Valid inequalities for MIPs and group polyhedra from approximate liftings

Lisa Miller
University of Minnesota

joint work with:
Jean-Philippe Richard
Yanjun Li
Purdue University

Overview

1. Lifting and the Group Problem
2. A Lifting Procedure to Generate Cuts

- Relation to the Group Problem
- $C P L_{n}$ Functions
- New Facets of the Group Problem

3. Conclusion and Future Work

The Mixed Integer Knapsack Polyhedron

Consider:

$$
P S=\operatorname{conv}\left\{(x, y) \in \mathbb{Z}_{+}^{m} \times[0,1]^{n} \mid \sum_{i \in M} a_{i} x_{i}+\sum_{j \in N} b_{j} y_{j} \leq a_{0}\right.
$$

with integer data and $a_{1} \neq 0$.

Let $P S=\operatorname{conv}(S)$.

Generating group cuts for an integer $P S$

1. Choose an integer K.
2. Obtain remainder $r_{j}: a_{j}=K q_{j}+r_{j}$.
3. Relax PS:

$$
G=\left\{x \in \mathbb{Z}_{+}^{m} \mid \sum_{i \in M} r_{i} x_{i} \equiv r_{0} \quad(\bmod K)\right\},
$$

4. Relax G into the master cyclic group polyhedron

$$
P\left(C_{K, r_{0}}\right)=\operatorname{Conv}\left\{x \in \mathbb{Z}_{+}^{K-1} \mid \sum_{i=1}^{K-1} i x_{i} \equiv r_{0}(\bmod K)\right\} .
$$

5. Use the facets of $P\left(C_{K, r_{0}}\right)$ as valid inequalities for $P S$.

Subadditive Characterization of Facets

Theorem [Gomory 69]: For $1 \leq r_{0} \leq K-1$, the non-trivial facet-defining inequalities $\sum_{i=1}^{K-1} \pi_{i} x_{i} \geq \gamma$ of the master cyclic group polyhedron $P\left(C_{K, r_{0}}\right)$ are given by the extreme rays of the cone $S_{K, r_{0}}$ defined by $\pi \in \mathbb{R}^{n}$ such that:

Nonnegativity:

$$
\pi_{i} \geq 0, \quad 1 \leq i \leq K-1
$$

Subadditivity:

$$
\pi_{i}+\pi_{j} \geq \pi_{k}, \quad 1 \leq i, j, k \leq K-1
$$

$$
(i+j) \equiv k(\bmod K)
$$

Complementarity:

$$
\begin{array}{ll}
\pi_{i}+\pi_{j}=\gamma, \quad & 1 \leq i, j \leq K-1 \\
& (i+j) \equiv r_{0}(\bmod K)
\end{array}
$$

Scalability:

$$
\pi_{r_{0}}=\gamma
$$

Representing Facets of the Group Problem

3 Facets of $P\left(C_{8,1}\right)$

Issues with the Group Problem

Discrete Group: (K is Icd of a_{i} 's)

1. Can generate a cut by solving a Linear Program. (+)
2. Does not require the explicit derivation of cuts (+)
3. In practice, K is large and difficult to obtain. (-)

Continuous Group: ($K=1$)

1. Does not require the determination of $K .(+)$
2. The "LP" to solve has an infinite number of variables and constraints (-)
3. Requires the explicit derivation of cuts (-)

Generating Cuts through Lifting: Notation

Let
M_{0}, be a subset of M
N_{0}, N_{1} be non intersecting subsets of N.
Define $P S\left(M_{0}, N_{0}, N_{1}\right)$ as :

$$
\begin{aligned}
\operatorname{conv}\left\{(x, y) \in \mathbb{R}^{m+n} \mid\right. & \sum_{j \in M} a_{j} x_{j}+\sum_{j \in N} b_{j} y_{j}=a_{0} \\
& x_{j}=0 \forall j \in M_{0}, y_{j}=0 \forall j \in N_{0} \\
& \left.y_{j}=1 \forall j \in N_{1}\right\}
\end{aligned}
$$

$E x: P S_{I}=P S(\emptyset, N, \emptyset)$ is an integer polytope.

