Valid inequalities for MIPs and group polyhedra from approximate liftings

Lisa Miller

University of Minnesota

joint work with:

Jean-Philippe Richard

Yanjun Li

Purdue University

Overview

- 1. Lifting and the Group Problem
- 2. A Lifting Procedure to Generate Cuts
 - Relation to the Group Problem
 - CPL_n Functions
 - New Facets of the Group Problem
- 3. Conclusion and Future Work

The Mixed Integer Knapsack Polyhedron

Consider:

$$PS = conv\{(x, y) \in \mathbb{Z}_{+}^{m} \times [0, 1]^{n} | \sum_{i \in M} a_{i}x_{i} + \sum_{j \in N} b_{j}y_{j} \le a_{0}$$

with integer data and $a_1 \neq 0$.

Let PS = conv(S).

Generating group cuts for an integer PS

- 1. Choose an integer K.
- 2. Obtain remainder r_j : $a_j = Kq_j + r_j$.
- **3.** Relax *PS*:

$$G = \{ x \in \mathbb{Z}_+^m | \sum_{i \in M} r_i x_i \equiv r_0 \pmod{K} \},\$$

4. Relax *G* into the master cyclic group polyhedron

$$P(C_{K,r_0}) = Conv\{x \in \mathbb{Z}_+^{K-1} | \sum_{i=1}^{K-1} ix_i \equiv r_0 \pmod{K} \}.$$

5. Use the facets of $P(C_{K,r_0})$ as valid inequalities for *PS*.

Subadditive Characterization of Facets

Theorem [Gomory 69]: For $1 \le r_0 \le K - 1$, the non-trivial facet-defining inequalities $\sum_{i=1}^{K-1} \pi_i x_i \ge \gamma$ of the master cyclic group polyhedron $P(C_{K,r_0})$ are given by the extreme rays of the cone S_{K,r_0} defined by $\pi \in \mathbb{R}^n$ such that:

Nonnegativity: $\pi_i \ge 0,$ $1 \le i \le K - 1,$ Subadditivity: $\pi_i + \pi_j \ge \pi_k,$ $1 \le i, j, k \le K - 1,$ $(i + j) \equiv k \pmod{K},$ Complementarity: $\pi_i + \pi_j = \gamma,$ $1 \le i, j \le K - 1,$ $(i + j) \equiv r_0 \pmod{K},$ Scalability: $\pi_{r_0} = \gamma.$

Representing Facets of the Group Problem

3 Facets of $P(C_{8,1})$

Issues with the Group Problem

Discrete Group: (K is lcd of a_i 's)

- 1. Can generate a cut by solving a Linear Program. (+)
- 2. Does not require the explicit derivation of cuts (+)
- 3. In practice, K is large and difficult to obtain. (-)

Continuous Group: (K = 1)

- 1. Does not require the determination of K. (+)
- 2. The "LP" to solve has an infinite number of variables and constraints (-)
- 3. Requires the explicit derivation of cuts (-)

Generating Cuts through Lifting: Notation

Let

 M_0 , be a subset of M N_0 , N_1 be non intersecting subsets of N.

Define $PS(M_0, N_0, N_1)$ as :

$$conv\{(x,y) \in \mathbb{R}^{m+n} \mid \sum_{j \in M} a_j x_j + \sum_{j \in N} b_j y_j = a_0$$
$$x_j = 0 \,\forall j \in M_0, y_j = 0 \,\forall j \in N_0$$
$$y_j = 1 \,\forall j \in N_1\}$$

Ex : $PS_I = PS(\emptyset, N, \emptyset)$ is an integer polytope.

Step 1: Initial Inequality

For K > 0 define the polyhedron

$$PS' = conv\{(x, y) \in \mathbb{Z}^m \times [0, 1]^n \mid \\ \sum_{j \in M} (Kq_j + r_j)x_j + \sum_{j \in N^+} b_j y_j + \sum_{j \in N^-} (-b_j)\bar{y}_j \\ = Kq_0 + r_0 + \sum_{j \in N^-} (-b_j)\}$$

where $r_j < K, \forall j \in M$. (*PS'* is equivalent to *PS*.)

