Intermediate IP representations using value disjunctions

Matthias Köppe, Quentin Louveaux, Robert Weismantel

Otto-von-Guericke-Universität Magdeburg
Fakultät für Mathematik
Institut für Mathematische Optimierung

May 2006

Integer Programming: State of the art

$$
\max c^{\top} x: x \in P \cap Z^{n}
$$

Dual methods

- based on outer description of $\operatorname{conv}\left(P \cap Z^{n}\right)$
- well explored
- branch-and-cutalgorithms

Primal methods

- inner descriptions of $P \cap Z^{n}$
- Integral Basis Method
- reformulations with new vars

Integer Programming: State of the art

$$
\max c^{\top} x: x \in P \cap Z^{n}
$$

Dual methods

- based on outer description of $\operatorname{conv}\left(P \cap Z^{n}\right)$
- well explored
- branch-and-cutalgorithms

Primal-dual methods

- based on intermediate representations
- new variables and inequalities
- not explored at all

Primal methods

- inner descriptions of $P \cap Z^{n}$
- Integral Basis Method
- reformulations with new vars

Primal-dual methods vs. other methods

Column generation techniques

- extended reformulation with (exponentially many) variables
- no automatic method for general problems

Reformulations like Sherali-Adams etc.

Primal-dual methods vs. other methods

Column generation techniques

- extended reformulation with (exponentially many) variables
- no automatic method for general problems

Reformulations like Sherali-Adams etc.

Primal-dual methods vs. other methods

Column generation techniques

- extended reformulation with (exponentially many) variables
- no automatic method for general problems

Reformulations like Sherali-Adams etc.

Primal-dual methods vs. other methods

Column generation techniques

- extended reformulation with (exponentially many) variables
- no automatic method for general problems

Reformulations like Sherali-Adams etc.

- strong reformulations with beautiful properties
- polynomial-size reformulations.

Primal-dual methods vs. other methods

Column generation techniques

- extended reformulation with (exponentially many) variables
- no automatic method for general problems

Reformulations like Sherali-Adams etc.

- strong reformulations with beautiful properties
- polynomial-size reformulations

Primal-dual methods vs. other methods

Column generation techniques

- extended reformulation with (exponentially many) variables
- no automatic method for general problems

Reformulations like Sherali-Adams etc.

- strong reformulations with beautiful properties
- polynomial-size reformulations. .

Primal-dual methods vs. other methods

Column generation techniques

- extended reformulation with (exponentially many) variables
- no automatic method for general problems

Reformulations like Sherali-Adams etc.

- strong reformulations with beautiful properties
- polynomial-size reformulations. .

Primal-dual methods vs. other methods

Column generation techniques

- extended reformulation with (exponentially many) variables
- no automatic method for general problems

Reformulations like Sherali-Adams etc.

- strong reformulations with beautiful properties
- polynomial-size reformulations... but huge!
- only useful when projected back into original space

Goals of the primal-dual techniques

Primal-dual methods vs. other methods

Column generation techniques

- extended reformulation with (exponentially many) variables
- no automatic method for general problems

Reformulations like Sherali-Adams etc.

- strong reformulations with beautiful properties
- polynomial-size reformulations... but huge!
- only useful when projected back into original space

Goals of the primal-dual techniques

- automatic method for general IP
- create moderately many new variables.
- such that in the extended snace, dual techniques become more powerful

Primal-dual methods vs. other methods

Column generation techniques

- extended reformulation with (exponentially many) variables
- no automatic method for general problems

Reformulations like Sherali-Adams etc.

- strong reformulations with beautiful properties
- polynomial-size reformulations... but huge!
- only useful when projected back into original space

Goals of the primal-dual techniques

- automatic method for general IP
- create moderately many new variables.
- ...such that, in the extended space, dual techniques become more powerful

Primal-dual methods vs. other methods

Column generation techniques

- extended reformulation with (exponentially many) variables
- no automatic method for general problems

Reformulations like Sherali-Adams etc.

- strong reformulations with beautiful properties
- polynomial-size reformulations... but huge!
- only useful when projected back into original space

Goals of the primal-dual techniques

- automatic method for general IP
- create moderately many new variables...
- ...such that, in the extended space, dual techniques become more powerful

Primal-dual methods vs. other methods

Column generation techniques

- extended reformulation with (exponentially many) variables
- no automatic method for general problems

Reformulations like Sherali-Adams etc.

- strong reformulations with beautiful properties
- polynomial-size reformulations... but huge!
- only useful when projected back into original space

Goals of the primal-dual techniques

- automatic method for general IP
- create moderately many new variables...
- ...such that, in the extended space, dual techniques become more powerful

Integration of the Integral Basis Method into B\&C
 Joint work with A. Fügenschuh, A. Martin, R. Weismantel

At nodes with no dual gain in strong branching:

(1) Run Integral Basis Method with a time limit or iterations limit

Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

At nodes with no dual gain in strong branching:

(1) Run Integral Basis Method with a time limit or iterations limit

- Try to create extended formulation with improved dual bound
- Search for improving vectors

Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

At nodes with no dual gain in strong branching:

(1) Run Integral Basis Method with a time limit or iterations limit

- Try to create extended formulation with improved dual bound
- Search for improving vectors

Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

At nodes with no dual gain in strong branching:

