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Overview

1. Lifting and the Group Problem

2. A Lifting Procedure to Generate Cuts
» Relation to the Group Problem
o (C'PL, Functions
o New Facets of the Group Problem

3. Conclusion and Future Work



The Mixed Integer Knapsack Polyhedron

Consider:

PS = conv{(z,y) € Z'x|0, 1]"] Z aimi—l—z biy; < ag
ieM jEN

with integer data and a; # 0.

Let PS = conv(S).



Generating group cuts for an integer PS

1. Choose an integer K.
2. Obtain remainder r;: a; = Kq; + ;.

3. Relax PS:

G={xr € ZT!ZW% =719 (mod K)},

e M

4. Relax G into the master cyclic group polyhedron

K-1
P(Ck,) = Conv{z € Z ' Y " iz; = ro (mod K)}.

1=1
5. Use the facets of P(Ck.,) as valid inequalities for PS.
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Subadditive Characterization of Facets

Theorem [Gomory 69]: For1 <ry, < K — 1, the non-trivial
facet-defining inequalities > " mz; > ~ of the master
cyclic group polyhedron P(Ck ,,) are given by the extreme
rays of the cone Sk ,, defined by = € R" such that:

Nonnegativity: m; > 0, 1 <1< K -1,
Subadditivity: w2, 14,5,k < K —1,
(1+j) =k (mod K),
Complementarity: m +7mj=7v, 1<4,37<K -1,
(i+j)=1ro (Mod K),
Scalability: Trg = -
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Representing Facets of the Group Problem

3 Facets of P(Cys ;)
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Issues with the Group Problem

Discrete Group: (K is lcd of a;’s)
1. Can generate a cut by solving a Linear Program. (+)

2. Does not require the explicit derivation of cuts (+)
3. In practice, K is large and difficult to obtain. (-)

Continuous Group: (/X = 1)
1. Does not require the determination of K. (+)

2. The “LP” to solve has an infinite number of
variables and constraints (-)

3. Requires the explicit derivation of cuts (-)
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Generating Cuts through Lifting: Notation

Let
M,, be a subset of M
Ny, N1 be non intersecting subsets of V.

Define PS(Mo,No,Nl) as .

conv{(z,y) € R"™™ | ¥ ajz;+ Y by = ao

jeM JeEN
Lj = O\V/j S M(),yj — O\V/] S N()
Y; — 1\V/] ~ Nl}

Ex: PS;r = PS(0,N,D) is an integer polytope.



Step 1: Initial Inequality

For K > 0 define the polyhedron

PS" = conv{(x,y) € Z™ x [0,1]"|
> (Kqi+r)xi+ Y biyi+ > (=b)y;
jeEM JENT JENT
= Kq+ro+ Y (=b)}

FJEN-

where r; < K, Vj € M.
(PS’ is equivalent to PS.)



Step 1: Initial Inequality

The defining inequality of PS'(M\{1}, NT,N7) is
(Kq1+r1)x1 = Kqo + 10

» By dividing this inequality by K and rounding,
we see that
7171 = qo (1)
s valid for PS'(M\{1}, NT, N™).
» Inequality (1) is not necessatrily valid for PS’
» |t must be lifted into a valid inequality of PS’



Step 2: Integer Lifting

Theorem [Wolsey]: For: =1,...,m, let
i—1
d'(a) = qp— max {q1x1 + Z <I>J_1(qu + 7))z}
=2
i—1
st. (Kq+r)xr + Z(qu +7r)r; =Kq+19—a
=2

Then the inequality

is valid for PS((), Ny, N1).



Step 2: Integer Lifting

1.

There Is not an easy closed form expression
for @,

. The function ®* can be computed in

pseudo-polynomial time.

. The lifting function needs to be recomputed

after any variable is lifted.

. To obtain the lifting coefficients quickly, we

use approximate integer lifting (Wolsey, Gu et
al., Atamturk).



Step 2: Integer Lifting

For ¢; > O,
( K . _
@1(@ _ do — q1] [%Oqjioﬁaj if a < Kqo+ro
| if a> Kqy+ rp.
For ¢; < O,

( K . _
(I)l(a) — qo — Q1( IQ(Oq"i‘:_OTla_‘ f a Z KQ() = T0
q0 if a < Kqy+ 0.




Step 2. First Lower Approximation

» Find a continuous function that approximates
®! from below and depends only on 7:

a—To

b(a) 1= [“

o Next, find a superadditive function that
approximates ¢ from below.




Step 2: Superadditive Approximation

A function ¢ : R — R is superadditive if

o(a) + ¢(b) < d(a+0b) fora,b € R.

Theorem [Wolsey]: Assume that ¢(a) < ®'(a)
for a € R, then

is valid for P.S((), Ny, N7).



