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Tree Decomposition

� A tree decomposition:

� Tree with a vertex set 

associated with every 

node

� For all edges {v,w}: 

there is a set 

containing both v and 

w

� For every v: the nodes 

that contain v form a 

connected subtree

Definition
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Treewidth

� Width of tree decomposition:

� Treewidth of graph G: tw(G)= minimum 

width over all tree decompositions of G.
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First observations

Each clique has to be part of at least one node

Clique number - 1 is a lower bound for treewidth
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Trees have treewidth 1

Definition
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Branchwidth, Treewidth, Pathwidth

Robertson and Seymour [106]: For a graph G =(V,E ), 
max{ bw(G), 2 } ≤ tw(G) + 1 ≤ max{ 3/2 bw(G), 2 }

Graphs with bounded treewidth have bounded branchwidth and 
vice versa

Pathwidth: T is restricted to be a path; tw(G) ≤≤≤≤ pw(G)

Trees do not have bounded pathwidth

Given a branch decomposition, we can construct a tree 
decomposition with TD-width at most 3/2 times the BD-width

�Illya Hicks

Definition
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Algorithms using tree 
decompositions

� Step 1: Find a tree decomposition of width bounded by 

some small k.

� Heuristics.

� O(f(k)n) in theory.

� Fast O(n) algorithms for k=2, k=3.

� By construction, e.g., for trees, series-parallel-graphs.

� Step 2. Use dynamic programming, bottom-up on the 

tree.

� Let Yi=∪∪∪∪Xi over all descendants of i∈I

� Compute optimal solution in G[Yi] for each set S ⊆ Xi, based on 

the solutions for the children

TD-based Algorithms
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Maximum weighted independent set 
on graphs with treewidth k

� For node i in tree decomposition, S ⊆ Xi write

� R(i, S) = maximum weight of independent set S of G[Yi] with S ∩

Xi = S, – ∞ if such S does not exist

� Compute for each node i, a table with all values R(i, …).

� Each such table can be computed in O(2k) time when 

treewidth at most k.

� Gives O(n) algorithm when treewidth is (small) constant.

Many problems can be solved in polynomial time given a graph of 

bounded treewidth

� Probabilistic networks

� Frequency assignment

TD-based Algorithms
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Minimum Interference FAP

� Graph G=(V,E)

� Vertices correspond to 

bi-directional connections

� Edges indicate interference 

between two connections

� For every vertex v, set of 

frequency pairs D(v) is specified

� Interference quantified by edge penalties p(v,f ,w,g)

� Preferences for frequencies quantified by penalties q(v,f)

� Objective: Select for each vertex exactly one frequency, 

such that the total penalty is minimized.

TD-based Algorithms
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Does it work in practice ?

� Only with (pre)processing techniques

� Graph reduction

� Vertices with degree 1 can be removed

� Vertices with degree 2 can be removed

� Domain reduction

� Upper bounding

� Dominance of domain elements

TD-based Algorithms
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Computational Results
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How do we get a tree 
decomposition all small width?

Computing TREEWIDTH is NP-hard Arnborg et al.[13]

Computing Treewidth

Linear time algorithm for TREEWIDTH if k not part of the input
Bodlaender [25]

TREEWIDTH:
Given k ≥ 0 and G a graph, is the treewidth of G ≤ k ?

� Exponential in k
� Not practical, even for k as small as 4

Several exponential time algorithms

� O( 2n poly(n) ) Arnborg et al.[13]
� O( 1.9601n poly(n) ) Fomin et al.[57]
� poly(n) denotes a polynomial in n

References refer to Tutorials 2005 chapter
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Exact & approx. algorithms

Computing Treewidth

O( log k ) approximation algorithm Amir [9], Bouchitté et al. [41]

Experiments with Bodlaender et al., ESA 2006

O( 2n poly(n) ) time+memory algorithm

Computational approaches

Experiments with integer programming formulation (B&C)

Branch-and-Bound algorithm Gogate and Dechter [63]

O( 2k+2 ) algorithm Shoikhet and Geiger [117]

References refer to Tutorials 2005 chapter
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Other approaches

�Heuristic algorithms based on chordal graphs

�Minimum separating set heuristic [83]

�Metaheuristics

� Tabu Search [45]

� Simulated Annealing [79]

� Genetic algorithm [92]

�Preprocessing

� Reduction rules [39]

� Safe Separators [32]

Computing Treewidth

References refer to Tutorials 2005 chapter
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Treewidth Lower Bounds

Lemma The minimum degree of a graph is a lower bound for
treewidth

)()( GtwG ≤δ

Corollary The degeneracy of a graph is a lower bound for
treewidth

)()(max)( GtwHGD
GH

≤=
⊆

δδ

Corollary The contraction degeneracy of a graph is a lower 
bound for treewidth

)()(max)( GtwHGC
GH

≤= δδ
π

Treewidth Lower Bounds

See [36,37,38,88], Tutorials 2005 chapter
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Treewidth by IP ? Chordal graphs

Gavril (1974): A graph G =(V,E ) is chordal if and only if 
there exists a tree T =(I,F ) such that one can associate with 
each vertex v ∈V a subtree Tv=(Iv,Fv ) of T, such that vw ∈E if 
and only if Iv ∩ Iw ≠ ∅. 