(1) Run Integral Basis Method with a time limit or iterations limit

- Try to create extended formulation with improved dual bound
- Search for improving vectors

Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

At nodes with no dual gain in strong branching:

(1) Run Integral Basis Method with a time limit or iterations limit

- Try to create extended formulation with improved dual bound
- Search for improving vectors

Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

At nodes with no dual gain in strong branching:

(1) Run Integral Basis Method with a time limit or iterations limit

- Try to create extended formulation with improved dual bound
- Search for improving vectors
(2) Project extended formulation into original or intermediate variable space
- Compute tightened variable bounds
- Separate a class of simple combinatorial inequalities
- Store improved dual bound

Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

At nodes with no dual gain in strong branching:

(1) Run Integral Basis Method with a time limit or iterations limit

- Try to create extended formulation with improved dual bound
- Search for improving vectors
(2) Project extended formulation into original or intermediate variable space
- Compute tightened variable bounds
- Separate a class of simple combinatorial inequalities
- Store improved dual bound

Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

At nodes with no dual gain in strong branching:

(1) Run Integral Basis Method with a time limit or iterations limit

- Try to create extended formulation with improved dual bound
- Search for improving vectors
(2) Project extended formulation into original or intermediate variable space
- Compute tightened variable bounds
- Separate a class of simple combinatorial inequalities
- Store improved dual bound

Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

At nodes with no dual gain in strong branching:

(1) Run Integral Basis Method with a time limit or iterations limit

- Try to create extended formulation with improved dual bound
- Search for improving vectors
(2) Project extended formulation into original or intermediate variable space
- Compute tightened variable bounds
- Separate a class of simple combinatorial inequalities
- Store improved dual bound

Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

At nodes with no dual gain in strong branching:

(1) Run Integral Basis Method with a time limit or iterations limit

- Try to create extended formulation with improved dual bound
- Search for improving vectors
(2) Project extended formulation into original or intermediate variable space
- Compute tightened variable bounds
- Separate a class of simple combinatorial inequalities
- Store improved dual bound

Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

At nodes with no dual gain in strong branching:

(1) Run Integral Basis Method with a time limit or iterations limit

- Try to create extended formulation with improved dual bound
- Search for improving vectors
(2) Project extended formulation into original or intermediate variable space
- Compute tightened variable bounds
- Separate a class of simple combinatorial inequalities
- Store improved dual bound
(3) When integer infeasibility or optimality proved, fathom the node

Integration of the Integral Basis Method into B\&C

 Joint work with A. Fügenschuh, A. Martin, R. Weismantel
Current state of the project

Implemented within the branch\&cut system SIP

- a sophisticated academic solver (by Alexander Martin et al.)
- available (to us) in source code form and GVN/OPT, our imnlementation of nrimal reformulation techniques

Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

Current state of the project

Implemented within the branch\&cut system SIP

- a sophisticated academic solver (by Alexander Martin et al.)
- available (to us) in source code form
and GYWOPT, our implementation of primal reformulation techniques

Integration of the Integral Basis Method into B\&C

 Joint work with A. Fügenschuh, A. Martin, R. Weismantel
Current state of the project

Implemented within the branch\&cut system SIP

- a sophisticated academic solver (by Alexander Martin et al.)
- available (to us) in source code form

```
and GYWOPT, our implementation of primal reformulation techniques
```


Integration of the Integral Basis Method into B\&C

 Joint work with A. Fügenschuh, A. Martin, R. Weismantel
Current state of the project

Implemented within the branch\&cut system SIP

- a sophisticated academic solver (by Alexander Martin et al.)
- available (to us) in source code form

```
and GYWOPT, our implementation of primal reformulation techniques
```


Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

Current state of the project

Implemented within the branch\&cut system SIP

- a sophisticated academic solver (by Alexander Martin et al.)
- available (to us) in source code form and GYWOPT, our implementation of primal reformulation techniques
- used in computations with the Integral Basis Method
(Haus, K., Weismantel, 2001/2003)
- freely available in source code form

Future work

Reimplementation in a more powerful branch\&cut system

Integration of the Integral Basis Method into B\&C Joint work with A. Fügenschuh, A. Martin, R. Weismantel

Current state of the project

Implemented within the branch\&cut system SIP

- a sophisticated academic solver (by Alexander Martin et al.)
- available (to us) in source code form and GYWOPT, our implementation of primal reformulation techniques
- used in computations with the Integral Basis Method
(Haus, K., Weismantel, 2001/2003)
- freely available in source code form

Future work
 Reimplementation in a more powerful branch\&cut system

Integration of the Integral Basis Method into B\&C

Joint work with A. Fügenschuh, A. Martin, R. Weismantel

Current state of the project

Implemented within the branch\&cut system SIP

- a sophisticated academic solver (by Alexander Martin et al.)
- available (to us) in source code form and GYWOPT, our implementation of primal reformulation techniques
- used in computations with the Integral Basis Method
(Haus, K., Weismantel, 2001/2003)
- freely available in source code form

Future work

Reimplementation in a more powerful branch\&cut system

- SCIP (Tobias Achterberg)
- or one of the COIN-OR branch\&cut systems

Integration of the Integral Basis Method into B\&C

Joint work with A. Fügenschuh, A. Martin, R. Weismantel

Current state of the project

Implemented within the branch\&cut system SIP

- a sophisticated academic solver (by Alexander Martin et al.)
- available (to us) in source code form and GYWOPT, our implementation of primal reformulation techniques
- used in computations with the Integral Basis Method
(Haus, K., Weismantel, 2001/2003)
- freely available in source code form