Step 1: Initial Inequality

The defining inequality of $PS'(M \setminus \{1\}, N^+, N^-)$ is

$$(Kq_1 + r_1)x_1 = Kq_0 + r_0$$

By dividing this inequality by K and rounding, we see that

$$q_1 x_1 \le q_0 \tag{1}$$

is valid for $PS'(M \setminus \{1\}, N^+, N^-)$.

- Inequality (1) is not necessarily valid for PS'
- It must be *lifted* into a valid inequality of PS'

Step 2: Integer Lifting

Theorem [Wolsey]: For i = 1, ..., m, let

$$\Phi^{i}(a) = q_{0} - \max \{q_{1}x_{1} + \sum_{j=2}^{i-1} \Phi^{j-1}(Kq_{j} + r_{j})x_{j}\}$$

s.t. $(Kq_{1} + r_{1})x_{1} + \sum_{j=2}^{i-1}(Kq_{j} + r_{j})x_{j} = Kq_{0} + r_{0} - a$

Then the inequality

$$q_1 x_1 + \sum_{j \in M \setminus \{1\}} \Phi^{j-1}(a_j) x_j \le q_0$$

is valid for $PS(\emptyset, N_0, N_1)$.

Step 2: Integer Lifting

- 1. There is not an easy closed form expression for Φ^i .
- 2. The function Φ^i can be computed in pseudo-polynomial time.
- 3. The lifting function needs to be recomputed after any variable is lifted.
- 4. To obtain the lifting coefficients quickly, we use approximate integer lifting (Wolsey, Gu et al., Atamturk).

Step 2: Integer Lifting

 $\begin{aligned} & \text{For } q_1 > 0, \\ & \Phi^1(a) = \begin{cases} q_0 - q_1 \lfloor \frac{Kq_0 + r_0 - a}{Kq_1 + r_1} \rfloor & \text{if } a \leq Kq_0 + r_0 \\ & \infty & \text{if } a > Kq_0 + r_0. \end{cases} \end{aligned}$

For $q_1 < 0$,

$$\Phi^{1}(a) = \begin{cases} q_{0} - q_{1} \lceil \frac{Kq_{0} + r_{0} - a}{Kq_{1} + r_{1}} \rceil & \text{if } a \geq Kq_{0} + r_{0} \\ q_{0} & \text{if } a < Kq_{0} + r_{0}. \end{cases}$$

Step 2: First Lower Approximation

• Find a continuous function that approximates Φ^1 from below and depends only on r_0 :

$$\Phi(a) := \lceil \frac{a - r_0}{K} \rceil$$

Next, find a superadditive function that approximates Φ from below.

Step 2: Superadditive Approximation

A function $\phi : \mathbb{R} \to \mathbb{R}$ is superadditive if $\phi(a) + \phi(b) \leq \phi(a + b)$ for $a, b \in \mathbb{R}$. **Theorem [Wolsey]:** Assume that $\phi(a) \leq \Phi^1(a)$ for $a \in \mathbb{R}$, then

$$q_1 x_1 + \sum_{j \in M \setminus \{1\}} \phi(a_j) x_j \le q_0$$

is valid for $PS(\emptyset, N_0, N_1)$.

Step 2: Strong Approximation Functions

- **1. Validity:** $\phi(a) \leq \Phi(a), \forall a \in \mathbb{R}$
- 2. Superadditivity:

$$\phi(a) + \phi(b) \le \phi(a+b), \, \forall a, b \in \mathbb{R}$$

3. Pseudo-Periodicity:

$$\phi(a+K) = 1 + \phi(a), \, \forall a \in \mathbb{R}$$

4. Pseudo-Symmetry:

$$\phi(a) = 0, \forall a \in [0, r_0],$$

$$\phi(r_0 + \epsilon) = 1 - \phi(K - \epsilon), \forall \epsilon \in [0, K - r_0]$$

Step 2: Integer-Lifted Rounding Cut

If ϕ satisfies the validity, superadditivity, pseudo-periodicity, and pseudo-symmetry properties then

• ϕ is not dominated by any other valid superadditive function

and

$$q_1 x_1 + \sum_{j \in M \setminus \{1\}} (q_j + \phi(r_j)) x_j \leq q_0$$
 (2)

is valid for $PS(\emptyset, N^+, N^-)$

Step 3: Continuous Lifting

Assume that
$$\phi'_+(r_0) = \lim_{\epsilon \to 0^+} \frac{\phi(r_0 + \epsilon)}{\epsilon}$$
 exists. Then

. .

$$q_1 x_1 + \sum_{j \in M \setminus \{1\}} (q_j + \phi(r_j)) x_j + \sum_{j \in N^-} \phi'_+(r_0) b_j \bar{y}_j \le q_0$$

is a valid inequality for PS.

