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The Mixed Integer Knapsack Polyhedron

Consider:

PS = conv{(x, y) ∈ Z
m
+×[0, 1]n|

∑
i∈M

aixi+
∑
j∈N

bjyj ≤ a0

with integer data and a1 �= 0.

Let PS = conv(S).
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Generating group cuts for an integer PS

1. Choose an integer K.

2. Obtain remainder rj: aj = Kqj + rj.

3. Relax PS:

G = {x ∈ Z
m
+ |

∑
i∈M

rixi ≡ r0 (mod K)},

4. Relax G into the master cyclic group polyhedron

P (CK,r0) = Conv{x ∈ Z
K−1
+ |

K−1∑
i=1

ixi ≡ r0 (mod K)}.

5. Use the facets of P (CK,r0) as valid inequalities for PS.
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Subadditive Characterization of Facets

Theorem [Gomory 69]: For 1 ≤ r0 ≤ K − 1, the non-trivial
facet-defining inequalities

∑K−1
i=1 πixi ≥ γ of the master

cyclic group polyhedron P (CK,r0) are given by the extreme
rays of the cone SK,r0 defined by π ∈ R

n such that:

Nonnegativity: πi ≥ 0, 1 ≤ i ≤ K − 1,

Subadditivity: πi + πj ≥ πk, 1 ≤ i, j, k ≤ K − 1,

(i + j) ≡ k (mod K),

Complementarity: πi + πj = γ, 1 ≤ i, j ≤ K − 1,

(i + j) ≡ r0 (mod K),

Scalability: πr0 = γ.
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Representing Facets of the Group Problem

3 Facets of P (C8,1)
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Issues with the Group Problem

Discrete Group: (K is lcd of ai’s)

1. Can generate a cut by solving a Linear Program. (+)

2. Does not require the explicit derivation of cuts (+)

3. In practice, K is large and difficult to obtain. (-)

Continuous Group: (K = 1)

1. Does not require the determination of K. (+)

2. The “LP” to solve has an infinite number of
variables and constraints (-)

3. Requires the explicit derivation of cuts (-)

MIP 2006 – p. 7/41



Generating Cuts through Lifting: Notation

Let
M0, be a subset of M
N0, N1 be non intersecting subsets of N .

Define PS(M0, N0, N1) as :

conv{(x, y) ∈ R
m+n |

∑
j∈M

ajxj +
∑
j∈N

bjyj = a0

xj = 0∀j ∈ M0, yj = 0∀j ∈ N0

yj = 1∀j ∈ N1}
Ex : PSI = PS(∅, N, ∅) is an integer polytope.
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Step 1: Initial Inequality

For K > 0 define the polyhedron

PS′ = conv{(x, y) ∈ Z
m × [0, 1]n |∑

j∈M

(Kqj + rj)xj +
∑
j∈N+

bjyj +
∑
j∈N−

(−bj)ȳj

= Kq0 + r0 +
∑
j∈N−

(−bj)}

where rj < K, ∀j ∈ M .

(PS′ is equivalent to PS.)
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Step 1: Initial Inequality

The defining inequality of PS ′(M\{1}, N+, N−) is

(Kq1 + r1)x1 = Kq0 + r0

By dividing this inequality by K and rounding,
we see that

q1x1 ≤ q0 (1)

is valid for PS ′(M\{1}, N+, N−).

Inequality (1) is not necessarily valid for PS ′

It must be lifted into a valid inequality of PS ′
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Step 2: Integer Lifting

Theorem [Wolsey]: For i = 1, . . . ,m, let

Φi(a) = q0− max {q1x1 +
i−1∑
j=2

Φj−1(Kqj + rj)xj}

s.t. (Kq1 + r1)x1 +
i−1∑
j=2

(Kqj + rj)xj = Kq0 + r0 − a

Then the inequality

q1x1 +
∑

j∈M\{1}
Φj−1(aj)xj ≤ q0

is valid for PS(∅, N0, N1).
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Step 2: Integer Lifting

1. There is not an easy closed form expression
for Φi.

2. The function Φi can be computed in
pseudo-polynomial time.

3. The lifting function needs to be recomputed
after any variable is lifted.

4. To obtain the lifting coefficients quickly, we
use approximate integer lifting (Wolsey, Gu et
al., Atamturk).
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Step 2: Integer Lifting
For q1 > 0,

Φ1(a) =

{
q0 − q1	Kq0+r0−a

Kq1+r1

 if a ≤ Kq0 + r0

∞ if a > Kq0 + r0.