Future work

Reimplementation in a more powerful branch\&cut system

- SCIP (Tobias Achterberg)
- or one of the COIN-OR branch\&cut systems

Integration of the Integral Basis Method into B\&C

Joint work with A. Fügenschuh, A. Martin, R. Weismantel

Current state of the project

Implemented within the branch\&cut system SIP

- a sophisticated academic solver (by Alexander Martin et al.)
- available (to us) in source code form
and GYWOPT, our implementation of primal reformulation techniques
- used in computations with the Integral Basis Method
(Haus, K., Weismantel, 2001/2003)
- freely available in source code form

Future work

Reimplementation in a more powerful branch\&cut system

- SCIP (Tobias Achterberg)
- or one of the COIN-OR branch\&cut systems

Outline of this talk

(1) A very simple example. The simplification effect of reformulation.
(3) The value disjunction technique. Definitions and examples.
(3) The structure theorem of value disjunction.
(The simplification effect of branching.
© Branching on binary variables vs. branching on values.
(0) Experiments with some hard problems.

Outline of this talk

(1) A very simple example. The simplification effect of reformulation.
(2) The value disjunction technique. Definitions and examples.
(3) The structure theorem of value disjunction.

- The simplification effect of branching.
(6) Branching on binary variables vs. branching on values.
© Experiments with some hard problems.

Outline of this talk

(1) A very simple example. The simplification effect of reformulation.
(2) The value disjunction technique. Definitions and examples.
(3) The structure theorem of value disjunction.

- The simplification effect of branching.
© Branching on binary variables vs. branching on values.
(0) Experiments with some hard problems.

Outline of this talk

(1) A very simple example. The simplification effect of reformulation.
(2) The value disjunction technique. Definitions and examples.
(3) The structure theorem of value disjunction.
(9) The simplification effect of branching.
© Branching on binary variables vs. branching on values.
(0) Experiments with some hard problems.

Outline of this talk

(1) A very simple example. The simplification effect of reformulation.
(2) The value disjunction technique. Definitions and examples.
(3) The structure theorem of value disjunction.
(9) The simplification effect of branching.
(0) Branching on binary variables vs. branching on values.
(0) Experiments with some hard problems.

Outline of this talk

(1) A very simple example. The simplification effect of reformulation.
(2) The value disjunction technique. Definitions and examples.
(3) The structure theorem of value disjunction.
(9) The simplification effect of branching.
(5) Branching on binary variables vs. branching on values.
(0) Experiments with some hard problems.

Intermediate representation of multi knapsack problems
An example

Consider the set $x \in\{0,1\}^{8}$ such that

$$
8 x_{0}-x_{1}-2 x_{2}-3 x_{3}-4 x_{4}-5 x_{5}-6 x_{6}-7 x_{7} \leq 0 .
$$

Intermediate representation of multi knapsack problems

An example

Consider the set $x \in\{0,1\}^{8}$ such that

$$
8 x_{0}-x_{1}-2 x_{2}-3 x_{3}-4 x_{4}-5 x_{5}-6 x_{6}-7 x_{7} \leq 0 .
$$

Convex hull: 13 non-trivial facets

$$
\begin{aligned}
& \begin{array}{lllll}
x_{0} & -x_{3} & & -x_{5} & -x_{6} \\
x_{0} & -x_{7} \leq 0 \\
x_{0} & -x_{4} & -x_{5} & -x_{6} & -x_{7} \leq 0
\end{array} \\
& x_{0}-x_{1}-x_{2}-x_{5}-x_{6}-x_{7} \leq 0 \\
& x_{0}-x_{1}-x_{3}-x_{4} \quad-x_{6}-x_{7} \leq 0 \\
& x_{0}-x_{2}-x_{3}-x_{4}-x_{5} \quad-x_{7} \leq 0 \\
& x_{0}-x_{2}-x_{3}-x_{4} \quad-x_{6}-x_{7} \leq 0 \\
& x_{0}-x_{1}-x_{2}-x_{3}-x_{4}-x_{5}-x_{6} \leq 0 \\
& 2 x_{0}-x_{1}-x_{2}-x_{3}-x_{4}-x_{5}-x_{6}-x_{7} \leq 0 \\
& 2 x_{0}-x_{2}-x_{3}-x_{4}-x_{5}-x_{6}-2 x_{7} \leq 0 \\
& 2 x_{0}-x_{1}-x_{3}-x_{4}-x_{5}-2 x_{6}-2 x_{7} \leq 0 \\
& 3 x_{0}-x_{1}-x_{2}-x_{3}-x_{4}-2 x_{5}-2 x_{6}-2 x_{7} \leq 0 \\
& 3 x_{0}-x_{1}-x_{2}-2 x_{3}-2 x_{4}-x_{5}-2 x_{6}-2 x_{7} \leq 0 \\
& 5 x_{0}-x_{1}-x_{2}-2 x_{3}-2 x_{4}-3 x_{5}-4 x_{6}-4 x_{7} \leq 0
\end{aligned}
$$

An intermediate representation:

Introduce new variables for the subsets $\{1,2\}$ and $\{3,4\}$.