Step 1: Initial Inequality

For $K>0$ define the polyhedron

$$
\begin{aligned}
& P S^{\prime}=\operatorname{conv}\left\{(x, y) \in \mathbb{Z}^{m} \times[0,1]^{n} \mid\right. \\
& \qquad \begin{aligned}
\sum_{j \in M}\left(K q_{j}+r_{j}\right) x_{j}+ & \sum_{j \in N^{+}} b_{j} y_{j}+\sum_{j \in N^{-}}\left(-b_{j}\right) \bar{y}_{j} \\
& \left.=K q_{0}+r_{0}+\sum_{j \in N^{-}}\left(-b_{j}\right)\right\}
\end{aligned}
\end{aligned}
$$

where $r_{j}<K, \forall j \in M$.
($P S^{\prime}$ is equivalent to $P S$.)

Step 1: Initial Inequality

The defining inequality of $P S^{\prime}\left(M \backslash\{1\}, N^{+}, N^{-}\right)$is

$$
\left(K q_{1}+r_{1}\right) x_{1}=K q_{0}+r_{0}
$$

- By dividing this inequality by K and rounding, we see that

$$
\begin{equation*}
q_{1} x_{1} \leq q_{0} \tag{1}
\end{equation*}
$$

is valid for $P S^{\prime}\left(M \backslash\{1\}, N^{+}, N^{-}\right)$.

- Inequality (1) is not necessarily valid for $P S^{\prime}$
- It must be lifted into a valid inequality of $P S^{\prime}$

Step 2: Integer Lifting

Theorem [Wolsey]: For $i=1, \ldots, m$, let

$$
\begin{aligned}
\Phi^{i}(a)=q_{0}- & \max \\
& \left\{q_{1} x_{1}+\sum_{j=2}^{i-1} \Phi^{j-1}\left(K q_{j}+r_{j}\right) x_{j}\right\} \\
\text { s.t. } & \left(K q_{1}+r_{1}\right) x_{1}+\sum_{j=2}^{i-1}\left(K q_{j}+r_{j}\right) x_{j}=K q_{0}+r_{0}-a
\end{aligned}
$$

Then the inequality

$$
q_{1} x_{1}+\sum_{j \in M \backslash\{1\}} \Phi^{j-1}\left(a_{j}\right) x_{j} \leq q_{0}
$$

is valid for $P S\left(\emptyset, N_{0}, N_{1}\right)$.

Step 2: Integer Lifting

1. There is not an easy closed form expression for Φ^{i}.
2. The function Φ^{i} can be computed in pseudo-polynomial time.
3. The lifting function needs to be recomputed after any variable is lifted.
4. To obtain the lifting coefficients quickly, we use approximate integer lifting (Wolsey, Gu et al., Atamturk).

Step 2: Integer Lifting

For $q_{1}>0$,

$$
\Phi^{1}(a)= \begin{cases}q_{0}-q_{1}\left\lfloor\frac{K q_{0}+r_{0}-a}{K q_{1}+r_{1}}\right\rfloor & \text { if } a \leq K q_{0}+r_{0} \\ \infty & \text { if } a>K q_{0}+r_{0}\end{cases}
$$

For $q_{1}<0$,

$$
\Phi^{1}(a)= \begin{cases}q_{0}-q_{1}\left\lceil\frac{K q_{0}+r_{0}-a}{K q_{1}+r_{1}}\right\rceil & \text { if } \quad a \geq K q_{0}+r_{0} \\ q_{0} & \text { if } a<K q_{0}+r_{0}\end{cases}
$$

Step 2: First Lower Approximation

- Find a continuous function that approximates Φ^{1} from below and depends only on r_{0} :

$$
\Phi(a):=\left\lceil\frac{a-r_{0}}{K}\right\rceil
$$

- Next, find a superadditive function that approximates Φ from below.

Step 2: Superadditive Approximation

A function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is superadditive if $\phi(a)+\phi(b) \leq \phi(a+b)$ for $a, b \in \mathbb{R}$.
Theorem [Wolsey]: Assume that $\phi(a) \leq \Phi^{1}(a)$ for $a \in \mathbb{R}$, then

$$
q_{1} x_{1}+\sum_{j \in M \backslash\{1\}} \phi\left(a_{j}\right) x_{j} \leq q_{0}
$$

is valid for $P S\left(\emptyset, N_{0}, N_{1}\right)$.