Step 2: Strong Approximation Functions

1. Validity: ¢(a) < ®(a),Va € R

2. Superadditivity:
o(a) +¢(b) < pla+b), Va,b € R

3. Pseudo-Periodicity:
dpla+ K)=1+¢(a), Va e R

4. Pseudo-Symmetry:
¢(a) = 0,Va € |0, 1y,
d(ro+€) = 1 —(K —¢€),Ve € [0, K —rg



Step 2: Integer-Lifted Rounding Cut

f ¢ satisfies the validity, superadditivity,
nseudo-periodicity, and pseudo-symmetry
properties then

» ¢ Is not dominated by any other valid
superadditive function

o and

is valid for PS(0, N*, N™)



Step 3. Continuous Lifting

Assume that ¢’ () = lim._+ 2o te) exists. Then

€

i+ Y (g + o))z + D ¢ (ro)big; < o

jeEM\{1} jEN-

Is a valid inequality for FS.



Relations to the Group Problem

» Assume thata; € Z,Vj € M, K € N.

» Any inequality valid for PS'is valid for
PQ = conv{(z,y) € R™™" | Z(qu +7rj)z; = Kqo + 10

JjeEM

r; €N Vie M}.

o Sy iy > 1 s valid for PQ.

o



Relations to the Group Problem

The function f(u) = HW=E2rw) gatisfies

o

1. f(u) >0, Vu € [0, K],
2. f(u) = %, Vu € |0, 1],
3. f(u)+ f(v) > f((u+v) mod K), and

4. f(u)+ f((ro —uw) mod K) = f(ry) for
u € 10, K.



Relations to the Group Problem

Therefore

fJ/K f(ro/ K)

g=1

IS a valid inequality for the master cyclic group
polyhedron

K-1
P(Ck,,) = conv{t € Z| thj =ry mod K}.

J=1



Deriving Facets of the Group Problem

» How can we use this procedure to derive
strong inequalities for the group problem?

» Consider a "nice" family of parameterized
lifting functions.

» For which parameters these functions are the
strongest (in the lifting space)?

» Are the resulting inequalities are also strong
for the group problem?



C'PL, Functions

For K e R,,rp€ (0,K),ne€Z,,

z=(21,...,2z,)€ R}, and § = (6, ...,0,,)e R? such
that Y1 | z; =22 and > 0, =1/2, a
pseudo-periodic function ¢(a) is a CPL,, function

if, when « is restricted in [0, K),

0, if a € 0,70,
pla) =1 O;_1+ 2—2(”0 — 19— Zi—1), it a€ (ro+ Zi_1,7m0 + Zil,
1-0,+%w—-K+2), it a€(K—2,K—2Z_],

where Zo =0, Z;, = Zz':l zi, 0o = 0, and
0. =36,




C'PL, Functions

1. CPL,, functions are valid, pseudo-periodic,
pseudo-symmetric.

2. CPL,, functions are continuous.

3. CPL, functions are piecewise-linear over 2n
Intervals.



Example: A CPL; Function

(a) Standard representation (b) Group representation
L
1L N
2
"o ro4 Zs. K — 2y K "o ro4 Zo K- Zy K
ro + Z1 %% K -7 To + Z1 QK—JQFTO K — 7
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C PL, Inequalities: Superadditivity Conditions

A cPL,, function ¢(a) is superadditive if and only if

P(ro+ Z;) + p(ro+ Z;) < ¢p(2ro+ Z; + Z;5), 0<i<j<n-—1,
¢(ro+Zi) +1 < o(ro+ K+ Z; — Zj) + ¢(ro+ Z;), 0<4i,j<n-1,
d(ro+ Zi +Z;) < p(ro+ Z;) + ¢(ro+ Z;), 0<i<j<n-—1.

» Only a finite number of points must be
checked.

o All relations are linear in 6 for fixed z.



Superadditive C'PL, functions

For valid z, 6 defines a superadditive CPL,,
function if and only if 6 belongs to the polyhedron

PO,(z):={0eR" O, +0, <o(2rg+ Z; + Z), 0<i4,j<n-—1,
©;,—0;<o(ro+K+2,—Z;)—1, 0<1,j<n-—1,
@Z+@]2¢(ro+Zz+Z]), OSZ,]SH—L

1
@n—léi}-

o All "extreme" superadditive C'PL,, functions
correspond to extreme points of PO, (z).



Example: C'PL, Functions

P@Q(Zl) — {91 - R+ ‘ ¢(7“0 = 221) S 291 § ¢(27“0 4 221)}

The following are the only extreme points of
P@Q(Zl)'

1. 2 € [0, 552] = 0] =

2 (GMIC)

2. z € [0,55%0) = 67 = 2L (2-Slope)

K—2rq K—2rg 3 _
3. ;1 € [F5% 77 = 0 = 15

4. z € [B52e, 2510 = 9t = L (new 3-Slope)




CPL;-Extreme Functions

1. n = 2 was interesting. What about n = 3?
2. Too many cases to analyze by hand.

