Treewidth and Integer Programming

Mixed Integer Programming workshop June 5, 2006, Miami

Arie Koster

Zuse Institute Berlin (ZIB)

koster@zib.de

http://www.zib.de/koster

Contents

Treewidth vs. Integer Programming

- Treewidth by Integer Programming
- Experiments

Tree Decomposition

- A tree decomposition:
 - Tree with a vertex set associated with every node
 - For all edges {v,w}: there is a set containing both v and w
 - For every v: the nodes that contain v form a connected subtree

Tree Decomposition

- A tree decomposition:
 - Tree with a vertex set associated with every node
 - For all edges {v,w}:
 there is a set
 containing both v and
 w
 - For every v: the nodes that contain v form a connected subtree

Tree Decomposition

- A tree decomposition:
 - Tree with a vertex set associated with every node
 - For all edges {v,w}: there is a set containing both v and w
 - For every v: the nodes that contain v form a connected subtree

Treewidth

Width of tree decomposition: g a $\max_{i \in I} |X_i| - 1$ b e

maximum bag size - 1

Treewidth of graph G: tw(G) = minimum width over all tree decompositions of G.

First observations

Each clique has to be part of at least one node

Clique number - 1 is a lower bound for treewidth

Trees have treewidth 1

Arie Koster

Branchwidth, Treewidth, Pathwidth

Robertson and Seymour [106]: For a graph G = (V, E), max{ bw(G), 2 } \leq tw(G) + 1 \leq max{ $\lfloor 3/2 \ bw(G) \rfloor$, 2 }

Graphs with bounded treewidth have bounded branchwidth and vice versa

Given a branch decomposition, we can construct a tree decomposition with TD-width at most 3/2 times the BD-width

→Illya Hicks

Pathwidth: T is restricted to be a path; $tw(G) \le pw(G)$

Algorithms using tree decompositions

- Step 1: Find a tree decomposition of width bounded by some small k.
 - Heuristics.
 - O(f(*k*)*n*) in theory.
 - Fast O(n) algorithms for k=2, k=3.
 - By construction, e.g., for trees, series-parallel-graphs.
- Step 2. Use dynamic programming, bottom-up on the tree.
 - Let $Y_i = \bigcup X_i$ over all descendants of $i \in I$
 - Compute optimal solution in G[Y_i] for each set S ⊆ X_i, based on the solutions for the children

Maximum weighted independent set on graphs with treewidth k

- For node *i* in tree decomposition, $S \subseteq X_i$ write
 - R(*i*, S) = maximum weight of independent set S of G[Y_i] with S ∩
 X_i = S, -∞ if such S does not exist
- Compute for each node *i*, a table with all values R(*i*, ...).
- Each such table can be computed in O(2^k) time when treewidth at most k.
- Gives O(n) algorithm when treewidth is (small) constant.
 - Many problems can be solved in polynomial time given a graph of bounded treewidth
 - Probabilistic networks
 - Frequency assignment

Minimum Interference FAP

- Graph G=(V,E)
 - Vertices correspond to bi-directional connections
 - Edges indicate interference between two connections
- For every vertex v, set of frequency pairs D(v) is specified

- Interference quantified by edge penalties p(v,f ,w,g)
- Preferences for frequencies quantified by penalties q(v,f)

Objective: Select for each vertex exactly one frequency, such that the total penalty is minimized.

Does it work in practice ?

- Only with (pre)processing techniques
 - Graph reduction
 - Vertices with degree 1 can be removed
 - Vertices with degree 2 can be removed
 - Domain reduction
 - Upper bounding
 - Dominance of domain elements

Computational Results

How do we get a tree decomposition all small width?

TREEWIDTH:

Given $k \ge 0$ and G a graph, is the treewidth of $G \le k$?