Relations to the Group Problem

- Assume that $a_j \in \mathbb{Z}, \forall j \in M, K \in \mathbb{N}$.
- \checkmark Any inequality valid for PS is valid for

$$PQ = conv\{(x, y) \in \mathbb{R}^{m+n} \mid \sum_{j \in M} (Kq_j + r_j)x_j = Kq_0 + r_0$$
$$x_j \in \mathbb{N} \quad \forall j \in M\}.$$

•
$$\sum_{j \in M} \frac{r_j - K\phi(r_j)}{r_0} x_j \ge 1$$
 is valid for PQ .

Relations to the Group Problem

The function
$$f(u) = \frac{r(u) - K\phi(r(u))}{r_0}$$
 satisfies
1. $f(u) \ge 0$, $\forall u \in [0, K]$,

2.
$$f(u) = \frac{u}{r_0}, \forall u \in [0, r_0],$$

3.
$$f(u) + f(v) \ge f((u + v) \mod K)$$
, and

4.
$$f(u) + f((r_0 - u) \mod K) = f(r_0)$$
 for $u \in [0, K]$.

Relations to the Group Problem

Therefore

$$\sum_{j=1}^{K-1} f(j/K) t_j \ge f(r_0/K)$$

is a valid inequality for the master cyclic group polyhedron

$$P(C_{K,r_0}) = conv\{t \in Z_+^n | \sum_{j=1}^{K-1} jt_j \equiv r_0 \mod K\}.$$

Deriving Facets of the Group Problem

- How can we use this procedure to derive strong inequalities for the group problem?
- Consider a "nice" family of parameterized lifting functions.
- For which parameters these functions are the strongest (in the lifting space)?
- Are the resulting inequalities are also strong for the group problem?

CPL_n Functions

For $K \in \mathbb{R}_+$, $r_0 \in (0, K)$, $n \in \mathbb{Z}_+$, $z = (z_1, ..., z_n) \in \mathbb{R}_+^n$, and $\theta = (\theta_1, ..., \theta_n) \in \mathbb{R}_+^n$ such that $\sum_{i=1}^n z_i = \frac{K-r_0}{2}$ and $\sum_{i=1}^n \theta_i = 1/2$, a pseudo-periodic function $\phi(a)$ is a CPL_n function if, when *a* is restricted in [0, K),

$$\phi(a) = \begin{cases} 0, & \text{if } a \in [0, r_0], \\ \Theta_{i-1} + \frac{\theta_i}{z_i} (v - r_0 - Z_{i-1}), & \text{if } a \in (r_0 + Z_{i-1}, r_0 + Z_i], \\ 1 - \Theta_i + \frac{\theta_i}{z_i} (v - K + Z_i), & \text{if } a \in (K - Z_i, K - Z_{i-1}], \end{cases}$$

where
$$Z_0=0,~Z_i=\sum_{j=1}^i z_i,~ heta_0=0,~ ext{and}$$
 $\Theta_i=\sum_{j=1}^i heta_i.$

CPL_n Functions

1. CPL_n functions are valid, pseudo-periodic, pseudo-symmetric.

2. CPL_n functions are continuous.

3. CPL_n functions are piecewise-linear over 2n intervals.

Example: A CPL_3 **Function**

CPL_n Inequalities: Superadditivity Conditions

A CPL_n function $\phi(a)$ is superadditive if and only if

 $\begin{aligned} \phi(r_0 + Z_i) + \phi(r_0 + Z_j) &\leq \phi(2r_0 + Z_i + Z_j), & 0 \leq i \leq j \leq n - 1, \\ \phi(r_0 + Z_i) + 1 &\leq \phi(r_0 + K + Z_i - Z_j) + \phi(r_0 + Z_j), & 0 \leq i, j \leq n - 1, \\ \phi(r_0 + Z_i + Z_j) &\leq \phi(r_0 + Z_i) + \phi(r_0 + Z_j), & 0 \leq i \leq j \leq n - 1. \end{aligned}$

- Only a finite number of points must be checked.
- All relations are linear in θ for fixed z.

