Decomposition and Mixed Integer Programs

Laszlo Ladanyi

IBM T.J. Watson Research Center

David Jensen
IBM T.J. Watson Research Center

Outline

- Application: FCC Auction \#31
- Solving IPs with branch-and-bound using an unusual relaxation
- Incorporating cutting planes to create branch-cut-price
- Treating a secondary objective via complementarity
- Application: FCC Auction \#31 (revisited)
- Extending the algorithm to general MIP

Application: FCC Auction \#31-1

Wireless frequency licenses are auctioned off.

- Iterative auction: repeat until no more new bids
- Bid submission: regulated by complex rules (eligibility, bid survival, etc.) See Public Notices.
- Bid evaluation: given the bids, compute a "fair" revenue-maximizing provisional allocation of licences.
- Bids may be submitted for individual licences or for bundles of licences.

Application: FCC Auction \#31-2

- primary objective: maximize revenue
- secondary objective: random (ensures fairness: a random choice between alternate optima)
- Target: bid evaluation and feedback computation in less than 15 mins
- These are IP's that must be solved to optimality
- Major reservation against package bidding was its computational complexity

Optimization at the end of a round

Bid evaluation

- Stage I: Select a revenue-maximizing subset of bids
- consider bids from all rounds so far
- XOR of OR bids: bidder may win any bids from a round but all his winning bids must come from the same round
- Stage II: Select one of the optimal solutions randomly
- achieved by optimizing wrt random secondary objective
- traditionally implemented by adding the primary objective as a constraint

Stage I: Revenue maximization

For each agent $a \in A$ and round $t \in T$ define:

- $M_{a, t}$: the matrix whose columns are the incidence vectors of bids
- $\mathbf{v}_{a, t}$: the array of objective coefficients corresponding to these bids
- $\mathrm{x}_{a, t}$: binary variables indicating which of these bids are accepted
- $y_{a, t}$: a binary variable indicating whether any of these bids are selected or not.

Stage I: disaggregated formulation

$\begin{array}{lrl}\text { objective: } & \min \sum_{a, t}\left[\mathbf{v}_{a, t}^{T}, 0\right]\left[\begin{array}{l}\mathbf{x}_{a, t} \\ y_{a, t}\end{array}\right] & \\ \text { license constraints } & \sum_{a, t}\left[M_{a, t}, \mathbf{0}\right]\left[\begin{array}{l}\mathbf{x}_{a, t} \\ y_{a, t}\end{array}\right] \leq \mathbf{1} & \\ \text { bidder constraints } & \sum_{t}\left[\mathbf{0}^{T}, 1\right]\left[\begin{array}{l}\mathbf{x}_{a, t} \\ y_{a, t}\end{array}\right] \leq 1 & \forall a \\ \text { bid-round constraints } & {\left[M_{a, t},-\mathbf{1}\right]\left[\begin{array}{l}\mathbf{x}_{a, t} \\ y_{a, t}\end{array}\right] \leq \mathbf{0}} & \forall a, t \\ \mathbf{x}_{a, t}, y_{a, t} \in\{0,1\} & \forall a, t\end{array}$

Column Generation Reformulation - 1

Formulated by Dietrich \& Forrest:

- Variables correspond to proposals: possible bid combinations of a bidder. The vector of variables for bidder a is $\boldsymbol{\lambda}_{a}$.
- Formulation of master problem
- List proposals of bidder a in X_{a}
- Require that at most one proposal per bidder is selected
- Require that $\boldsymbol{\lambda}_{a}$'s are integral
- Subproblems used to dynamically generate proposals

Column Generation Reformulation - 2

Master Problem
$\min \sum_{a} \mathbf{v}_{a}^{T} X_{a} \boldsymbol{\lambda}_{a}$

$$
\sum_{a} X_{a} \boldsymbol{\lambda}_{a} \leq \mathbf{1}
$$

$$
\mathbf{e}^{T} \boldsymbol{\lambda}_{a} \leq \mathbf{1}
$$

$$
\boldsymbol{\lambda}_{a} \in\{0,1\} \quad \forall a
$$

Subproblems for each a, t

$$
\min \left(\mathbf{v}_{a, t}^{T},-M_{a, t}^{T} \boldsymbol{\pi}\right) \mathbf{x}_{a, t}-\nu_{a}
$$

$$
M_{a, t} \mathbf{x}_{a, t} \leq \mathbf{1}
$$

$$
\mathbf{1} \geq \mathbf{x}_{a, t} \geq \mathbf{0}
$$

$$
\mathbf{x}_{a, t} \text { binary }
$$

Solve via branch-and-bound.