There exists a chordalization H H =(V,E ∪F ) of G with maximum 

clique size k+1 if and only if the treewidth of G is k.

1)(ωmin)(
)(Η

−−−−====
∈∈∈∈

HGtw
GH

Let H(G ) be the set of all chordalizations of G.

Select best H and compute maximum clique size!

Chordal graph:
Every cycle of size at least 4 contains a chord
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Related questions

There exists a chordalization H H =(V,E ∪F ) of G

with |F | = k if and only if the fill-in of G is k.

Fill-in:
Minimum #edges to be added to obtain a chordal graph.

GH
GH

EEGfi −−−−====
∈∈∈∈ )(Η
min)(

Weighted treewidth (weights c(v)):
Minimum over all tree decompositions of the maximum product 
∏v ∈ Xi

c(v) over all bags i∈I.

There exists a chordalization H H =(V,E ∪F ) of G with maximum 

clique product k if and only if the weighted treewidth of G is k.

))log(,(ωmin))(log(
)(Η

cHGwtw
GH∈∈∈∈

====
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Chordalization polytope (1)

All three problems need chordalization of G

Chordalization polytope:
Convex hull of all chordalizations H of G.

How to identify whether a graph is chordal or not?

Perfect Elimination Scheme σ = [v1,...,vn]:
Ordering of the vertices such that for all i, vi is a simplicial 
vertex of the induced graph G[vi,...,vn]

Simplicial vertex:
A vertex is simplicial if all its neighbors are mutually adjacent
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Chordalization polytope (2)
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Objectives

Treewidth
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z
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Separation of ordering inequalities
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Inequality for every subset & every order of the subset

Implicit consideration by separation
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Separation by shortest path computation in auxiliary digraph
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Simplicity of vertices

Vwvuyyyy wvvwuwuv ∈∈∈∈++++++++≤≤≤≤++++ ,,1

Inequality for every triple of vertices

Always satisfied if vw ∈E

Other implicitly handled by separation (lazy cuts)
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Cliques

Ordering represents a chordal graph

Without loss of generality, we can put an arbitrary vertex at the 

end of the ordering

Dirac (1961): Every non-complete chordal graph has two 
nonadjacent simplicial vertices

Without loss of generality, we can put a (maximal/maximum) 

clique in G at the end of the ordering

Tarjan & Yannakakis (1984): Ordering can be build from 
the back, selecting recursively vertex with highest number of 
ordered neighbors



Arie Koster

28

Instances

Randomly generated partial-k-trees (Shoiket&Geiger,1998)

� Generate k-tree
� Randomly remove p% of the edges
�treewidth at most k
�n=100, k=10, p=30/40/50

Instances from frequency assignment, probabilistic networks, …

Computational framework

SCIP (http://scip.zib.de/) with CPLEX 10.0 as LP solver
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Petersen graph

379

>886765

57

278018

B&C nodes

0

41.18

0

0

Gap (%)

1.27maximum 

clique

Fill-in

>3600noneFill-in

0.43maximum 

clique

Treewidth

449.18noneTreewidth

CPU time (s)StrategyObjective

Maximum clique breaks symmetries(?); simplifies computation

Fill-in more difficult than treewidth???
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Results partial k-trees: treewidth

30%: 4 out of 10 solved within 1 hour CPU time

40%: 1 out of 10 solved within 1 hour CPU time
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Treewidth

Very good lower bound, difficult to find optimal solution
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Results partial-k-trees: fill-in

Fill-in

30%: On average solved in 1085 seconds

40%: 8 out of 10 solved within 1 hour of CPU time
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Relatively easy to solve
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Results realistic instances
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Concluding remarks

Treewidth is moving from theory to practice; IP can help

Chordalization polytope can tackle three problems:
treewidth, minimum fill-in, and weighted treewidth

� To test treewidth of graphs from applications, contact me: 
koster@zib.de

� Publications: http://www.zib.de/koster/

� Overview of most treewidth computations: TreewidthLIB at 
http://www.cs.uu.nl/people/hansb/treewidthLIB/

More knowledge on chordalization polytope required, in particular 
for (weighted) treewidth