Step 2: Strong Approximation Functions

1. Validity: $\phi(a) \leq \Phi(a), \forall a \in \mathbb{R}$
2. Superadditivity:

$$
\phi(a)+\phi(b) \leq \phi(a+b), \forall a, b \in \mathbb{R}
$$

3. Pseudo-Periodicity:

$$
\phi(a+K)=1+\phi(a), \forall a \in \mathbb{R}
$$

4. Pseudo-Symmetry:

$$
\begin{aligned}
\phi(a) & =0, \forall a \in\left[0, r_{0}\right], \\
\phi\left(r_{0}+\epsilon\right) & =1-\phi(K-\epsilon), \forall \epsilon \in\left[0, K-r_{0}\right]
\end{aligned}
$$

Step 2: Integer-Lifted Rounding Cut

If ϕ satisfies the validity, superadditivity, pseudo-periodicity, and pseudo-symmetry properties then

- ϕ is not dominated by any other valid superadditive function
- and

$$
q_{1} x_{1}+\sum_{j \in M \backslash\{1\}}\left(q_{j}+\phi\left(r_{j}\right)\right) x_{j} \leq q_{0}
$$

is valid for $P S\left(\emptyset, N^{+}, N^{-}\right)$

Step 3: Continuous Lifting

Assume that $\phi_{+}^{\prime}\left(r_{0}\right)=\lim _{\epsilon \rightarrow 0^{+}} \frac{\phi\left(r_{0}+\epsilon\right)}{\epsilon}$ exists. Then $q_{1} x_{1}+\sum_{j \in M \backslash\{1\}}\left(q_{j}+\phi\left(r_{j}\right)\right) x_{j}+\sum_{j \in N^{-}} \phi_{+}^{\prime}\left(r_{0}\right) b_{j} \bar{y}_{j} \leq q_{0}$ is a valid inequality for $P S$.

Relations to the Group Problem

- Assume that $a_{j} \in \mathbb{Z}, \forall j \in M, K \in \mathbb{N}$.
- Any inequality valid for $P S$ is valid for

$$
\begin{aligned}
P Q=\operatorname{conv}\left\{(x, y) \in \mathbb{R}^{m+n} \mid\right. & \sum_{j \in M}\left(K q_{j}+r_{j}\right) x_{j}=K q_{0}+r_{0} \\
& \left.x_{j} \in \mathbb{N} \quad \forall j \in M\right\} .
\end{aligned}
$$

- $\sum_{j \in M} \frac{r_{j}-K \phi\left(r_{j}\right)}{r_{0}} x_{j} \geq 1$ is valid for $P Q$.

Relations to the Group Problem

The function $f(u)=\frac{r(u)-K \phi(r(u))}{r_{0}}$ satisfies

1. $f(u) \geq 0, \forall u \in[0, K]$,
2. $f(u)=\frac{u}{r_{0}}, \forall u \in\left[0, r_{0}\right]$,
3. $f(u)+f(v) \geq f((u+v) \bmod K)$, and
4. $f(u)+f\left(\left(r_{0}-u\right) \bmod K\right)=f\left(r_{0}\right)$ for $u \in[0, K]$.

Relations to the Group Problem

Therefore

$$
\sum_{j=1}^{K-1} f(j / K) t_{j} \geq f\left(r_{0} / K\right)
$$

is a valid inequality for the master cyclic group polyhedron

$$
P\left(C_{K, r_{0}}\right)=\operatorname{conv}\left\{t \in Z_{+}^{n} \mid \sum_{j=1}^{K-1} j t_{j} \equiv r_{0} \quad \bmod K\right\}
$$

Deriving Facets of the Group Problem

- How can we use this procedure to derive strong inequalities for the group problem?
- Consider a "nice" family of parameterized lifting functions.
- For which parameters these functions are the strongest (in the lifting space)?
- Are the resulting inequalities are also strong for the group problem?