Reformulation

$$
\begin{aligned}
8 x_{0}-x_{1}-2 x_{2}-3 x_{3}-4 x_{4}-5 x_{5}-6 x_{6}-7 x_{7}-3 x_{9}-7 x_{10} & \leq 0 \\
x_{1}+x_{2} & +x_{9} \\
x_{3}+x_{4} & \leq 1 \\
+x_{10} & \leq 1
\end{aligned}
$$

Convex hull: 9 non-trivial facets

An intermediate representation:

$$
\text { Introduce new variables for the subsets }\{1,2\} \text { and }\{3,4\} \text {. }
$$

Reformulation

$$
\begin{aligned}
8 x_{0}-x_{1}-2 x_{2}-3 x_{3}-4 x_{4}-5 x_{5}-6 x_{6}-7 x_{7}-3 x_{9}-7 x_{10} & \leq 0 \\
x_{1}+x_{2} & +x_{9} \\
& \leq 1 \\
x_{3}+x_{4} & +x_{10}
\end{aligned}
$$

Convex hull: 9 non-trivial facets

$$
\begin{array}{rlrl}
\begin{aligned}
x_{0} & -x_{5}-x_{6} & -x_{7} & -x_{10} \\
x_{0}-x_{1}-x_{2} & -x_{5}-x_{6} & -x_{7}-x_{9} & \leq 0 \\
x_{0} & -x_{3}-x_{4} & -x_{6} & -x_{7}-x_{9}
\end{aligned}-x_{10} & \leq 0 \\
x_{0} & -x_{2}-x_{3}-x_{4}-x_{5} & -x_{7}-x_{9}-x_{10} & \leq 0 \\
x_{0}-x_{1}-x_{2}-x_{3}-x_{4}-x_{5}-x_{6} & -x_{9}-x_{10} & \leq 0 \\
2 x_{0}-x_{1}-x_{2}-x_{3}-x_{4}-x_{5}-x_{6} & -x_{7}-x_{9}-x_{10} & \leq 0 \\
2 x_{0} & -x_{2}-x_{3}-x_{4}-x_{5}-x_{6}-2 x_{7}-x_{9}-2 x_{10} & \leq 0 \\
& +x_{3}+x_{4} & +x_{10} & \leq 1 \\
x_{1}+x_{2} & & \leq 1
\end{array}
$$

How to obtain intermediate representations?

An example

$$
3 x_{1}+3 x_{2}+3 x_{3}+4 x_{4}+5 x_{5} \leq 9 . \quad x_{i} \in 0,1
$$

Two blocks and six new variables

Block $N_{1} \quad\{1,2,3\} \quad$ Values: $3,6,9$ New variables: y_{3}, y_{6}, y_{9}

Block $N_{2} \quad\{4,5\} \quad$ Values: $4,5,9 \quad$ New variables: z_{4}, z_{5}, z_{9}

Reformulation

$$
\begin{aligned}
& 3 y_{3}+6 y_{6}+9 y_{9}+4 z_{4}+5 z_{5}+9 z_{9} \leq 9 \\
& 3 x_{1}+3 x_{2}+3 x_{3}=3 y_{3}+6 y_{6}+9 y_{9} \\
& 4 x_{4}+5 x_{5}=4 z_{4}+5 z_{5}+9 z_{9} \\
& y_{3}+y_{6}+y_{9} \leq 1 \\
& z_{4}+z_{5}+z_{9} \leq 1
\end{aligned}
$$

How to obtain intermediate representations?

An example

$$
3 x_{1}+3 x_{2}+3 x_{3}+4 x_{4}+5 x_{5} \leq 9 . \quad x_{i} \in 0,1
$$

Two blocks and six new variables

Block $N_{1} \quad\{1,2,3\} \quad$ Values: $3,6,9 \quad$ New variables: y_{3}, y_{6}, y_{9}
Block $N_{2} \quad\{4,5\} \quad$ Values: $4,5,9 \quad$ New variables: z_{4}, z_{5}, z_{9}

Reformulation

$$
\begin{aligned}
& 3 y_{3}+6 y_{6}+9 y_{9}+4 z_{4}+5 z_{5}+9 z_{9} \leq 9 \\
& 3 x_{1}+3 x_{2}+3 x_{3}=3 y_{3}+6 y_{6}+9 y_{9} \\
& 4 x_{4}+5 x_{5}=4 z_{4}+5 z_{5}+9 z_{9} \\
& y_{3}+y_{6}+y_{9} \leq 1 \\
& z_{4}+z_{5}+z_{9} \leq 1
\end{aligned}
$$

How to obtain intermediate representations?

