Decomposition and Mixed Integer Programs

Laszlo Ladanyi

IBM T.J. Watson Research Center

David Jensen

IBM T.J. Watson Research Center

MIP2006 Miami - 1

Outline

- Application: FCC Auction #31
- Solving IPs with branch-and-bound using an unusual relaxation
- Incorporating cutting planes to create branch-cut-price
- Treating a secondary objective via complementarity
- Application: FCC Auction #31 (revisited)
- Extending the algorithm to general MIP

Application: FCC Auction #31 – 1

Wireless frequency licenses are auctioned off.

- Iterative auction: repeat until no more new bids
 - Bid submission: regulated by complex rules (eligibility, bid survival, etc.)
 See Public Notices.
 - Bid evaluation: given the bids, compute a "fair" revenue-maximizing provisional allocation of licences.
- Bids may be submitted for individual licences or for bundles of licences.

Application: FCC Auction #31 – 2

- primary objective: maximize revenue
- secondary objective: random (ensures fairness: a random choice between alternate optima)
- Target: bid evaluation and feedback computation in less than 15 mins
- These are IP's that *must* be solved to optimality
- Major reservation against package bidding was its computational complexity

Optimization at the end of a round

Bid evaluation

- Stage I: Select a revenue-maximizing subset of bids
 - consider bids from all rounds so far
 - XOR of OR bids: bidder may win any bids from a round but all his winning bids must come from the same round
- Stage II: Select one of the optimal solutions randomly
 - achieved by optimizing wrt random secondary objective
 - traditionally implemented by adding the primary objective as a constraint

Stage I: Revenue maximization

For each agent $a \in A$ and round $t \in T$ define:

- $M_{a,t}$: the matrix whose columns are the incidence vectors of bids
- $\mathbf{v}_{a,t}$: the array of objective coefficients corresponding to these bids
- $\mathbf{x}_{a,t}$: binary variables indicating which of these bids are accepted
- $y_{a,t}$: a binary variable indicating whether any of these bids are selected or not.

Stage I: disaggregated formulation

objective:

license constraints

bidder constraints

bid-round constraints

$$egin{aligned} \min \sum_{a,t} \left[\mathbf{v}_{a,t}^T, 0
ight] \left[egin{aligned} \mathbf{x}_{a,t} \ y_{a,t} \end{array}
ight] \ &\sum_{a,t} \left[M_{a,t}, \mathbf{0}
ight] \left[egin{aligned} \mathbf{x}_{a,t} \ y_{a,t} \end{array}
ight] &\leq \mathbf{1} \ &\sum_{t} \left[\mathbf{0}^T, 1
ight] \left[egin{aligned} \mathbf{x}_{a,t} \ y_{a,t} \end{array}
ight] &\leq 1 & orall a \ &\left[M_{a,t}, -\mathbf{1}
ight] \left[egin{aligned} \mathbf{x}_{a,t} \ y_{a,t} \end{array}
ight] &\leq \mathbf{0} & orall a, t \ &\mathbf{x}_{a,t}, y_{a,t} \in \{0,1\} & orall a, t \end{aligned}$$

Column Generation Reformulation – 1

Formulated by Dietrich & Forrest:

- Variables correspond to *proposals*: possible bid combinations of a bidder. The vector of variables for bidder *a* is λ_a.
- Formulation of master problem
 - \circ List proposals of bidder a in X_a
 - Require that at most one proposal per bidder is selected
 - \circ Require that λ_a 's are integral
- Subproblems used to dynamically generate proposals

Column Generation Reformulation – 2

Solve via branch-and-bound.