$C P L_{n}$ Functions

For $K \in \mathbb{R}_{+}, r_{0} \in(0, K), n \in \mathbb{Z}_{+}$,
$z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}_{+}^{n}$, and $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}_{+}^{n}$ such that $\sum_{i=1}^{n} z_{i}=\frac{K-r_{0}}{2}$ and $\sum_{i=1}^{n} \theta_{i}=1 / 2$, a pseudo-periodic function $\phi(a)$ is a CPL_{n} function if, when a is restricted in $[0, K)$,
$\phi(a)=\left\{\begin{array}{lll}0, & \text { if } & a \in\left[0, r_{0}\right], \\ \Theta_{i-1}+\frac{\theta_{i}}{z_{i}}\left(v-r_{0}-Z_{i-1}\right), & \text { if } & a \in\left(r_{0}+Z_{i-1}, r_{0}+Z_{i}\right], \\ 1-\Theta_{i}+\frac{\theta_{i}}{z_{i}}\left(v-K+Z_{i}\right), & \text { if } & a \in\left(K-Z_{i}, K-Z_{i-1}\right],\end{array}\right.$
where $Z_{0}=0, Z_{i}=\sum_{j=1}^{i} z_{i}, \theta_{0}=0$, and
$\Theta_{i}=\sum_{j=1}^{i} \theta_{i}$.

$C P L_{n}$ Functions

1. CPL_{n} functions are valid, pseudo-periodic, pseudo-symmetric.
2. CPL_{n} functions are continuous.
3. CPL_{n} functions are piecewise-linear over $2 n$ intervals.

Example: A $C P L_{3}$ Function

$C P L_{n}$ Inequalities: Superadditivity Conditions

A CPL_{n} function $\phi(a)$ is superadditive if and only if

$$
\begin{aligned}
\phi\left(r_{0}+Z_{i}\right)+\phi\left(r_{0}+Z_{j}\right) \leq \phi\left(2 r_{0}+Z_{i}+Z_{j}\right), & 0 \leq i \leq j \leq n-1, \\
\phi\left(r_{0}+Z_{i}\right)+1 \leq \phi\left(r_{0}+K+Z_{i}-Z_{j}\right)+\phi\left(r_{0}+Z_{j}\right), & 0 \leq i, j \leq n-1, \\
\phi\left(r_{0}+Z_{i}+Z_{j}\right) \leq \phi\left(r_{0}+Z_{i}\right)+\phi\left(r_{0}+Z_{j}\right), & 0 \leq i \leq j \leq n-1 .
\end{aligned}
$$

- Only a finite number of points must be checked.
- All relations are linear in θ for fixed z.

Superadditive $C P L_{n}$ functions

For valid z, θ defines a superadditive CPL_{n} function if and only if θ belongs to the polyhedron

$$
\begin{aligned}
& P \Theta_{n}(z):=\left\{\theta \in \mathbb{R}_{+}^{n-1} \mid \Theta_{i}+\Theta_{j} \leq \phi\left(2 r_{0}+Z_{i}+Z_{j}\right), \quad 0 \leq i, j \leq n-1,\right. \\
& \Theta_{i}-\Theta_{j} \leq \phi\left(r_{0}+K+Z_{i}-Z_{j}\right)-1, \quad 0 \leq i, j \leq n-1, \\
& \Theta_{i}+\Theta_{j} \geq \phi\left(r_{0}+Z_{i}+Z_{j}\right), \quad 0 \leq i, j \leq n-1, \\
& \left.\Theta_{n-1} \leq \frac{1}{2}\right\} \text {. }
\end{aligned}
$$

- All "extreme" superadditive $C P L_{n}$ functions correspond to extreme points of $P \Theta_{n}(z)$.

Example: $C P L_{2}$ Functions

$P \Theta_{2}\left(z_{1}\right)=\left\{\theta_{1} \in \mathbb{R}_{+} \mid \phi\left(r_{0}+2 z_{1}\right) \leq 2 \theta_{1} \leq \phi\left(2 r_{0}+2 z_{1}\right)\right\}$.
The following are the only extreme points of $P \Theta_{2}\left(z_{1}\right)$:

1. $z_{1} \in\left[0, \frac{K-r_{0}}{2}\right] \Rightarrow \theta_{1}^{1}=\frac{z_{1}}{K-r_{0}}$ (GMIC)
2. $z_{1} \in\left[0, \frac{K-2 r_{0}}{3}\right) \Rightarrow \theta_{1}^{2}=\frac{z_{1}+r_{0}}{K+r_{0}}$ (2-Slope)
3. $z_{1} \in\left[\frac{K-2 r_{0}}{3}, \frac{K-2 r_{0}}{2}\right) \Rightarrow \theta_{1}^{3}=\frac{z_{1}}{K-2 r_{0}}$ (3-Slope)
4. $z_{1} \in\left[\frac{K-2 r_{0}}{2}, \frac{K-r_{0}}{2}\right] \Rightarrow \theta_{1}^{4}=\frac{1}{2}$ (new 3-Slope)

$C P L_{3}$-Extreme Functions

1. $n=2$ was interesting. What about $n=3$?
2. Too many cases to analyze by hand.
3. Restrict to $z_{1}=z_{2}$. Only 53 cases!

