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Outline

• Application: FCC Auction #31
• Solving IPs with branch-and-bound using an unusual relaxation
• Incorporating cutting planes to create branch-cut-price
• Treating a secondary objective via complementarity
• Application: FCC Auction #31 (revisited)
• Extending the algorithm to general MIP
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Application: FCC Auction #31 – 1

Wireless frequency licenses are auctioned off.
• Iterative auction: repeat until no more new bids

◦ Bid submission: regulated by complex rules (eligibility, bid survival, etc.)
See Public Notices.

◦ Bid evaluation: given the bids, compute a “fair” revenue-maximizing
provisional allocation of licences.

• Bids may be submitted for individual licences or for bundles of licences.



MIP2006 Miami - 4

Application: FCC Auction #31 – 2

• primary objective: maximize revenue
• secondary objective: random (ensures fairness: a random choice

between alternate optima)
• Target: bid evaluation and feedback computation in less than 15 mins
• These are IP’s that must be solved to optimality
• Major reservation against package bidding was its computational

complexity
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Optimization at the end of a round

Bid evaluation
• Stage I: Select a revenue-maximizing subset of bids

◦ consider bids from all rounds so far
◦ XOR of OR bids: bidder may win any bids from a round but all his winning bids

must come from the same round

• Stage II: Select one of the optimal solutions randomly
◦ achieved by optimizing wrt random secondary objective
◦ traditionally implemented by adding the primary objective as a constraint
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Stage I: Revenue maximization

For each agent a ∈ A and round t ∈ T define:
• Ma,t: the matrix whose columns are the incidence vectors of bids
• va,t: the array of objective coefficients corresponding to these bids
• xa,t: binary variables indicating which of these bids are accepted
• ya,t: a binary variable indicating whether any of these bids are selected or

not.
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Stage I: disaggregated formulation

objective: min
∑

a,t

[

v
T
a,t, 0

]

[

xa,t

ya,t

]

license constraints
∑

a,t

[Ma,t,0]

[

xa,t

ya,t

]

≤ 1

bidder constraints
∑

t

[

0
T , 1

]

[

xa,t

ya,t

]

≤ 1 ∀a

bid-round constraints [Ma,t,−1]

[

xa,t

ya,t

]

≤ 0 ∀a, t

xa,t, ya,t ∈ {0, 1} ∀a, t
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Column Generation Reformulation – 1

Formulated by Dietrich & Forrest:
• Variables correspond to proposals: possible bid combinations of a bidder.

The vector of variables for bidder a is λa.
• Formulation of master problem

◦ List proposals of bidder a in Xa

◦ Require that at most one proposal per bidder is selected
◦ Require that λa’s are integral

• Subproblems used to dynamically generate proposals
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Column Generation Reformulation – 2

Master Problem Subproblems for each a,t

min
∑

a

v
T
a Xaλa min

(

v
T
a,t,−MT

a,tπ
)

xa,t − νa

∑

a

Xaλa ≤ 1 Ma,txa,t ≤ 1

e
T λa ≤ 1 ∀a 1 ≥ xa,t ≥ 0

λa ∈ {0, 1} ∀a xa,t binary

Solve via branch-and-bound.
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General IP problem considered

min
k

∑

i=1

c
T
i xi

(IP )
k

∑

i=1

Aixi ≤ b

Dixi ≤ di ∀i = 1, ..., k

xi binary ∀i = 1, ..., k

• “hard” connecting constraints
• block-diagonal “easy” constraints
• binary requirement just for easier notation, trivial to relax to real MIP
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Solving (IP) with Branch-and-Bound

Branching: any combination of changing bounds on constraints and/or
variables (just to simplify discussion; easy to generalize)

Bounding: Solve the bounding via Dantzig-Wolfe decomposition
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Dantzig-Wolfe for bounding

Original relaxation (the b
′, d

′

i, and li, ui vectors reflect the branching
decisions)

min
∑k

i=1
c

T
i xi Dixi ≤ d

′

i ∀i
∑k

i=1
Aixi ≤ b

′ such that li ≤ xi ≤ ui ∀i

Dixi ≤ d
′

i ∀i

Dantzig-Wolfe decomposition:

Master Problem The ith subproblem

min
∑k

i=1
c

T
i Xiλi min(cT

i − AT
i π)xi − δi

∑k

i=1
AiXiλi ≤ b

′ Dixi ≤ d
′

i

e
T λi = 1 ∀i li ≤ xi ≤ ui

λi ≥ 0 ∀i

• π: the dual vector corresponding to the “hard” constraints
• δi: the dual value corresponding to the ith convexity constraint.
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Dantzig-Wolfe for bounding – a tightened version

