on the computational grid.

• MWBlackBox is built on top of Condor, a unique full-featured task
management system.

• Condor is used to remotely run a subproblem solver implemented using
the SYMPHONY callable library.

• Required methods

– get userinfo(): Specify file locations
– setup initial tasks(): Find utopia point
– act on completed task(): Generate new subproblems
– printresults(): Print final results
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Scalability Issues

• The scalability issues are very similar to parallel branch and bound.

– There is a queue of independent tasks to be done.
– Each task may generate two child tasks, but there is no way of knowing

a priori what the tree of tasks will look like.
– The order of processing the tasks does not matter for correctness, but

can greatly affect parallel performance.

• The main scalability factors

– The number of outcomes and their distribution.
– How fast the queue grows in the beginning and shrinks at the end.
– If warm starting or a global cut pool is used, the processing order may

also affect subproblem solution time.

• To test scalability of the basic algorithm, we solved 32 instances of
the multicriteria knapsack problem with different numbers of available
processors.
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Example: Pareto Set for W1C80W04
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Example: Queue Size for W1C80W04
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Computational Results: Processor Utilization
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Future Work: Improving Parallel Performance

• Limiting ramp-up and ramp-down time

– Solution of subproblems can itself be parallelized when the queue is
small.

– Searching the widest intervals first may help populate the queue more
quickly.

– Subintervals could be allocated to processors a priori without solving
any initial subproblems

• More asynchronicity can be introduced by allowing each worker to search
an entire interval recursively.

• Maintaining warm starting information

– For very large instances, warm starting can help a lot.
– However, this means the subproblem descriptions will become much

larger.
– One option is to store the warm starts locally.

• Cuts can be shared through the use of a global cut pool.
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Conclusion

• Generating the complete set of Pareto outcomes is a challenging
computational problem.

• We presented a new algorithm for solving biobjective mixed-integer
programs.

• The algorithm is

– asymptotically optimal,
– generates exact breakpoints,
– has good numerical properties, and
– can exploits modern solution techniques.

• We have shown how this algorithm is implemented in the SYMPHONY
MILP solver framework.

• Future work

– Improvements to warm starting procedures
– Improvements to the parallelization scheme
– More than two objective
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More Information

• SYMPHONY

– Prepackaged releases can be obtained from www.BranchAndCut.org.
– Up-to-date source is available from www.coin-or.org.
– Available Solvers

- Generic MILP
- Traveling Salesman Problem
- Vehicle Routing Problem
- Mixed Postman Problem

- Biobjective Knapsack Solver
- Set Partitioning Problem
- Matching Problem
- Network Routing

• For references and further details, see An Improved Algorithm for
Biobjective Integer Programming, to appear in Annals of OR, available
from

www.lehigh.edu/∼tkr2

• Overviews of multiobjective integer programming

– Climaco (1997)
– Ehrgott and Gandibleux (2002)
– Ehrgott and Wiecek (2005)
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