For q1 < 0,

Φ1(a) =

{
q0 − q1�Kq0+r0−a

Kq1+r1

 if a ≥ Kq0 + r0

q0 if a < Kq0 + r0.
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Step 2: First Lower Approximation

Find a continuous function that approximates
Φ1 from below and depends only on r0:

Φ(a) := �a − r0

K



Next, find a superadditive function that
approximates Φ from below.

MIP 2006 – p. 14/41



Step 2: Superadditive Approximation

A function φ : R → R is superadditive if
φ(a) + φ(b) ≤ φ(a + b) for a, b ∈ R.
Theorem [Wolsey]: Assume that φ(a) ≤ Φ1(a)
for a ∈ R, then

q1x1 +
∑

j∈M\{1}
φ(aj)xj ≤ q0

is valid for PS(∅, N0, N1).
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Step 2: Strong Approximation Functions

1. Validity: φ(a) ≤ Φ(a),∀a ∈ R

2. Superadditivity:

φ(a) + φ(b) ≤ φ(a + b), ∀a, b ∈ R

3. Pseudo-Periodicity:

φ(a + K) = 1 + φ(a), ∀a ∈ R

4. Pseudo-Symmetry:

φ(a) = 0,∀a ∈ [0, r0],

φ(r0 + ε) = 1 − φ(K − ε),∀ε ∈ [0,K − r0]
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Step 2: Integer-Lifted Rounding Cut

If φ satisfies the validity, superadditivity,
pseudo-periodicity, and pseudo-symmetry
properties then

φ is not dominated by any other valid
superadditive function

and

q1x1 +
∑

j∈M\{1}
(qj + φ(rj))xj ≤ q0 (2)

is valid for PS(∅, N+, N−)
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Step 3: Continuous Lifting

Assume that φ′
+(r0) = limε→0+

φ(r0+ε)
ε exists. Then

q1x1 +
∑

j∈M\{1}
(qj + φ(rj))xj +

∑
j∈N−

φ′
+(r0)bj ȳj ≤ q0

is a valid inequality for PS.
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Relations to the Group Problem

Assume that aj ∈ Z,∀j ∈ M , K ∈ N.

Any inequality valid for PS is valid for

PQ = conv{(x, y) ∈ R
m+n |

∑
j∈M

(Kqj + rj)xj = Kq0 + r0

xj ∈ N ∀j ∈ M}.∑
j∈M

rj−Kφ(rj)
r0

xj ≥ 1 is valid for PQ.
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Relations to the Group Problem

The function f(u) = r(u)−Kφ(r(u))
r0

satisfies

1. f(u) ≥ 0, ∀u ∈ [0,K],

2. f(u) = u
r0

, ∀u ∈ [0, r0],

3. f(u) + f(v) ≥ f((u + v) mod K), and

4. f(u) + f((r0 − u) mod K) = f(r0) for
u ∈ [0,K].
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Relations to the Group Problem

Therefore

K−1∑
j=1

f(j/K)tj ≥ f(r0/K)

is a valid inequality for the master cyclic group
polyhedron

P (CK,r0
) = conv{t ∈ Zn

+|
K−1∑
j=1

jtj ≡ r0 mod K}.
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Deriving Facets of the Group Problem

How can we use this procedure to derive
strong inequalities for the group problem?

Consider a "nice" family of parameterized
lifting functions.

For which parameters these functions are the
strongest (in the lifting space)?

Are the resulting inequalities are also strong
for the group problem?
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CPLn Functions

For K ∈ R+, r0 ∈ (0,K), n ∈ Z+,
z = (z1, ..., zn)∈ R

n
+, and θ = (θ1, ..., θn)∈ R

n
+ such

that
∑n

i=1 zi = K−r0

2 and
∑n

i=1 θi = 1/2, a
pseudo-periodic function φ(a) is a CPLn function
if, when a is restricted in [0,K),

φ(a) =

⎧⎪⎪⎨
⎪⎪⎩

0, if a ∈ [0, r0],

Θi−1 + θi

zi
(v − r0 − Zi−1), if a ∈ (r0 + Zi−1, r0 + Zi],

1 − Θi + θi

zi
(v − K + Zi), if a ∈ (K − Zi,K − Zi−1],

where Z0 = 0, Zi =
∑i

j=1 zi, θ0 = 0, and

Θi =
∑i

j=1 θi. �
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CPLn Functions

1. CPLn functions are valid, pseudo-periodic,
pseudo-symmetric.

2. CPLn functions are continuous.

3. CPLn functions are piecewise-linear over 2n
intervals.
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Example: A CPL3 Function

r0r0

r0 + Z1r0 + Z1

r0 + Z2r0 + Z2
K+r0

2
K+r0

2

K − Z2K − Z2
K − Z1K − Z1

KK

11

1 − Θ1
1 − Θ2

1
2

1
2

Θ2
Θ1

(a) Standard representation (b) Group representation
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CPLn Inequalities: Superadditivity Conditions