Original relaxation (the b
′, d

′

i, and li, ui vectors reflect the branching
decisions)

min
∑k

i=1
c

T
i xi Dixi ≤ d

′

i ∀i
∑k

i=1
Aixi ≤ b

′ such that li ≤ xi ≤ ui ∀i

Dixi ≤ d
′

i ∀i xi integer ∀i

Dantzig-Wolfe decomposition:

Master Problem The ith subproblem

min
∑k

i=1
c

T
i Xiλi min(cT

i − AT
i π)xi − δi

∑k

i=1
AiXiλi ≤ b

′ Dixi ≤ d
′

i

e
T λi = 1 ∀i li ≤ xi ≤ ui

λi ≥ 0 ∀i xi integer

Relaxation can be significantly tighter; depends on the integrality gap in the
subproblems.
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Further tightening the relaxation: cut generation

For a solution (λ1, . . . , λk) to the Master Problem (X1λ1, . . . , Xkλk) is a
solution to the original.

⇒ generate cuts
∑k

i=1
Fixi ≤ f in the original space.

⇒ “Incorporate” F into A, i.e., add constraints
∑k

i=1
FiXiλi ≤ f to the

Master Problem.

The duals of the new constraints are incorporated into the objectives of the
subproblems.

Note: there might be violated cuts for the master problem (in the traditional
branch-and-price sense, i.e., when λi is assumed to be integer) while there
are none for the original problem.
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(Generalized) branching, real MIP

• Branching done in original space, e.g., bound changes according to the
integrality of xi = Xiλi. Such changes are directly moved into the
subproblems.

• Can generalize branching from “change bounds” to “branching on general
hyperplanes”, i.e., “add cuts and change bounds”. Additional cuts are
incorporated into A, the set of “hard” constraints.

• General MIP properties, i.e., general bounds on the variables and allowing
continuous variables trivially carry over to the subproblems.
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End result: branch-cut-price

• Original formulation is never explicitly maintained
• ⇒ in effect branch-cut-price is implemented on the master problem where

integrality of Xiλi is required

• In traditional branch-and-price integrality of λi is required
• ⇒ hence the trouble with cut generation (the duals of cuts generated for

the master problem can’t be interpreted)
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Is it worth?

Con:

• Subproblems are IPs. Dantzig-Wolfe decomposition is slow to
converge to begin with, how slow it will be now?

Pro:

• Subproblems are IPs.
◦ the larger the integrality gap in the subproblems the tighter the relaxation

and the better the algorithm
◦ Unlike in DW for LP, here the column set can be seeded by solving the

original LP and applying heuristics to get solutions to the IP subproblems.

• Excellently parallelizable
◦ branch and cut can reasonably process only a few dozen search tree nodes

in parallel
◦ with decomposition many processors can be used for one node
◦ scales up to BlueGene size parallelism.
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Lexicographic optimization

After optimizing wrt. a primary objective (Stage I.) we need to further
optimize wrt. a secondary objective (Stage II.):

min
∑k

i=1
v

T
i xi

(IP − 2)
∑k

i=1
Aixi ≤ b

Dixi ≤ di ∀i = 1, ..., k

xi binary ∀i = 1, ..., k

xi minimizes primary objective

• Traditionally done by adding an extra constraint
• ⇒ degeneracy, numerical instability.
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Alternative solution: complementarity for Stage II.

Idea: stay on the optimal face by enforcing complementarity.

• Explore Stage I. search tree.
• Discard leaves with lower bound > optimal primary value.
• In the rest of the leaves find alternate optimal solution with best secondary

objective value and take best of those:
◦ Suppose all subproblems solved as LP when D-W terminated;
◦ ⇒ the leaf might as well have been bounded via LP relaxation;
◦ ⇒ can create dual optimal solution to original formulation;
◦ ⇒ can use complementarity to fix bounds to stay on LP optimal face;
◦ ⇒ primary objective will not change, can continue branch and bound

with secondary objective.
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Exploiting complementarity

Let π be the dual vector in the master problem and γi’s be the dual vectors
of the subproblems. Then (π, γ1, . . . , γk) is dual optimal to the original
formulation.
• if (in the original formulation) the reduced cost c

j
i − πT A

j
i − γT

i D
j
i of

variable x
j
i is negative (positive) then the variable must be fixed at its

current upper (lower) bound for Stage II.
• if the dual value πk is negative (positive) then the kth row of the original

problem (and the master problem) must be fixed at its current upper
(lower) bound for Stage II.