General IP problem considered

(*IP*)
$$\min \sum_{i=1}^{k} \mathbf{c}_{i}^{T} \mathbf{x}_{i}$$
$$\sum_{i=1}^{k} A_{i} \mathbf{x}_{i} \leq \mathbf{b}$$
$$D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i} \quad \forall i = 1, ..., k$$
$$\mathbf{x}_{i} \text{ binary } \quad \forall i = 1, ..., k$$

- "hard" connecting constraints
- block-diagonal "easy" constraints
- binary requirement just for easier notation, trivial to relax to real MIP

Solving (IP) with Branch-and-Bound

Branching: any combination of changing bounds on constraints and/or variables (just to simplify discussion; easy to generalize)

Bounding: Solve the bounding via Dantzig-Wolfe decomposition

Dantzig-Wolfe for bounding

Original relaxation (the b', d'_i , and l_i , u_i vectors reflect the branching decisions)

$$\min \sum_{i=1}^{k} \mathbf{c}_{i}^{T} \mathbf{x}_{i} \qquad D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i}' \qquad \forall i$$

$$\sum_{i=1}^{k} A_{i} \mathbf{x}_{i} \leq \mathbf{b}' \qquad \text{such that} \quad \mathbf{l}_{i} \leq \mathbf{x}_{i} \leq \mathbf{u}_{i} \qquad \forall i$$

$$D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i}' \quad \forall i$$

Dantzig-Wolfe decomposition:

Master ProblemThe ith subproblem $\min \sum_{i=1}^{k} \mathbf{c}_{i}^{T} X_{i} \boldsymbol{\lambda}_{i}$ $\min(\mathbf{c}_{i}^{T} - A_{i}^{T} \boldsymbol{\pi}) \mathbf{x}_{i} - \boldsymbol{\delta}_{i}$ $\sum_{i=1}^{k} A_{i} X_{i} \boldsymbol{\lambda}_{i} \leq \mathbf{b}'$ $D_{i} \mathbf{x}_{i} \leq \mathbf{d}'_{i}$ $\mathbf{e}^{T} \boldsymbol{\lambda}_{i} = 1$ $\forall i$ $\mathbf{l}_{i} \leq \mathbf{x}_{i} \leq \mathbf{u}_{i}$ $\boldsymbol{\lambda}_{i} > \mathbf{0}$ $\forall i$

- π : the dual vector corresponding to the "hard" constraints
- δ_i : the dual value corresponding to the i^{th} convexity constraint.

Dantzig-Wolfe for bounding – a tightened version

Original relaxation (the b', d'_i , and l_i , u_i vectors reflect the branching decisions)

$$\min \sum_{i=1}^{k} \mathbf{c}_{i}^{T} \mathbf{x}_{i} \qquad D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i}' \qquad \forall i$$
$$\sum_{i=1}^{k} A_{i} \mathbf{x}_{i} \leq \mathbf{b}' \qquad \text{such that} \quad \mathbf{l}_{i} \leq \mathbf{x}_{i} \leq \mathbf{u}_{i} \qquad \forall i$$

$$D_i \mathbf{x}_i \leq \mathbf{d}'_i \quad \forall i \qquad \mathbf{x}_i \text{ integer } \quad \forall i$$

Dantzig-Wolfe decomposition:

Master ProblemThe ith subproblem $\min \sum_{i=1}^{k} \mathbf{c}_{i}^{T} X_{i} \boldsymbol{\lambda}_{i}$ $\min(\mathbf{c}_{i}^{T} - A_{i}^{T} \boldsymbol{\pi}) \mathbf{x}_{i} - \boldsymbol{\delta}_{i}$ $\sum_{i=1}^{k} A_{i} X_{i} \boldsymbol{\lambda}_{i} \leq \mathbf{b}'$ $D_{i} \mathbf{x}_{i} \leq \mathbf{d}'_{i}$ $\mathbf{e}^{T} \boldsymbol{\lambda}_{i} = 1$ $\forall i$ $\mathbf{l}_{i} \leq \mathbf{x}_{i} \leq \mathbf{u}_{i}$ $\boldsymbol{\lambda}_{i} \geq \mathbf{0}$ $\forall i$ \mathbf{x}_{i} integer

Relaxation can be significantly tighter; depends on the integrality gap in the subproblems.