A CPLn function φ(a) is superadditive if and only if

φ(r0 + Zi) + φ(r0 + Zj) ≤ φ(2r0 + Zi + Zj), 0 ≤ i ≤ j ≤ n − 1,

φ(r0 + Zi) + 1 ≤ φ(r0 + K + Zi − Zj) + φ(r0 + Zj), 0 ≤ i, j ≤ n − 1,

φ(r0 + Zi + Zj) ≤ φ(r0 + Zi) + φ(r0 + Zj), 0 ≤ i ≤ j ≤ n − 1.

Only a finite number of points must be

checked.

All relations are linear in θ for fixed z.
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Superadditive CPLn functions

For valid z, θ defines a superadditive CPLn

function if and only if θ belongs to the polyhedron

PΘn(z) := {θ ∈ R
n−1
+ |Θi + Θj ≤ φ(2r0 + Zi + Zj), 0 ≤ i, j ≤ n − 1,

Θi − Θj ≤ φ(r0 + K + Zi − Zj) − 1, 0 ≤ i, j ≤ n − 1,

Θi + Θj ≥ φ(r0 + Zi + Zj), 0 ≤ i, j ≤ n − 1,

Θn−1 ≤ 1
2
}. �

All "extreme" superadditive CPLn functions
correspond to extreme points of PΘn(z).
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Example: CPL2 Functions

PΘ2(z1) = {θ1 ∈ R+ |φ(r0 + 2z1) ≤ 2θ1 ≤ φ(2r0 + 2z1)}.
The following are the only extreme points of
PΘ2(z1):

1. z1 ∈ [0, K−r0

2 ] ⇒ θ1
1 = z1

K−r0
(GMIC)

2. z1 ∈ [0, K−2r0

3 ) ⇒ θ2
1 = z1+r0

K+r0
(2-Slope)

3. z1 ∈ [K−2r0

3 , K−2r0

2 ) ⇒ θ3
1 = z1

K−2r0
(3-Slope)

4. z1 ∈ [K−2r0

2 , K−r0

2 ] ⇒ θ4
1 = 1

2 (new 3-Slope)
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CPL3-Extreme Functions

1. n = 2 was interesting. What about n = 3?

2. Too many cases to analyze by hand.

3. Restrict to z1 = z2. Only 53 cases!
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CPL=
3 Functions

For r0 + 4z1 ≤ K,

PΘ=
3 (z1) = {(θ1, θ2) ∈ R

2 | θ2 ≥ −φ(r0 − z1)

2θ1 ≤ φ(2r0 + 2z1)

2θ1 + θ2 ≥ φ(r0 + 3z1)

2θ1 + θ2 ≤ φ(2r0 + 3z1)

2θ1 + 2θ2 ≥ φ(r0 + 4z1)

2θ1 + 2θ2 ≤ φ(2r0 + 4z1)

θ1 − θ2 ≥ 0

θ1 ≥ 0, θ2 ≥ 0}.
Only 18 unique extreme points!
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CPL=
3 -Extreme Functions: A Summary

Extreme point θ1 θ2 Range of r0 Range of K

a z1
K−r0

z1
K−r0

all all

b r0+2z1
2K+2r0

r0+2z1
2K+2r0

all 2r0 + 6z1 ≤ K

c r0+z1
K+r0

z1
K+r0

all 2r0 + 4z1 < K

d r0+2z1
2K−2r0

2z1−r0
2K−2r0

0 < r0 ≤ 2z1 r0 + 6z1 ≤ K

e z1
K−2r0

z1
K−2r0

all 2r0 + 4z1 ≤ K < 2r0 + 6z1

f
−Kz1−Kr0+6z1r0+r2

0+4z2
1

4Kz1+8z1r0−K2+r2
0

z1(2r0+4z1−K)