Arie Koste

14

Linear time algorithm for TREEWIDTH if k not part of the input Bodlaender [25]

Exponential in k

Computing TREEWIDTH is NP-hard

Not practical, even for k as small as 4

- O(2ⁿ poly(n))
- O(1.9601ⁿ poly(n))
- poly(n) denotes a polynomial in n
- Arnborg et al.[13] Fomin et al.[57]

References refer to Tutorials 2005 chapter

Arnborg et al.[13]

Exact & approx. algorithms

O(log k) approximation algorithm Amir [9], Bouchitté et al. [41]

Computational approaches

Branch-and-Bound algorithm O(2^{k+2}) algorithm

Gogate and Dechter [63] Shoikhet and Geiger [117]

Experiments with $O(2^n \text{ poly}(n))$ time+memory algorithm

Bodlaender et al., ESA 2006

Arie Koste

Experiments with integer programming formulation (B&C)

References refer to Tutorials 2005 chapter

Other approaches

- \rightarrow Heuristic algorithms based on chordal graphs
- →Minimum separating set heuristic [83]
- → Metaheuristics
 - Tabu Search [45]
 - Simulated Annealing [79]
 - Genetic algorithm [92]
- →Preprocessing
 - Reduction rules [39]
 - Safe Separators [32]

Treewidth Lower Bounds

Lemma The minimum degree of a graph is a lower bound for treewidth

 $\delta(G) \le tw(G)$

Corollary *The degeneracy of a graph is a lower bound for treewidth*

$$\delta D(G) = \max_{H \subseteq G} \delta(H) \le tw(G)$$

Corollary *The contraction degeneracy of a graph is a lower bound for treewidth*

$$\delta C(G) = \max_{H \neq G} \delta(H) \le t w(G)$$

See [36,37,38,88], Tutorials 2005 chapter

Contents

- Treewidth vs. Integer Programming
- Treewidth by Integer Programming
- Experiments

Treewidth by IP ? Chordal graphs

Chordal graph:

Every cycle of size at least 4 contains a chord

Gavril (1974): A graph G = (V, E) is chordal if and only if there exists a tree T = (I, F) such that one can associate with each vertex $V \in V$ a subtree $T_v = (I_v, F_v)$ of T, such that $vw \in E$ if and only if $I_v \cap I_w \neq \emptyset$.

There exists a chordalization $H = (V, E \cup F)$ of *G* with maximum clique size k+1 if and only if the treewidth of *G* is *k*.

Let H(G) be the set of all chordalizations of G.

$$tw(G) = \min_{H \in H(G)} \omega(H) - 1$$

Select best *H* and compute maximum clique size!

Related questions

Fill-in:

Minimum #edges to be added to obtain a chordal graph.

There exists a chordalization $H = (V, E \cup F)$ of G with |F| = k if and only if the fill-in of G is k.

$$fi(G) = \min_{H \in \mathcal{H}(G)} \left| E_H \right| - \left| E_G \right|$$

Weighted treewidth (weights c(v)): Minimum over all tree decompositions of the maximum product $\prod_{v \in X_i} c(v)$ over all bags $i \in I$.

There exists a chordalization $H = (V, E \cup F)$ of *G* with maximum clique product *k* if and only if the weighted treewidth of *G* is *k*.

$$\log(wtw(G)) = \min_{H \in \mathcal{H}(G)} \omega(H, \log(c))$$

Chordalization polytope (1)

All three problems need chordalization of G

Chordalization polytope: Convex hull of all chordalizations *H* of *G*.

How to identify whether a graph is chordal or not?