Further tightening the relaxation: cut generation

For a solution $(\lambda_1, \ldots, \lambda_k)$ to the Master Problem $(X_1\lambda_1, \ldots, X_k\lambda_k)$ is a solution to the original.

- \Rightarrow generate cuts $\sum_{i=1}^{k} F_i \mathbf{x}_i \leq \mathbf{f}$ in the original space.
- ⇒ "Incorporate" *F* into *A*, i.e., add constraints $\sum_{i=1}^{k} F_i X_i \lambda_i \leq \mathbf{f}$ to the Master Problem.

The duals of the new constraints are incorporated into the objectives of the subproblems.

Note: there might be violated cuts for the master problem (in the traditional branch-and-price sense, i.e., when λ_i is assumed to be integer) while there are none for the original problem.

(Generalized) branching, real MIP

- Branching done in original space, e.g., bound changes according to the integrality of x_i = X_iλ_i. Such changes are directly moved into the subproblems.
- Can generalize branching from "change bounds" to "branching on general hyperplanes", i.e., "add cuts and change bounds". Additional cuts are incorporated into *A*, the set of "hard" constraints.
- General MIP properties, i.e., general bounds on the variables and allowing continuous variables trivially carry over to the subproblems.

End result: branch-cut-price

- Original formulation is never explicitly maintained
- \Rightarrow in effect branch-cut-price is implemented on the master problem where integrality of $X_i \lambda_i$ is required
- In traditional branch-and-price integrality of λ_i is required
- → hence the trouble with cut generation (the duals of cuts generated for the master problem can't be interpreted)

Is it worth?

Con:

• Subproblems are IPs. Dantzig-Wolfe decomposition is slow to converge to begin with, how slow it will be now?

Pro:

- Subproblems are IPs.
 - the larger the integrality gap in the subproblems the tighter the relaxation and the better the algorithm
 - Unlike in DW for LP, here the column set can be seeded by solving the original LP and applying heuristics to get solutions to the IP subproblems.
- Excellently parallelizable
 - branch and cut can reasonably process only a few dozen search tree nodes in parallel
 - with decomposition many processors can be used for one node
 - scales up to BlueGene size parallelism.

Lexicographic optimization

After optimizing wrt. a primary objective (Stage I.) we need to further optimize wrt. a secondary objective (Stage II.):

$$\min \sum_{i=1}^{k} \mathbf{v}_{i}^{T} \mathbf{x}_{i}$$

$$(IP-2) \qquad \sum_{i=1}^{k} A_{i} \mathbf{x}_{i} \leq \mathbf{b}$$

$$D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i} \qquad \forall i = 1, ..., k$$

$$\mathbf{x}_{i} \text{ binary} \qquad \forall i = 1, ..., k$$

$$\mathbf{x}_{i} \text{ minimizes primary objective}$$

- Traditionally done by adding an extra constraint
- \Rightarrow degeneracy, numerical instability.

Alternative solution: complementarity for Stage II.

Idea: stay on the optimal face by enforcing complementarity.

- Explore Stage I. search tree.
- Discard leaves with lower bound > optimal primary value.
- In the rest of the leaves find alternate optimal solution with best secondary objective value and take best of those:
 - Suppose all subproblems solved as LP when D-W terminated;
 - $\circ \Rightarrow$ the leaf might as well have been bounded via LP relaxation;
 - $\circ \Rightarrow$ can create dual optimal solution to original formulation;
 - $\circ \Rightarrow$ can use complementarity to fix bounds to stay on LP optimal face;
 - $\circ \Rightarrow$ primary objective will not change, can continue branch and bound with secondary objective.

Exploiting complementarity

Let π be the dual vector in the master problem and γ_i 's be the dual vectors of the subproblems. Then $(\pi, \gamma_1, \ldots, \gamma_k)$ is dual optimal to the original formulation.