An example

$$
3 x_{1}+3 x_{2}+3 x_{3}+4 x_{4}+5 x_{5} \leq 9 . \quad x_{i} \in 0,1
$$

Two blocks and six new variables
Block $N_{1} \quad\{1,2,3\} \quad$ Values: $3,6,9 \quad$ New variables: y_{3}, y_{6}, y_{9}
Block $N_{2} \quad\{4,5\} \quad$ Values: $4,5,9 \quad$ New variables: z_{4}, z_{5}, z_{9}

Reformulation

$$
\begin{aligned}
& 3 y_{3}+6 y_{6}+9 y_{9}+4 z_{4}+5 z_{5}+9 z_{9} \leq 9 \\
& 3 x_{1}+3 x_{2}+3 x_{3}=3 y_{3}+6 y_{6}+9 y_{9} \\
& 4 x_{4}+5 x_{5}=4 z_{4}+5 z_{5}+9 z_{9} \\
& y_{3}+y_{6}+y_{9} \leq 1 \\
& z_{4}+z_{5}+z_{9} \leq 1
\end{aligned}
$$

How to obtain intermediate representations?

starting point: a knapsack relaxation, for instance

$$
P=\operatorname{conv}\left\{x \in\{0,1\}^{n}: \sum_{j=1}^{n} a_{j} x_{j} \leq b\right\}
$$

one tool: value disjunctions

Partition $N=\{1, \ldots, n\}$ into subsets N_{1}, \ldots, N_{K}

Reformulation based on N_{i}

let $\left\{d_{1}, d_{n}\right\}=\left\{\sum_{i=5} \boldsymbol{a}_{i} \mid S \subseteq N_{i}\right\}$. For each value d_{k} we introduce a binary variable
linking constraints:

packing constraints:

How to obtain intermediate representations?

starting point: a knapsack relaxation, for instance

$$
P=\operatorname{conv}\left\{x \in\{0,1\}^{n}: \sum_{j=1}^{n} a_{j} x_{j} \leq b\right\}
$$

one tool: value disjunctions

Partition $N=\{1, \ldots, n\}$ into subsets N_{1}, \ldots, N_{K}. Reformulation based on N_{i}

linking constraints:

packing constraints:

How to obtain intermediate representations?

starting point: a knapsack relaxation, for instance

$$
P=\operatorname{conv}\left\{x \in\{0,1\}^{n}: \sum_{j=1}^{n} a_{j} x_{j} \leq b\right\}
$$

one tool: value disjunctions
Partition $N=\{1, \ldots, n\}$ into subsets N_{1}, \ldots, N_{K}.

Reformulation based on N_{i}

Let $\left\{d_{1}, \ldots, d_{n_{i}}\right\}=\left\{\sum_{i \in S} a_{i} \mid S \subseteq N_{i}\right\}$. For each value d_{k} we introduce a binary variable $y^{N_{i}, k}$.
linking constraints:

$$
\sum_{j \in N_{i}} a_{j} x_{j}=\sum_{k=1}^{n_{i}} d_{k} y^{N_{i}, k}
$$

packing constraints:

$$
\sum_{k=1}^{n_{i}} y^{N_{i}, k} \leq 1
$$

Why choose value disjunction?

An example

$$
3 x_{1}+3 x_{2}+3 x_{3}+3 x_{4}+4 x_{5}+7 x_{6}+8 x_{7}+9 x_{8}+13 x_{9}+15 x_{10} \leq 45
$$

Formulation	Equations	\# Facets
original		328
integer expansion	$x_{1}+x_{2}+x_{3}+x_{4}=z$	328
binary expansion	$x_{1}+x_{2}+x_{3}+x_{4}=z_{1}+2 z_{2}+4 z_{3}$	217
value disjunction	$x_{1}+x_{2}+x_{3}+x_{4}=z_{1}+2 z_{2}+3 z_{3}+4 z_{4}$	77
	$z_{1}+z_{2}+z_{3}+z_{4} \leq 1$	

Structural theorem for value disjunctions

An example with its extended formulation

$$
\begin{gathered}
X=\left\{x \in\{0,1,2\}^{4}: x_{1}+x_{2}+2 x_{3}+3 x_{4} \leq 7\right\} \\
X=\operatorname{Proj}_{x}\left\{(x, y) \in\{0,1,2\}^{4} \times\{0,1\}^{4}: y_{1}+2 y_{2}+3 y_{3}+4 y_{4}+2 x_{3}+3 x_{4} \leq 7\right. \\
\\
x_{1}+x_{2}=y_{1}+2 y_{2}+3 y_{3}+4 y_{4} \\
\\
\left.y_{1}+y_{2}+y_{3}+y_{4} \leq 1\right\}
\end{gathered}
$$

The convex hull is the "intersection" of two polyhedra

The linking polyhedron

The aggregated polyhedron
\square

Structural theorem for value disjunctions

An example with its extended formulation

$$
\begin{gathered}
X=\left\{x \in\{0,1,2\}^{4}: x_{1}+x_{2}+2 x_{3}+3 x_{4} \leq 7\right\} . \\
X=\operatorname{Proj}_{x}\left\{(x, y) \in\{0,1,2\}^{4} \times\{0,1\}^{4}: y_{1}+2 y_{2}+3 y_{3}+4 y_{4}+2 x_{3}+3 x_{4} \leq 7\right. \\
\\
x_{1}+x_{2}=y_{1}+2 y_{2}+3 y_{3}+4 y_{4} \\
\\
\left.y_{1}+y_{2}+y_{3}+y_{4} \leq 1\right\} .
\end{gathered}
$$

The convex hull is the "intersection" of two polyhedra
The linking polyhedron

$$
\begin{gathered}
V_{1}=\left\{\left(x_{1}, x_{2}, y\right) \mid x_{1}+x_{2}=y_{1}+2 y_{2}+3 y_{3}+4 y_{4}\right. \\
\left.y_{1}+y_{2}+y_{3}+y_{4} \leq 1\right\}
\end{gathered}
$$