General IP problem considered

$$
\begin{aligned}
& \min \sum_{i=1}^{k} \mathbf{c}_{i}^{T} \mathbf{x}_{i} \\
&(I P) \quad \sum_{i=1}^{k} A_{i} \mathbf{x}_{i} \leq \mathbf{b} \\
& D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i} \quad \forall i=1, \ldots, k \\
& \mathbf{x}_{i} \text { binary } \forall i=1, \ldots, k
\end{aligned}
$$

- "hard" connecting constraints
- block-diagonal "easy" constraints
- binary requirement just for easier notation, trivial to relax to real MIP

Solving (IP) with Branch-and-Bound

Branching: any combination of changing bounds on constraints and/or variables (just to simplify discussion; easy to generalize)

Bounding: Solve the bounding via Dantzig-Wolfe decomposition

Dantzig-Wolfe for bounding

Original relaxation (the $\mathbf{b}^{\prime}, \mathbf{d}_{i}^{\prime}$, and $\mathbf{l}_{i}, \mathbf{u}_{i}$ vectors reflect the branching decisions)

$$
\begin{array}{rrr}
\min \sum_{i=1}^{k} \mathbf{c}_{i}^{T} \mathbf{x}_{i} & D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i}^{\prime} & \forall i \\
\sum_{i=1}^{k} A_{i} \mathbf{x}_{i} \leq \mathbf{b}^{\prime} & \text { such that } & \mathbf{l}_{i} \leq \mathbf{x}_{i} \leq \mathbf{u}_{i} \\
D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i}^{\prime} & \forall i &
\end{array}
$$

Dantzig-Wolfe decomposition:

$$
\begin{array}{rrr}
\text { Master Problem } & \text { The } \mathrm{i}^{\text {th }} \text { subproblem } \\
\min \sum_{i=1}^{k} \mathbf{c}_{i}^{T} X_{i} \boldsymbol{\lambda}_{i} & \min \left(\mathbf{c}_{i}^{T}-A_{i}^{T} \boldsymbol{\pi}\right) \mathbf{x}_{i}-\boldsymbol{\delta}_{i} \\
\sum_{i=1}^{k} A_{i} X_{i} \boldsymbol{\lambda}_{i} \leq \mathbf{b}^{\prime} & & D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i}^{\prime} \\
\mathbf{e}^{T} \boldsymbol{\lambda}_{i}=1 & \forall i & \mathbf{l}_{i} \leq \mathbf{x}_{i} \leq \mathbf{u}_{i} \\
\boldsymbol{\lambda}_{i} \geq \mathbf{0} & \forall i &
\end{array}
$$

- π : the dual vector corresponding to the "hard" constraints
- δ_{i} : the dual value corresponding to the $i^{\text {th }}$ convexity constraint.

Dantzig-Wolfe for bounding - a tightened version

Original relaxation (the $\mathbf{b}^{\prime}, \mathbf{d}_{i}^{\prime}$, and $\mathrm{l}_{i}, \mathbf{u}_{i}$ vectors reflect the branching decisions)

$$
\begin{array}{rrrr}
\min \sum_{i=1}^{k} \mathbf{c}_{i}^{T} \mathbf{x}_{i} & D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i}^{\prime} & \forall i \\
\sum_{i=1}^{k} A_{i} \mathbf{x}_{i} \leq \mathbf{b}^{\prime} & \text { such that } & \mathbf{l}_{i} \leq \mathbf{x}_{i} \leq \mathbf{u}_{i} & \forall i \\
D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i}^{\prime} & \forall i & \mathbf{x}_{i} \text { integer } & \forall i
\end{array}
$$