$C P L_{3}^{=}$Functions

For $r_{0}+4 z_{1} \leq K$,

$$
\begin{aligned}
P \Theta_{3}^{=}\left(z_{1}\right)=\left\{\left(\theta_{1}, \theta_{2}\right) \in \mathbb{R}^{2} \quad \mid\right. & \theta_{2} \geq-\phi\left(r_{0}-z_{1}\right) \\
& 2 \theta_{1} \leq \phi\left(2 r_{0}+2 z_{1}\right) \\
& 2 \theta_{1}+\theta_{2} \geq \phi\left(r_{0}+3 z_{1}\right) \\
& 2 \theta_{1}+\theta_{2} \leq \phi\left(2 r_{0}+3 z_{1}\right) \\
& 2 \theta_{1}+2 \theta_{2} \geq \phi\left(r_{0}+4 z_{1}\right) \\
& 2 \theta_{1}+2 \theta_{2} \leq \phi\left(2 r_{0}+4 z_{1}\right) \\
& \theta_{1}-\theta_{2} \geq 0 \\
& \left.\theta_{1} \geq 0, \theta_{2} \geq 0\right\} .
\end{aligned}
$$

- Only 18 unique extreme points!

$C P L_{3}^{=}$-Extreme Functions: A Summary

Extreme point	θ_{1}	θ_{2}	Range of r_{0}	Range of K
a	$\frac{z_{1}}{K-r_{0}}$	$\frac{z_{1}}{K-r_{0}}$	all	all
b	$\frac{r_{0}+2 z_{1}}{2 K+2 r_{0}}$	$\frac{r_{0}+2 z_{1}}{2 K+2 r_{0}}$	all	$2 r_{0}+6 z_{1} \leq K$
c	$\frac{\frac{r_{0}+z_{1}}{K+r_{0}}}{}$	$\frac{z_{1}}{K+r_{0}}$	all	$2 r_{0}+4 z_{1}<K$
d	$\frac{r_{0}+2 z_{1}}{2 K K 2 r_{0}}$	$\frac{2 z_{1}-r_{0}}{2 K-2 r_{0}}$	$0<r_{0} \leq 2 z_{1}$	$r_{0}+6 z_{1} \leq K$
e	$\underbrace{\frac{z_{1}}{K-2 r_{0}}}$	$\frac{z_{1}}{K-2 r_{0}}$	all	$2 r_{0}+4 z_{1} \leq K<2 r_{0}+6 z_{1}$
f	$\frac{-K z_{1}-K r_{0}+6 z_{1} r_{0}+r_{0}^{2}+4 z_{1}^{2}}{4 K z_{1}+8 z_{1} r_{0}-K^{2}+r_{0}^{2}}$	$\frac{z_{1}\left(2 r_{0}+4 z_{1}-K\right)}{4 K z_{1}+8 z_{1} r_{0}-K^{2}+r_{0}^{2}}$	$0<r_{0}<2 z_{1}$	$\max \left\{r_{0}+5 z_{1}, 2 r_{0}+4 z_{1}\right\} \leq K<r_{0}+6 z_{1}$
9	$\frac{z_{1}}{K-3 r_{0}}$	$\frac{z_{1}-r_{0}}{K-3 r_{0}}$	$0<r_{0}<z_{1}$	$2 r_{0}+4 z_{1} \leq K<r_{0}+5 z_{1}$
h	$\frac{1}{4}$	$\frac{1}{4}$	all	$r_{0}+4 z_{1} \leq K<2 r_{0}+4 z_{1}$
i	$\frac{K-2 r_{0}-5 z_{1}}{2\left(K-2 r_{0}-6 z_{1}\right)}$	$\frac{-z_{1}}{2\left(K-2 r_{0}-6 z_{1}\right)}$	all	$\max \left\{r_{0}+4 z_{1}, 2 r_{0}+3 z_{1}\right\} \leq K<2 r_{0}+4 z_{1}$