The aggregated polyhedron

$$
\begin{gathered}
Q=\left\{\left(x_{3}, x_{4}, y\right) \mid y_{1}+2 y_{2}+3 y_{3}+4 y_{4}+2 x_{3}+3 x_{4} \leq 7\right. \\
\left.y_{1}+y_{2}+y_{3}+y_{4} \leq 1 \quad\right\}
\end{gathered}
$$

Structural theorem for value disjunction

The convex hull of the extended formulation

Nr.	c_{1}	c_{2}	c_{3}	c_{4}	d_{1}	d_{2}	d_{3}	d_{4}	c_{0}	Origin
(1)	0	-1	0	0	0	0	1	2	0	V_{1}
(2)	0	-1	0	0	1	2	2	2	0	V_{1}
(3)	0	0	0	0	1	1	1	1	1	Q / V_{1}
(4)	0	0	1	0	0	0	0	1	2	Q
(5)	0	0	0	1	0	1	1	1	2	Q
(6)	0	0	1	1	1	1	1	2	3	Q
(7)	0	0	1	2	0	1	2	2	4	Q
(8)	1	1	0	0	-1	-2	-3	-4	0	V_{1}

Structural theorem for value disjunctions

Theorem (structural theorem)

$$
\left.\begin{array}{rl}
P=\left\{x \in[0,1]^{n}:\right. & \text { there is } y \in[0,1]^{n_{1}+\cdots+n_{K}} \\
& \text { such that }\left(x^{N_{i}}, y^{N_{i}}\right) \in V_{i} \text { for } i=1, \ldots, K \\
& \text { and } y \in Q
\end{array}\right\} .
$$

Structural theorem for value disjunctions

value disjunction polytope

$$
\left.\begin{array}{rl}
V_{i}=\operatorname{conv}\left\{\left(x^{N_{i}}, y^{N_{i}}\right) \in\{0,1\}^{\left|N_{i}\right|} \times\{0,1\}^{n_{i}}\right. \\
& \sum_{j \in N_{i}} a_{j} x_{j}=\sum_{k=1}^{n_{j}} a\left(y^{N_{i}, k}\right) y^{N_{i}, k} \\
& \sum_{k=1}^{n_{j}} y^{N_{i}, k} \leq 1
\end{array}\right\}
$$

Theorem (structural theorem)

$$
\left.\begin{array}{rl}
P=\left\{x \in[0,1]^{n}:\right. & \text { there is } y \in[0,1]^{n_{1}+\cdots+n_{K}} \\
& \text { such that }\left(x^{N_{i}}, y^{N_{i}}\right) \in V_{i} \text { for } i=1, \ldots, K \\
& \text { and } y \in Q
\end{array}\right\} .
$$

Structural theorem for value disjunctions

value disjunction polytope

$$
\left.\begin{array}{rl}
V_{i}=\operatorname{conv}\left\{\left(x^{N_{i}}, y^{N_{i}}\right) \in\{0,1\}^{\left|N_{i}\right|} \times\{0,1\}^{n_{i}}:\right. \\
& \sum_{j \in N_{i}} a_{j} x_{j}=\sum_{k=1}^{n_{i}} a\left(y^{N_{i}, k}\right) y^{N_{i}, k} \\
& \sum_{k=1}^{n_{i}} y^{N_{i}, k} \leq 1
\end{array}\right\} .
$$

Theorem (structural theorem)

Structural theorem for value disjunctions

value disjunction polytope

$$
V_{i}=\operatorname{conv}\left\{\left(x^{N_{i}}, y^{N_{i}}\right) \in\{0,1\}^{\left|N_{i}\right|} \times\{0,1\}^{n_{i}}:\right.
$$

$$
\left.\begin{array}{l}
\sum_{j \in N_{i}} a_{j} x_{j}=\sum_{k=1}^{n_{i}} a\left(y^{N_{i}, k}\right) y^{N_{i}, k} \\
\sum_{k=1}^{n_{i}} y^{N_{i}, k} \leq 1
\end{array}\right\} .
$$

aggregated polytope

Theorem (structural theorem)

Structural theorem for value disjunctions

value disjunction polytope

$$
\left.\begin{array}{rl}
V_{i}=\operatorname{conv}\left\{\left(x^{N_{i}}, y^{N_{i}}\right) \in\{0,1\}^{\left|N_{i}\right|} \times\{0,1\}^{n_{i}}:\right. \\
& \sum_{j \in N_{i}} a_{j} x_{j}=\sum_{k=1}^{n_{i}} a\left(y^{N_{i}, k}\right) y^{N_{i}, k} \\
& \sum_{k=1}^{n_{i}} y^{N_{i}, k} \leq 1
\end{array}\right\} .
$$

aggregated polytope

$$
\begin{aligned}
& Q=\operatorname{conv}\left\{y \in\{0,1\}^{n_{1}+\cdots+n_{K}}:\right. \\
& \sum_{i=1}^{K} \sum_{k=1}^{n_{i}} a\left(y^{N_{i}, k}\right) y^{N_{i}, k} \leq b \\
&\left.\sum_{k=1}^{n_{i}} y^{N_{i}, k} \leq 1 \quad \forall i\right\}
\end{aligned}
$$

Theorem (structural theorem)