3. Restrictto z; = z,. Only 53 cases!



C'PL5 Functions

Forrg+ 4z < K,

PO3 (21) = {(01,02) €R® | 05> —¢(ro — 21)
201 < ¢(2rg + 22)
201 + 0y > p(rg + 321)
201 4+ 0y < (219 + 321)
201 + 205 > ¢(ro + 421)
201 + 205 < @21 + 421)
01— 0y >0
6, > 0,0, > 0}.

# Only 18 unique extreme points!
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C'PL5-Extreme Functions: A Summary

Extreme point 0, 0y Range of ry Range of K
a e o all all
b s S all 20+ 62 < K
c % #170 all 2rg+4z < K
d ;2%25]}0 22[‘;%2:?0 0 <71y <2z ro+6z < K
e K_Zlm I&i—IQIO all 2rg + 42 < K < 2r¢ + 62
f _]‘;Z[l(_zfirngjfgf;:a;% e leﬁ;“if;:(lﬂr% 0 <1< 22 | max{rg + 521,2rg + 421} < K <19+ 62
g Kil?n“o ;1%;90 0<719< 21 2rg+4z < K <rg+ 52
h i i all ro+4z < K < 2rg+ 4z
i K —2r9—52 21 all max{ry + 4z1,2r0+ 321} < K < 2rg + 4z

2(K—2rg—6z1)

2(K—2rp—6z1)
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C'PL5-Extreme Functions: A Summary

Extreme point 0, 05 Range of r Range of K
j — [‘.2+3“;1(§i7f§,2:g%77m0 — 1¢2+3}?g§§5¥f2§4zm 0 < 1o <2z | max{rg+4z1,2ro+ 321} < K < min{rg + 521, 2rg + 421}
k % 0 ro >0 max{ro+ 5z1,2ro + 321} < K < 2ry+ 4z
ro > 327 1o+ 521 < K <719+ 62
1 e St 0 <7 <22 ro+4z1 < K < 2rg + 32
m Mﬁ 0 ro > 221 2rg+4z < K
n i 0 ro > 22 ro+ 62 < K
o Kflm K;}?%o;iq ro > 21 max{ry + 4z1,2ro+ 221} < K < 2rg+ 32
P Kflm 0 ro > 221 2rg + 221 < K < 2ry + 32
q m 0 ro > 221 ro+421 < K <rg+ 52
r % 0 ro > 221 ro+4z < K < 2rg+ 2%
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CPL;-Extreme Functions

» These points are CPL; -Extreme.
o Are they strong for the group problem?

o What dimension face is induced on the group
polyhedron?

o When do they yield facets?



Point a

K :26,7"0:6,21:3

Facets of the Group Problem (1/4)

Point b

Point ¢

K :26,7’0:3721:2

K=2419=05,2 =2

Point d1

Point d2

K :24,7“0:4,21:2

K :24,?“0:1,2}1:1

Point el

K =126,10=3,21 =5
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Facets of the Group Problem (2/4)

Point e2

K :23,7‘0:1,2’1:5

Point f1

Point f2

K:24,T0:4721:4

K :23,7'0:3,2’1:4

Point g

Point h

K=210=2,21=5

K :24,7“0:6,21:4

Point |

K=23710=10,21 = 1
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Facets of the Group Problem (3/4)

Point |

K:5,T‘0:1,2’1:1

Point k1

Point k2

K:27,T0:7,21:4

K:9,T0:3,2’1:1

Point |

Point n1

K :25,7’0:8,21:4

K :25,7“0:9,21:2

Point n2

K=2210=16,21 =1
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Facets of the Group Problem (4/4)

Point 0 Point p1
K=24ry=9,21=3 K =24ry=10,2; =2
Point p2 Point q
K=72T,70="7,21=3 K =24,7, = 10,2 = 3
Point r

K=281 =122 =4
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New families

o (d2): 4-slope facets

o (e2),(f2),(n2),(p2): new 3-slope facets

» (I),(g): new constructive 2-slope facets

o Many are extreme for infinite group problem



Conclusion

1.

Alternative derivation of group polyhedron
facets.

. Scheme Is simple and constructive.
. Simple derivation of the GMIC, and Gomory

and Johnson’s 2-Slopes and 3-Slopes.

. Derivation of new families of facets for the

group problem.

. Suggests ways in which group-based mixed

iInequalities could be improved.



Current Research

» Cut Strengthening: continuous variables

» Derivation of other cuts: including
C' P Ls-extreme inequalities.



Future research

» Automated code for determining the extreme
points of PO,,.

o Empirical evaluation of resulting cuts.
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