$C P L_{3}^{=}$-Extreme Functions: A Summary

Extreme point	θ_{1}	θ_{2}	Range of r_{0}	Range of K
j	$\frac{z_{1}\left(2 r_{0}+5 z_{1}-K\right)}{-K^{2}+3 K r_{0}+5 K z_{1}-2 r_{0}^{2}-7 z_{1} r_{0}}$	$\frac{z_{1}\left(r_{0}+5 z_{1}-K\right)}{-K^{2}+3 K r_{0}+5 K z_{1}-2 r_{0}^{2}-7 z_{1} r_{0}}$	$0<r_{0}<2 z_{1}$	$\max \left\{r_{0}+4 z_{1}, 2 r_{0}+3 z_{1}\right\} \leq K<\min \left\{r_{0}+5 z_{1}, 2 r_{0}+4 z_{1}\right\}$
k	$\frac{1}{3}$	0	$\begin{gathered} r_{0}>0 \\ r_{0}>3 z_{1} \end{gathered}$	$\begin{gathered} \max \left\{r_{0}+5 z_{1}, 2 r_{0}+3 z_{1}\right\} \leq K \leq 2 r_{0}+4 z_{1} \\ r_{0}+5 z_{1} \leq K<r_{0}+6 z_{1} \end{gathered}$
1	$\frac{z_{1}}{K-2 r_{0}}$	$\frac{2 z_{1}-r_{0}}{2 K-4 r_{0}}$	$0<r_{0} \leq 2 z_{1}$	$r_{0}+4 z_{1} \leq K<2 r_{0}+3 z_{1}$
m	$\frac{r_{0}}{K+r_{0}-4 z_{1}}$	0	$r_{0}>2 z_{1}$	$2 r_{0}+4 z_{1}<K$
n	$\frac{2 z_{1}}{K-r_{0}}$	0	$r_{0}>2 z_{1}$	$r_{0}+6 z_{1} \leq K$
\bigcirc	$\frac{z_{1}}{K-2 r_{0}}$	$\frac{K-2 r_{0}-2 z_{1}}{2 K-4 r_{0}}$	$r_{0}>z_{1}$	$\max \left\{r_{0}+4 z_{1}, 2 r_{0}+2 z_{1}\right\} \leq K<2 r_{0}+3 z_{1}$
p	$\frac{z_{1}}{K-2 r_{0}}$	0	$r_{0}>2 z_{1}$	$2 r_{0}+2 z_{1} \leq K<2 r_{0}+3 z_{1}$
q	$\frac{z_{1}}{K-r_{0}-2 z_{1}}$	0	$r_{0}>2 z_{1}$	$r_{0}+4 z_{1} \leq K<r_{0}+5 z_{1}$
r	$\frac{1}{2}$	0	$r_{0}>2 z_{1}$	$r_{0}+4 z_{1} \leq K \leq 2 r_{0}+2 z_{1}$

$C P L_{3}^{=}$-Extreme Functions

- These points are $\mathrm{CPL}_{3}=$-Extreme.
- Are they strong for the group problem?
- What dimension face is induced on the group polyhedron?
- When do they yield facets?

Facets of the Group Problem (1/4)

Facets of the Group Problem (2/4)

Point f1

Point f2

Point g

Facets of the Group Problem (3/4)

Point k1

Point k2

Facets of the Group Problem (4/4)

Point p1

Point p2

New families

- (d2): 4-slope facets
- (e2),(f2),(n2),(p2): new 3-slope facets
- (I),(q): new constructive 2-slope facets
- Many are extreme for infinite group problem

Conclusion

1. Alternative derivation of group polyhedron facets.
2. Scheme is simple and constructive.
3. Simple derivation of the GMIC, and Gomory and Johnson's 2-Slopes and 3-Slopes.
4. Derivation of new families of facets for the group problem.
5. Suggests ways in which group-based mixed inequalities could be improved.

Current Research

- Cut Strengthening: continuous variables
- Derivation of other cuts: including $C P L_{3}$-extreme inequalities.

Future research

- Automated code for determining the extreme points of $P \Theta_{n}$.
- Empirical evaluation of resulting cuts.