Structural theorem for value disjunctions

value disjunction polytope

$V_{i}=\operatorname{conv}\left\{\left(x^{N_{i}}, y^{N_{i}}\right) \in\{0,1\}^{\left|N_{i}\right|} \times\{0,1\}^{n_{i}}:\right.$

$$
\left.\begin{array}{l}
\sum_{j \in N_{i}} a_{j} x_{j}=\sum_{k=1}^{n_{i}} a\left(y^{N_{i}, k}\right) y^{N_{i}, k} \\
\sum_{k=1}^{n_{i}} y^{N_{i}, k} \leq 1
\end{array}\right\} .
$$

$$
\begin{aligned}
Q=\operatorname{conv}\{ & y \in\{0,1\}^{n_{1}+\cdots+n_{K}}: \\
& \sum_{i=1}^{K} \sum_{k=1}^{n_{i}} a\left(y^{N_{i}, k}\right) y^{N_{i}, k} \leq b \\
& \left.\sum_{k=1}^{n_{i}} y^{N_{i}, k} \leq 1 \quad \forall i\right\}
\end{aligned}
$$

aggregated polytope

Theorem (structural theorem)

$$
\begin{aligned}
& P=\left\{x \in[0,1]^{n}: \text { there is } y \in[0,1]^{n_{1}+\cdots+n_{K}}\right. \\
& \\
& \text { such that }\left(x^{N_{i}}, y^{N_{i}}\right) \in V_{i} \text { for } i=1, \ldots, K \\
& \\
& \text { and } y \in Q\}
\end{aligned}
$$

The value disjunction polytope V_{i} : The cardinality case

Theorem

$$
V_{i}=\operatorname{conv}\left\{\left(x^{N_{i}}, y^{N_{i}}\right) \in\{0,1\}^{\left|N_{i}\right|} \times\{0,1\}^{n_{i}}: \sum_{j \in N_{i}} x_{j}=\sum_{k=1}^{n_{i}} k y^{N_{i}, k}, \quad \sum_{k=1}^{n_{i}} y^{N_{i}, k} \leq 1\right\} .
$$

is completely described by non-negativity constraints and:

$$
\begin{aligned}
\sum_{j \in N_{i}} x_{j} & =\sum_{k=1}^{n_{i}} k y^{N_{i}, k} \\
\sum_{j \in T} x_{j}-\sum_{k=1}^{|T|} k y_{k}-\sum_{k=|T|+1}^{n_{i}}|T| y_{k} & \leq 0 \\
\sum_{k=1}^{n_{i}} y^{N_{i}, k} & \leq 1
\end{aligned} \quad \text { for } \emptyset \neq T \subset N_{i}
$$

Theorem

The separation problem over V_{i} can be solved in polynomial time

The value disjunction polytope V_{i} : The cardinality case

Theorem

$$
V_{i}=\operatorname{conv}\left\{\left(x^{N_{i}}, y^{N_{i}}\right) \in\{0,1\}^{\left|N_{i}\right|} \times\{0,1\}^{n_{i}}: \sum_{j \in N_{i}} x_{j}=\sum_{k=1}^{n_{i}} k y^{N_{i}, k}, \quad \sum_{k=1}^{n_{i}} y^{N_{i}, k} \leq 1\right\} .
$$

is completely described by non-negativity constraints and:

$$
\begin{aligned}
\sum_{j \in N_{i}} x_{j} & =\sum_{k=1}^{n_{i}} k y^{N_{i}, k} \\
\sum_{j \in T} x_{j}-\sum_{k=1}^{|T|} k y_{k}-\sum_{k=|T|+1}^{n_{i}}|T| y_{k} & \leq 0 \\
\sum_{k=1}^{n_{i}} y^{N_{i}, k} & \leq 1
\end{aligned} \quad \text { for } \emptyset \neq T \subset N_{i}
$$

Theorem
The separation problem over V_{i} can be solved in polynomial time.

The knapsack with three distinct coefficients

The problem

$$
\sum_{j \in N_{1}} \mu x_{j}+\sum_{j \in N_{2}} \lambda x_{j}+\sum_{j \in N_{3}} \sigma x_{j} \leq \beta
$$

An extended formulation

for $i=1,2,3$

The knapsack with three distinct coefficients

The problem

$$
\sum_{j \in N_{1}} \mu x_{j}+\sum_{j \in N_{2}} \lambda x_{j}+\sum_{j \in N_{3}} \sigma x_{j} \leq \beta,
$$

An extended formulation

$$
\begin{array}{rlr}
\sum_{j \in N_{1}} \mu x_{j}+\sum_{j \in N_{2}} \lambda x_{j}+\sum_{j \in N_{3}} \sigma x_{j} & \leq \beta & \\
\sum_{j \in N_{i}} x_{j} & =\sum_{k=1}^{\left|N_{i}\right|} k y_{k}^{i} & \text { for } i=1,2,3 \\
\sum_{k=1}^{\left|N_{i}\right|} y_{k}^{i} & \leq 1 & \text { for } i=1,2,3 \\
x & \in\{0,1\}^{\left|N_{1}\right|+\left|N_{2}\right|+\left|N_{3}\right|} & \\
y^{i} & \in\{0,1\}^{\left|N_{i}\right|} & \text { for } i=1,2,3 .
\end{array}
$$