Dantzig-Wolfe decomposition:

$$
\begin{array}{rlrl}
\text { Master Problem } & & \text { The }^{\text {th }} \text { subproblem } \\
\min \sum_{i=1}^{k} \mathbf{c}_{i}^{T} X_{i} \boldsymbol{\lambda}_{i} & & \min \left(\mathbf{c}_{i}^{T}-A_{i}^{T} \boldsymbol{\pi}\right) \mathbf{x}_{i}-\boldsymbol{\delta}_{i} \\
\sum_{i=1}^{k} A_{i} X_{i} \boldsymbol{\lambda}_{i} & \leq \mathbf{b}^{\prime} & D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i}^{\prime} \\
\mathbf{e}^{T} \boldsymbol{\lambda}_{i} & =1 & \forall i & \mathbf{l}_{i} \leq \mathbf{x}_{i} \leq \mathbf{u}_{i} \\
\boldsymbol{\lambda}_{i} & \geq \mathbf{0} & \forall i & \mathbf{x}_{i} \text { integer }
\end{array}
$$

Relaxation can be significantly tighter; depends on the integrality gap in the subproblems.

Further tightening the relaxation: cut generation

For a solution $\left(\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{k}\right)$ to the Master Problem $\left(X_{1} \boldsymbol{\lambda}_{1}, \ldots, X_{k} \boldsymbol{\lambda}_{k}\right)$ is a solution to the original.
\Rightarrow generate cuts $\sum_{i=1}^{k} F_{i} \mathbf{x}_{i} \leq \mathbf{f}$ in the original space.
\Rightarrow "Incorporate" F into A, i.e., add constraints $\sum_{i=1}^{k} F_{i} X_{i} \boldsymbol{\lambda}_{i} \leq \mathrm{f}$ to the Master Problem.

The duals of the new constraints are incorporated into the objectives of the subproblems.

Note: there might be violated cuts for the master problem (in the traditional branch-and-price sense, i.e., when $\boldsymbol{\lambda}_{i}$ is assumed to be integer) while there are none for the original problem.

(Generalized) branching, real MIP

- Branching done in original space, e.g., bound changes according to the integrality of $\mathbf{x}_{i}=X_{i} \boldsymbol{\lambda}_{i}$. Such changes are directly moved into the subproblems.
- Can generalize branching from "change bounds" to "branching on general hyperplanes", i.e., "add cuts and change bounds". Additional cuts are incorporated into A, the set of "hard" constraints.
- General MIP properties, i.e., general bounds on the variables and allowing continuous variables trivially carry over to the subproblems.

End result: branch-cut-price

- Original formulation is never explicitly maintained
- \Rightarrow in effect branch-cut-price is implemented on the master problem where integrality of $X_{i} \boldsymbol{\lambda}_{i}$ is required
- In traditional branch-and-price integrality of $\boldsymbol{\lambda}_{i}$ is required
- \Rightarrow hence the trouble with cut generation (the duals of cuts generated for the master problem can't be interpreted)

Is it worth?

Con:

- Subproblems are IPs. Dantzig-Wolfe decomposition is slow to converge to begin with, how slow it will be now?

Pro:

- Subproblems are IPs.
- the larger the integrality gap in the subproblems the tighter the relaxation and the better the algorithm
- Unlike in DW for LP, here the column set can be seeded by solving the original LP and applying heuristics to get solutions to the IP subproblems.
- Excellently parallelizable
- branch and cut can reasonably process only a few dozen search tree nodes in parallel
- with decomposition many processors can be used for one node
- scales up to BlueGene size parallelism.

Lexicographic optimization

After optimizing wrt. a primary objective (Stage I.) we need to further optimize wrt. a secondary objective (Stage II.):

$$
\begin{array}{cc}
\min \sum_{i=1}^{k} \mathbf{v}_{i}^{T} \mathbf{x}_{i} & \\
(I P-2) \quad \sum_{i=1}^{k} A_{i} \mathbf{x}_{i} \leq \mathbf{b} & \\
D_{i} \mathbf{x}_{i} \leq \mathbf{d}_{i} & \forall i=1, \ldots, k \\
\mathbf{x}_{i} \text { binary } & \forall i=1, \ldots, k \\
\mathbf{x}_{i} \text { minimizes primary objective } &
\end{array}
$$

- Traditionally done by adding an extra constraint
- \Rightarrow degeneracy, numerical instability.

Alternative solution: complementarity for Stage II.