4Kz1+8z1r0−K2+r2
0

0 < r0 < 2z1 max{r0 + 5z1, 2r0 + 4z1} ≤ K < r0 + 6z1

g z1
K−3r0

z1−r0
K−3r0

0 < r0 < z1 2r0 + 4z1 ≤ K < r0 + 5z1

h 1
4

1
4 all r0 + 4z1 ≤ K < 2r0 + 4z1

i K−2r0−5z1
2(K−2r0−6z1)

−z1
2(K−2r0−6z1)

all max{r0 + 4z1, 2r0 + 3z1} ≤ K < 2r0 + 4z1
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CPL=
3 -Extreme Functions: A Summary

Extreme point θ1 θ2 Range of r0 Range of K

j z1(2r0+5z1−K)

−K2+3Kr0+5Kz1−2r2
0−7z1r0

z1(r0+5z1−K)

−K2+3Kr0+5Kz1−2r2
0−7z1r0

0 < r0 < 2z1 max{r0 + 4z1, 2r0 + 3z1} ≤ K < min{r0 + 5z1, 2r0 + 4z1}

k 1
3 0 r0 > 0 max{r0 + 5z1, 2r0 + 3z1} ≤ K ≤ 2r0 + 4z1

r0 > 3z1 r0 + 5z1 ≤ K < r0 + 6z1

l z1
K−2r0

2z1−r0
2K−4r0

0 < r0 ≤ 2z1 r0 + 4z1 ≤ K < 2r0 + 3z1

m r0
K+r0−4z1

0 r0 > 2z1 2r0 + 4z1 < K

n 2z1
K−r0

0 r0 > 2z1 r0 + 6z1 ≤ K

o z1
K−2r0

K−2r0−2z1
2K−4r0

r0 > z1 max{r0 + 4z1, 2r0 + 2z1} ≤ K < 2r0 + 3z1

p z1
K−2r0

0 r0 > 2z1 2r0 + 2z1 ≤ K < 2r0 + 3z1

q z1
K−r0−2z1

0 r0 > 2z1 r0 + 4z1 ≤ K < r0 + 5z1

r 1
2 0 r0 > 2z1 r0 + 4z1 ≤ K ≤ 2r0 + 2z1
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CPL=
3 -Extreme Functions

These points are CPL=
3 -Extreme.

Are they strong for the group problem?

What dimension face is induced on the group
polyhedron?

When do they yield facets?
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Facets of the Group Problem (1/4)

Point a
K = 26, r0 = 6, z1 = 3

Point b
K = 26, r0 = 3, z1 = 2

Point c
K = 24, r0 = 5, z1 = 2

Point d1
K = 24, r0 = 4, z1 = 2

Point d2
K = 24, r0 = 1, z1 = 1

Point e1
K = 26, r0 = 3, z1 = 5
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Facets of the Group Problem (2/4)

Point e2
K = 23, r0 = 1, z1 = 5

Point f1
K = 24, r0 = 4, z1 = 4

Point f2
K = 23, r0 = 3, z1 = 4

Point g
K = 24, r0 = 2, z1 = 5

Point h
K = 24, r0 = 6, z1 = 4

Point i
K = 23, r0 = 10, z1 = 1
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Facets of the Group Problem (3/4)

Point j
K = 5, r0 = 1, z1 = 1

Point k1
K = 27, r0 = 7, z1 = 4

Point k2
K = 9, r0 = 3, z1 = 1

Point l
K = 25, r0 = 8, z1 = 4

Point n1
K = 25, r0 = 9, z1 = 2

Point n2
K = 22, r0 = 16, z1 = 1
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Facets of the Group Problem (4/4)

Point o
K = 24, r0 = 9, z1 = 3

Point p1
K = 24, r0 = 10, z1 = 2

Point p2
K = 21, r0 = 7, z1 = 3

Point q
K = 24, r0 = 10, z1 = 3

Point r
K = 28, r0 = 12, z1 = 4
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New families

(d2): 4-slope facets

(e2),(f2),(n2),(p2): new 3-slope facets

(l),(q): new constructive 2-slope facets

Many are extreme for infinite group problem
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Conclusion

1. Alternative derivation of group polyhedron
facets.

2. Scheme is simple and constructive.

3. Simple derivation of the GMIC, and Gomory
and Johnson’s 2-Slopes and 3-Slopes.

4. Derivation of new families of facets for the
group problem.

5. Suggests ways in which group-based mixed
inequalities could be improved.
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Current Research

Cut Strengthening: continuous variables

Derivation of other cuts: including
CPL3-extreme inequalities.
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Future research

Automated code for determining the extreme
points of PΘn.

Empirical evaluation of resulting cuts.
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