Superadditive CPL_n functions

For valid z, θ defines a superadditive CPL_n function if and only if θ belongs to the polyhedron

$$P\Theta_n(z) := \{ \theta \in \mathbb{R}^{n-1} \mid \Theta_i + \Theta_j \le \phi(2r_0 + Z_i + Z_j), \qquad 0 \le i, j \le n-1, \\ \Theta_i - \Theta_j \le \phi(r_0 + K + Z_i - Z_j) - 1, \quad 0 \le i, j \le n-1, \\ \Theta_i + \Theta_j \ge \phi(r_0 + Z_i + Z_j), \qquad 0 \le i, j \le n-1, \\ \Theta_{n-1} \le \frac{1}{2} \}.$$

• All "extreme" superadditive CPL_n functions correspond to extreme points of $P\Theta_n(z)$.

Example: CPL_2 Functions

$$P\Theta_2(z_1) = \{\theta_1 \in \mathbb{R}_+ \mid \phi(r_0 + 2z_1) \le 2\theta_1 \le \phi(2r_0 + 2z_1)\}.$$

The following are the only extreme points of $P\Theta_2(z_1)$:

1. $z_1 \in [0, \frac{K-r_0}{2}] \Rightarrow \theta_1^1 = \frac{z_1}{K-r_0}$ (GMIC) 2. $z_1 \in [0, \frac{K-2r_0}{3}) \Rightarrow \theta_1^2 = \frac{z_1+r_0}{K+r_0}$ (2-Slope) 3. $z_1 \in [\frac{K-2r_0}{3}, \frac{K-2r_0}{2}) \Rightarrow \theta_1^3 = \frac{z_1}{K-2r_0}$ (3-Slope) 4. $z_1 \in [\frac{K-2r_0}{2}, \frac{K-r_0}{2}] \Rightarrow \theta_1^4 = \frac{1}{2}$ (new 3-Slope)

CPL₃-Extreme Functions

1. n = 2 was interesting. What about n = 3?

2. Too many cases to analyze by hand.

3. Restrict to $z_1 = z_2$. Only 53 cases!

$CPL_3^=$ Functions

For $r_0 + 4z_1 < K$, $P\Theta_3^{=}(z_1) = \{(\theta_1, \theta_2) \in \mathbb{R}^2 \mid \theta_2 \ge -\phi(r_0 - z_1)\}$ $2\theta_1 \le \phi(2r_0 + 2z_1)$ $2\theta_1 + \theta_2 > \phi(r_0 + 3z_1)$ $2\theta_1 + \theta_2 \le \phi(2r_0 + 3z_1)$ $2\theta_1 + 2\theta_2 \ge \phi(r_0 + 4z_1)$ $2\theta_1 + 2\theta_2 \le \phi(2r_0 + 4z_1)$ $\theta_1 - \theta_2 > 0$ $\theta_1 \ge 0, \theta_2 \ge 0\}.$

Only 18 unique extreme points!

$CPL_3^=$ -Extreme Functions: A Summary

Extreme point	$ heta_1$	$ heta_2$	Range of r_0	Range of K
a	$\frac{z_1}{K-r_0}$	$\frac{z_1}{K-r_0}$	all	all
b	$\frac{r_0+2z_1}{2K+2r_0}$	$\frac{r_0+221}{2K+2r_0}$	all	$2r_0 + 6z_1 \le K$
С	$\frac{r_0+z_1}{K+r_0}$	$\frac{z_1}{K+r_0}$	all	$2r_0 + 4z_1 < K$
d	$r_0 + 2z_1$	$2z_1 - r_0$	$0 < r_0 < 2\gamma_1$	$r_{0} + 6r_{1} < K$
u	$2K - 2r_0$	$2K - 2r_0$	$0 < T_0 \leq 2z_1$	$r_0 + oz_1 \leq n$
е	$\frac{z_1}{K-2r_0}$	$\frac{z_1}{K-2r_0}$	all	$2r_0 + 4z_1 \le K < 2r_0 + 6z_1$
f	$\frac{-Kz_1 - Kr_0 + 6z_1r_0 + r_0^2 + 4z_1^2}{4Kz_1 + 8z_1r_0 - K^2 + r_0^2}$	$\frac{z_1(2r_0+4z_1-K)}{4Kz_1+8z_1r_0-K^2+r_0^2}$	$0 < r_0 < 2z_1$	$\max\{r_0 + 5z_1, 2r_0 + 4z_1\} \le K < r_0 + 6z_1$
g	$\frac{z_1}{K-3r_0}$	$\frac{z_1 - r_0}{K - 3r_0}$	$0 < r_0 < z_1$	$2r_0 + 4z_1 \le K < r_0 + 5z_1$
h	$\frac{1}{4}$	$\frac{1}{4}$	all	$r_0 + 4z_1 \le K < 2r_0 + 4z_1$
i	$\frac{K - 2r_0 - 5z_1}{2(K - 2r_0 - 6z_1)}$	$\frac{-z_1}{2(K-2r_0-6z_1)}$	all	$\max\{r_0 + 4z_1, 2r_0 + 3z_1\} \le K < 2r_0 + 4z_1$