Idea: stay on the optimal face by enforcing complementarity.

- Explore Stage I. search tree.
- Discard leaves with lower bound > optimal primary value.
- In the rest of the leaves find alternate optimal solution with best secondary objective value and take best of those:
- Suppose all subproblems solved as LP when D-W terminated;
$\circ \Rightarrow$ the leaf might as well have been bounded via LP relaxation;
$\circ \Rightarrow$ can create dual optimal solution to original formulation;
$\circ \Rightarrow$ can use complementarity to fix bounds to stay on LP optimal face;
$\circ \Rightarrow$ primary objective will not change, can continue branch and bound with secondary objective.

Exploiting complementarity

Let π be the dual vector in the master problem and γ_{i} 's be the dual vectors of the subproblems. Then $\left(\pi, \gamma_{1}, \ldots, \gamma_{k}\right)$ is dual optimal to the original formulation.

- if (in the original formulation) the reduced cost $c_{i}^{j}-\pi^{T} A_{i}^{j}-\gamma_{i}^{T} D_{i}^{j}$ of variable x_{i}^{j} is negative (positive) then the variable must be fixed at its current upper (lower) bound for Stage II.
- if the dual value π^{k} is negative (positive) then the $k^{\text {th }}$ row of the original problem (and the master problem) must be fixed at its current upper (lower) bound for Stage II.
- if the dual value γ_{i}^{k} is negative (positive) then the $k^{\text {th }}$ row of the $i^{\text {th }}$ subproblem must be fixed at its current upper (lower) bound for Stage II.

Removing the "solve as LP" assumption

When D-W terminates, for each subproblem that does not solve as an LP do NOT carry over the subproblem to Stage II, rather:

- Explore the search tree of the subproblem.
- Concentrate on the leaves where lower bound = optimal value
- For all such leaves
- create a subproblem in Stage II. with the appropriate bound changes that define this leaf;
- however, these subproblems will share the convexity constraint of the original subproblem.

FCC Auction \#31: Stage I

objective:

$$
\min \sum_{a, t}\left[\mathbf{v}_{a, t}^{T}, 0\right]\left[\begin{array}{l}
\mathbf{x}_{a, t} \\
y_{a, t}
\end{array}\right]
$$

license constraints

$$
\sum_{a, t}\left[M_{a, t}, \mathbf{0}\right]\left[\begin{array}{l}
\mathbf{x}_{a, t} \\
y_{a, t}
\end{array}\right] \leq \mathbf{1}
$$

bidder constraints

$$
\begin{aligned}
\sum_{t}\left[\mathbf{0}^{T}, 1\right]\left[\begin{array}{l}
\mathbf{x}_{a, t} \\
y_{a, t}
\end{array}\right] & \leq 1 & \forall a \\
{\left[M_{a, t},-\mathbf{1}\right]\left[\begin{array}{l}
\mathbf{x}_{a, t} \\
y_{a, t}
\end{array}\right] } & \leq \mathbf{0} & \forall a, t \\
\mathbf{x}_{a, t}, y_{a, t} & \in\{0,1\} & \forall a, t
\end{aligned}
$$

bid-round constraints

- apply Branch-and-Bound to this formulation
- bounding at search tree nodes is via Dantzig-Wolfe (bid-round + binary are "easy")

FCC Auction \#31: Dantzig-Wolfe

Applying Dantzig-Wolfe to lower bounding (license round constraints and x, y binary are "easy"):

$$
\begin{aligned}
\min \sum_{a, t}\left[\mathbf{v}_{a, t}^{T}, 0\right]\left[\begin{array}{l}
X_{a, t} \\
\mathbf{y}_{a, t}
\end{array}\right] \boldsymbol{\lambda}_{a, t} & \\
\sum_{a, t}\left[M_{a, t}, \mathbf{0}\right]\left[\begin{array}{l}
x_{a, t} \\
\mathbf{y}_{a, t}
\end{array}\right] \boldsymbol{\lambda}_{a, t} & \leq 1 \\
\sum_{t}\left[\mathbf{0}^{T}, 1\right]\left[\begin{array}{l}
x_{a, t} \\
\mathbf{y}_{a, t}
\end{array}\right] \boldsymbol{\lambda}_{a, t} & \leq \mathbf{1} \quad \forall a \\
\mathbf{e}^{T} \boldsymbol{\lambda}_{a, t} & =\mathbf{1} \quad \forall a, t \\
\boldsymbol{\lambda}_{a, t} & \geq \mathbf{0}
\end{aligned}
$$