- if (in the original formulation) the reduced cost $c_i^j \pi^T A_i^j \gamma_i^T D_i^j$ of variable x_i^j is negative (positive) then the variable must be fixed at its current upper (lower) bound for Stage II.
- if the dual value π^k is negative (positive) then the k^{th} row of the original problem (and the master problem) must be fixed at its current upper (lower) bound for Stage II.
- if the dual value γ_i^k is negative (positive) then the k^{th} row of the i^{th} subproblem must be fixed at its current upper (lower) bound for Stage II.

Removing the "solve as LP" assumption

When D-W terminates, for each subproblem that does not solve as an LP do *NOT* carry over the subproblem to Stage II, rather:

- Explore the search tree of the subproblem.
- Concentrate on the leaves where lower bound = optimal value
- For all such leaves
 - create a subproblem in Stage II. with the appropriate bound changes that define this leaf;
 - however, these subproblems will share the convexity constraint of the original subproblem.

FCC Auction #31: Stage I

objective: $\min \sum_{a,t} \begin{bmatrix} \mathbf{v}_{a,t}^T, 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{a,t} \\ y_{a,t} \end{bmatrix}$ license constraints $\sum_{a,t} \begin{bmatrix} M_{a,t}, \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{a,t} \\ y_{a,t} \end{bmatrix} \leq \mathbf{1}$ bidder constraints $\sum_{t} \begin{bmatrix} \mathbf{0}^T, 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{a,t} \\ y_{a,t} \end{bmatrix} \leq \mathbf{1} \qquad \forall a$ bid-round constraints $\begin{bmatrix} M_{a,t}, -\mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{a,t} \\ y_{a,t} \end{bmatrix} \leq \mathbf{0} \qquad \forall a, t$ $\mathbf{x}_{a,t}, y_{a,t} \in \{0,1\} \qquad \forall a, t$

- apply Branch-and-Bound to this formulation
- bounding at search tree nodes is via Dantzig-Wolfe (bid-round + binary are "easy")

FCC Auction #31: Dantzig-Wolfe

Applying Dantzig-Wolfe to lower bounding (license round constraints and x, y binary are "easy"):

- replace = with \leq in convexity constraints (0 is solution to subproblem)
- Claim: throughout column generation δ_{a,t} will always be 0.
 ^o Proof: the bidder constraints dominate the convexity constraints hence there is an optimal solution to the master problem with all δ's being 0.
- In master problem discard convexity constraints (they'll be always dominated by the bidder constraints)
- In subproblems set $y_{a,t}$ to 1 (when it is 0 the problem is rather uninteresting).

FCC Auction #31: resulting formulation

Note: was non-trivial to eliminate the *y* variables.

- Identical to the formulation of Dietrich and Forrest.
- intuitive column generation same as Dantzig-Wolfe based

FCC Auction #31: Implementation and results

- branching on license: whether or not a license is assigned to a particular bidder. Easily enforced in Master Problem and Subproblems.
- generated clique and odd hole inequalities
- Stage I. computation is fast (the subproblems usually solve as LPs) Stage II. is instantenous, in effect the problem is fixed.
 - 12 licences, up to 44 rounds, 6-7000 bids, up to 30 bidders (20-30 instances) under 2 seconds
 - 50 licences, 15K bids, 16 rounds, 50 bidders (5 instances) about 2.5 minutes; second stage never takes more than a couple of seconds this is usually the difficult stage.
 - 150 licences, 10K bids, 50 bidders, 4 rounds (1 instance) about 20 minutes; second stage no more than a couple of seconds.
- Implementation used the BCP framework and the Cut Generation Library from http://www.coin-or.org

General MIP

- current algorithm works when matrix is Dantzig-Wolfe decomposable (block diagonal with connecting constraints)
- what if there are connecting variables as well?

Transform to decomposable MIP

- Introduce variables $y_i = y$ for all i
- \Rightarrow Dantzig-Wolfe decomposable

Computational results

None... Every problem we looked at is non-decomposable, Dantzig-Wolfe decomposable or Benders decomposable.

Actively soliciting problems...