$CPL_3^=$ -Extreme Functions: A Summary

Extreme point	$ heta_1$	$ heta_2$	Range of r_0	Range of K
j	$\frac{z_1(2r_0+5z_1-K)}{-K^2+3Kr_0+5Kz_1-2r_0^2-7z_1r_0}$	$\frac{z_1(r_0+5z_1-K)}{-K^2+3Kr_0+5Kz_1-2r_0^2-7z_1r_0}$	$0 < r_0 < 2z_1$	$\max\{r_0 + 4z_1, 2r_0 + 3z_1\} \le K < \min\{r_0 + 5z_1, 2r_0 + 4z_1\}$
k	$\frac{1}{3}$	0	$r_0 > 0$	$\max\{r_0 + 5z_1, 2r_0 + 3z_1\} \le K \le 2r_0 + 4z_1$
			$r_0 > 3z_1$	$r_0 + 5z_1 \le K < r_0 + 6z_1$
1	$\frac{z_1}{K-2r_0}$	$\frac{2z_1 - r_0}{2K - 4r_0}$	$0 < r_0 \le 2z_1$	$r_0 + 4z_1 \le K < 2r_0 + 3z_1$
m	$\frac{r_0}{K+r_0-4z_1}$	0	$r_0 > 2z_1$	$2r_0 + 4z_1 < K$
n	$\frac{2z_1}{K-r_0}$	0	$r_0 > 2z_1$	$r_0 + 6z_1 \le K$
	ž			
0	$\frac{z_1}{K-2r_0}$	$\frac{K-2r_0-2z_1}{2K-4r_0}$	$r_0 > z_1$	$\max\{r_0 + 4z_1, 2r_0 + 2z_1\} \le K < 2r_0 + 3z_1$
р	$\frac{z_1}{K-2r_0}$	0	$r_0 > 2z_1$	$2r_0 + 2z_1 \le K < 2r_0 + 3z_1$
q	$\frac{z_1}{K - r_0 - 2z_1}$	0	$r_0 > 2z_1$	$r_0 + 4z_1 \le K < r_0 + 5z_1$
r	$\frac{1}{2}$	0	$r_0 > 2z_1$	$r_0 + 4z_1 \le K \le 2r_0 + 2z_1$

$CPL_3^{=}$ -Extreme Functions

• These points are $CPL_3^=$ -Extreme.

Are they strong for the group problem?

What dimension face is induced on the group polyhedron?

When do they yield facets?

Facets of the Group Problem (1/4)

Facets of the Group Problem (2/4)

Facets of the Group Problem (3/4)

Facets of the Group Problem (4/4)

MIP 2006 – p. 37/41

New families

(d2): 4-slope facets

(e2),(f2),(n2),(p2): new 3-slope facets

(I),(q): new constructive 2-slope facets

Many are extreme for infinite group problem

Conclusion

- 1. Alternative derivation of group polyhedron facets.
- 2. Scheme is simple and constructive.
- 3. Simple derivation of the GMIC, and Gomory and Johnson's 2-Slopes and 3-Slopes.
- 4. Derivation of new families of facets for the group problem.
- 5. Suggests ways in which group-based mixed inequalities could be improved.

Current Research

Cut Strengthening: continuous variables

• Derivation of other cuts: including CPL_3 -extreme inequalities.

Future research

• Automated code for determining the extreme points of $P\Theta_n$.

Empirical evaluation of resulting cuts.