$$
\min \left(\left[\mathbf{v}_{a, t}^{T}, \mathbf{0}\right]-\left[M_{a, t}^{T}, \mathbf{o}\right] \boldsymbol{\pi}-\left[\mathbf{0}^{T}, 1\right] \nu_{a}\right)\left[\begin{array}{l}
\mathbf{x}_{a, t} \\
y_{a, t}
\end{array}\right]-\delta_{a, t}
$$

$$
\left[M_{a, t},-1\right]\left[\begin{array}{l}
\mathbf{x}_{a, t} \\
y_{a, t}
\end{array}\right] \leq 0
$$

$$
\mathbf{1} \geq\left[\begin{array}{l}
\mathbf{x}_{a, t} \\
y_{a, t}
\end{array}\right] \geq 0
$$

$$
\left[\begin{array}{l}
\mathbf{x}_{a, t} \\
y_{a, t}
\end{array}\right] \text { binary }
$$

- replace $=$ with \leq in convexity constraints (0 is solution to subproblem)
- Claim: throughout column generation $\delta_{a, t}$ will always be 0 .
- Proof: the bidder constraints dominate the convexity constraints hence there is an optimal solution to the master problem with all δ 's being 0 .
- In master problem discard convexity constraints (they'll be always dominated by the bidder constraints)
- In subproblems set $y_{a, t}$ to 1 (when it is 0 the problem is rather uninteresting).

FCC Auction \#31: resulting formulation

$$
\begin{array}{rlr}
\text { Master Problem } & \text { Subproblems } \\
\min \sum_{a, t} \mathbf{v}_{a, t}^{T} X_{a, t} \boldsymbol{\lambda}_{a, t} & \min \left(\mathbf{v}_{a, t}^{T},-M_{a, t}^{T} \boldsymbol{\pi}\right) \mathbf{x}_{a, t}-\nu_{a} \\
\sum_{a, t} M_{a, t} X_{a, t} \boldsymbol{\lambda}_{a, t} \leq \mathbf{1} & M_{a, t} \mathbf{x}_{a, t} \leq \mathbf{1} \\
\sum_{t} \mathbf{e}^{T} \boldsymbol{\lambda}_{a, t} \leq \mathbf{1} & \forall a & \mathbf{1} \geq \mathbf{x}_{a, t} \geq \mathbf{0} \\
\boldsymbol{\lambda}_{a, t} \geq \mathbf{0} & \forall a, t & \mathbf{x}_{a, t} \text { binary }
\end{array}
$$

Note: was non-trivial to eliminate the y variables.

- Identical to the formulation of Dietrich and Forrest.
- intuitive column generation same as Dantzig-Wolfe based

FCC Auction \#31: Implementation and results

- branching on license: whether or not a license is assigned to a particular bidder. Easily enforced in Master Problem and Subproblems.
- generated clique and odd hole inequalities
- Stage I. computation is fast (the subproblems usually solve as LPs) Stage II. is instantenous, in effect the problem is fixed.
- 12 licences, up to 44 rounds, 6-7000 bids, up to 30 bidders (20-30 instances) under 2 seconds
- 50 licences, 15 K bids, 16 rounds, 50 bidders (5 instances) about 2.5 minutes; second stage never takes more than a couple of seconds this is usually the difficult stage.
- 150 licences, 10K bids, 50 bidders, 4 rounds (1 instance) about 20 minutes; second stage no more than a couple of seconds.
- Implementation used the BCP framework and the Cut Generation Library from http://www.coin-or.org

General MIP

- current algorithm works when matrix is Dantzig-Wolfe decomposable (block diagonal with connecting constraints)
- what if there are connecting variables as well?

Transform to decomposable MIP

- Introduce variables $y_{i}=y$ for all i
- \Rightarrow Dantzig-Wolfe decomposable

Computational results

None... Every problem we looked at is non-decomposable, Dantzig-Wolfe decomposable or Benders decomposable.

Actively soliciting problems...