• if the dual value γk
i is negative (positive) then the kth row of the ith

subproblem must be fixed at its current upper (lower) bound for Stage II.
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Removing the "solve as LP" assumption

When D-W terminates, for each subproblem that does not solve as an LP
do NOT carry over the subproblem to Stage II, rather:
• Explore the search tree of the subproblem.
• Concentrate on the leaves where lower bound = optimal value
• For all such leaves

◦ create a subproblem in Stage II. with the appropriate bound changes
that define this leaf;

◦ however, these subproblems will share the convexity constraint of the
original subproblem.
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FCC Auction #31: Stage I

objective: min
∑

a,t

[

v
T
a,t, 0

]

[

xa,t

ya,t

]

license constraints
∑

a,t

[Ma,t,0]

[

xa,t

ya,t

]

≤ 1

bidder constraints
∑

t

[

0
T , 1

]

[

xa,t

ya,t

]

≤ 1 ∀a

bid-round constraints [Ma,t,−1]

[

xa,t

ya,t

]

≤ 0 ∀a, t

xa,t, ya,t ∈ {0, 1} ∀a, t

• apply Branch-and-Bound to this formulation
• bounding at search tree nodes is via Dantzig-Wolfe (bid-round + binary

are "easy")
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FCC Auction #31: Dantzig-Wolfe

Applying Dantzig-Wolfe to lower bounding (license round constraints and
x, y binary are “easy”):

min

X

a,t

h

v
T
a,t, 0

i

"

Xa,t

ya,t

#

λa,t min

“h

v
T
a,t, 0

i

−
h

M
T
a,t, 0

i

π −
h

0
T

, 1

i

νa

”

"

xa,t

ya,t

#

− δa,t

X

a,t

h

Ma,t, 0
i

"

Xa,t

ya,t

#

λa,t ≤ 1

h

Ma,t, −1

i

"

xa,t

ya,t

#

≤ 0

X

t

h

0
T

, 1

i

"

Xa,t

ya,t

#

λa,t ≤ 1 ∀a 1 ≥

"

xa,t

ya,t

#

≥ 0

e
T

λa,t = 1 ∀a, t

"

xa,t

ya,t

#

binary

λa,t ≥ 0

• replace = with ≤ in convexity constraints (0 is solution to subproblem)
• Claim: throughout column generation δa,t will always be 0.

◦ Proof: the bidder constraints dominate the convexity constraints hence there is an optimal solution to the master problem with all δ’s being 0.

• In master problem discard convexity constraints (they’ll be always
dominated by the bidder constraints)

• In subproblems set ya,t to 1 (when it is 0 the problem is rather
uninteresting).
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FCC Auction #31: resulting formulation

Master Problem Subproblems

min
∑

a,t

v
T
a,tXa,tλa,t min

(

v
T
a,t,−MT

a,tπ
)

xa,t − νa

∑

a,t

Ma,tXa,tλa,t ≤ 1 Ma,txa,t ≤ 1

∑

t

e
T λa,t ≤ 1 ∀a 1 ≥ xa,t ≥ 0

λa,t ≥ 0 ∀a, t xa,t binary

Note: was non-trivial to eliminate the y variables.

• Identical to the formulation of Dietrich and Forrest.
• intuitive column generation same as Dantzig-Wolfe based
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FCC Auction #31: Implementation and results

• branching on license: whether or not a license is assigned to a particular
bidder. Easily enforced in Master Problem and Subproblems.

• generated clique and odd hole inequalities

• Stage I. computation is fast (the subproblems usually solve as LPs)
Stage II. is instantenous, in effect the problem is fixed.
◦ 12 licences, up to 44 rounds, 6-7000 bids, up to 30 bidders (20-30

instances) under 2 seconds
◦ 50 licences, 15K bids, 16 rounds, 50 bidders (5 instances) about 2.5

minutes; second stage never takes more than a couple of seconds –
this is usually the difficult stage.

◦ 150 licences, 10K bids, 50 bidders, 4 rounds (1 instance) about 20
minutes; second stage no more than a couple of seconds.

• Implementation used the BCP framework and the Cut Generation Library
from http://www.coin-or.org
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General MIP

• current algorithm works when matrix is Dantzig-Wolfe decomposable
(block diagonal with connecting constraints)

• what if there are connecting variables as well?

C

x

R
1

A1 1

1

y

D

xn

Rn

Cn A n

0
0
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Transform to decomposable MIP

• Introduce variables yi = y for all i

• ⇒ Dantzig-Wolfe decomposable

I−

I−

RnR1

x nx1

I

I

y

D

0

0

0

1 1

1 1AC

AC

y y1 n

00
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Computational results

None... Every problem we looked at is non-decomposable, Dantzig-Wolfe
decomposable or Benders decomposable.

Actively soliciting problems...
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