Simplicial vertex:

A vertex is simplicial if all its neighbors are mutually adjacent

Perfect Elimination Scheme $\sigma = [v_1, ..., v_n]$: Ordering of the vertices such that for all i, v_i is a simplicial vertex of the induced graph $G[v_i, ..., v_n]$

Chordalization polytope (2)

$$x_{vw} = \begin{cases} 1 & \text{if } vw \in E \cup F \text{ and } \pi(v) < \pi(w) \\ 0 & \text{otherwise} \end{cases}$$

Existence of edges

$$x_{vw} + x_{wv} = 1 \quad vw \in E$$

$$x_{vw} + x_{wv} \le 1 \quad vw \notin E$$

Simplicity of vertices

$$y_{uv} + y_{uw} \le 1 + y_{vw} + y_{wv} \quad u, v, w \in V$$

$$\left(\sum_{i=1}^{|C|-1} y_{\rho(i)\rho(i+1)}\right) + y_{\rho(|C|)\rho(1)} \le |C| - 1 \quad \forall C \subseteq V, |C| \ge 3, \rho : \{1, ..., |C|\} \to C$$

Arie Koster

Objectives

23

Arie Koste

Contents

Treewidth vs. Integer Programming

Treewidth by Integer Programming

Experiments

24

Separation of ordering inequalities

Simplicity of vertices

 $y_{uv} + y_{uw} \le 1 + y_{vw} + y_{wv} \quad u, v, w \in V$

Inequality for every triple of vertices

Always satisfied if $VW \in E$

Other implicitly handled by separation (lazy cuts)

Ordering represents a chordal graph

Dirac (1961): Every non-complete chordal graph has two nonadjacent simplicial vertices

Without loss of generality, we can put an arbitrary vertex at the end of the ordering

Tarjan & Yannakakis (1984): Ordering can be build from the back, selecting recursively vertex with highest number of ordered neighbors

Without loss of generality, we can put a (maximal/maximum) clique in *G* at the end of the ordering

Instances

Randomly generated partial-k-trees (Shoiket&Geiger, 1998)

- Generate k-tree
- Randomly remove p% of the edges
- \rightarrow treewidth at most k
- →n=100, k=10, p=30/40/50

Instances from frequency assignment, probabilistic networks, ...

Computational framework

Petersen graph

Objective	Strategy	CPU time (s)	B&C nodes	Gap (%)
Treewidth	none	449.18	278018	0
Treewidth	maximum clique	0.43	57	0
Fill-in	none	>3600	>886765	41.18
Fill-in	maximum clique	1.27	379	0

Maximum clique breaks symmetries(?); simplifies computation

Fill-in more difficult than treewidth???

Results partial k-trees: treewidth

Treewidth

30%: 4 out of 10 solved within 1 hour CPU time 40%: 1 out of 10 solved within 1 hour CPU time

Arie Koster

Results partial-k-trees: fill-in

Fill-in

30%: On average solved in 1085 seconds 40%: 8 out of 10 solved within 1 hour of CPU time

Relatively easy to solve

Results realistic instances

minors of link-pp selected; ω(G)=9, tw(G)=13

				treewidth		fill-in		Combined	
instance	V	E	fi(G)	CPU(s)	#nodes	CPU(s)	#nodes	CPU(s)	#nodes
link-pp-minor-020	20	125	29	23.42	9680	0.86	2	4.88	1307
link-pp-minor-021	21	130	35	29.91	7238	1.29	9	13.15	2767
link-pp-minor-022	22	137	38	37.82	5858	1.33	1	7.88	349
link-pp-minor-023	23	144	40	128.21	16131	2.25	2	15.22	986
link-pp-minor-024	24	151	43	399.61	27125	1.93	2	103.50	8568
link-pp-minor-025	25	156	48	1875.24	94369	3.61	3	133.67	6861

Concluding remarks

Treewidth is moving from theory to practice; IP can help

Chordalization polytope can tackle three problems: treewidth, minimum fill-in, and weighted treewidth

More knowledge on chordalization polytope required, in particular for (weighted) treewidth

- To test treewidth of graphs from applications, contact me: <u>koster@zib.de</u>
- Publications: <u>http://www.zib.de/koster/</u>
- Overview of most treewidth computations: TreewidthLIB at <u>http://www.cs.uu.nl/people/hansb/treewidthLIB/</u>