The knapsack with three distinct coefficients

The aggregated polyhedron

$$
\begin{aligned}
\mu \sum_{k=1}^{\left|N_{1}\right|} k y^{N_{1}, k}+\lambda \sum_{k=1}^{\left|N_{2}\right|} k y^{N_{2}, k}+\sigma \sum_{k=1}^{\left|N_{3}\right|} k y^{N_{3}, k} \leq \beta & \\
\sum_{k=1}^{\left|N_{i}\right|} y^{N_{i}, k} \leq 1 & \text { for } i=1,2,3 \\
y^{N_{i}} & \in\{0,1\}^{\left|N_{i}\right|}
\end{aligned} \quad \text { for } i=1,2,3 .
$$

The knapsack with three distinct coefficients

The aggregated polyhedron

$$
\begin{aligned}
\mu \sum_{k=1}^{\left|N_{1}\right|} k y^{N_{1}, k}+\lambda \sum_{k=1}^{\left|N_{2}\right|} k y^{N_{2}, k}+\sigma \sum_{k=1}^{\left|N_{3}\right|} k y^{N_{3}, k} \leq \beta & \\
\sum_{k=1}^{\left|N_{i}\right|} y^{N_{i}, k} \leq 1 & \text { for } i=1,2,3 \\
y^{N_{i}} & \in\{0,1\}^{\left|N_{i}\right|}
\end{aligned} \quad \text { for } i=1,2,3 .
$$

- Let $\left\{v^{1}, \ldots, v^{p}\right\} \subseteq\{0,1\}^{\left|N_{1}\right|+\left|N_{2}\right|+\left|N_{3}\right|}$ be all the vertices of the aggregated polyhedron.
- Notice that $p \leq\left(1+\left|N_{1}\right|\right) \cdot\left(1+\left|N_{2}\right|\right) \cdot\left(1+\left|N_{3}\right|\right)$

The knapsack with three distinct coefficients

The aggregated polyhedron

$$
\begin{aligned}
\mu \sum_{k=1}^{\left|N_{1}\right|} k y^{N_{1}, k}+\lambda \sum_{k=1}^{\left|N_{2}\right|} k y^{N_{2}, k}+\sigma \sum_{k=1}^{\left|N_{3}\right|} k y^{N_{3}, k} \leq \beta & \\
\sum_{k=1}^{\left|N_{i}\right|} y^{N_{i}, k} \leq 1 & \text { for } i=1,2,3 \\
y^{N_{i}} & \in\{0,1\}^{\left|N_{i}\right|}
\end{aligned} \quad \text { for } i=1,2,3 .
$$

- Let $\left\{v^{1}, \ldots, v^{p}\right\} \subseteq\{0,1\}^{\left|N_{1}\right|+\left|N_{2}\right|+\left|N_{3}\right|}$ be all the vertices of the aggregated polyhedron.

The knapsack with three distinct coefficients

The aggregated polyhedron

$$
\begin{aligned}
\mu \sum_{k=1}^{\left|N_{1}\right|} k y^{N_{1}, k}+\lambda \sum_{k=1}^{\left|N_{2}\right|} k y^{N_{2}, k}+\sigma \sum_{k=1}^{\left|N_{3}\right|} k y^{N_{3}, k} \leq \beta & \\
\sum_{k=1}^{\left|N_{i}\right|} y^{N_{i}, k} \leq 1 & \text { for } i=1,2,3 \\
y^{N_{i}} & \in\{0,1\}^{\left|N_{i}\right|}
\end{aligned} \quad \text { for } i=1,2,3 .
$$

- Let $\left\{v^{1}, \ldots, v^{p}\right\} \subseteq\{0,1\}^{\left|N_{1}\right|+\left|N_{2}\right|+\left|N_{3}\right|}$ be all the vertices of the aggregated polyhedron.
- Notice that $p \leq\left(1+\left|N_{1}\right|\right) \cdot\left(1+\left|N_{2}\right|\right) \cdot\left(1+\left|N_{3}\right|\right)$.

Theorem

The complete facet description in an extended space is:

$$
\begin{array}{rlr}
y & =\sum_{j=1}^{p} v^{j} z_{j} \\
\sum_{j=1}^{p} z_{j} & =1 & \\
z_{j} & \geq 0 & \text { for } j=1, \ldots, p \\
\sum_{j \in N_{i}} x_{j}^{N_{i}} & =\sum_{k=1}^{n_{i}} k y^{N_{i}, k} & \text { for } i=1,2,3 \\
\sum_{j \in T} x_{j}^{N_{i}} & \geq \sum_{k \in\left\{1, \ldots, n_{i}\right\}:}\left(|T|+k-n_{i}\right) y^{N_{i}, k} & \text { for } i=1,2,3 \text { and } \emptyset \neq T \subset N_{i} \\
x & \in \mathbf{R}^{\left|N_{1}\right|+\left|N_{2}\right|+\left|N_{3}\right|} \\
y & \in \mathbf{R}^{\left|N_{1}\right|+\left|N_{2}\right|+\left|N_{3}\right|} \\
z & \in \mathbf{R}^{p} .
\end{array}
$$

Experiments with branching

The simplification effect of branching

Initial Problem

2 constraints and 12 variables
13083 facets
(1) Fix $x_{2}=0, x_{6}=0$

690 facets
(2) Fix $x_{2}=0 \quad x_{3}=1$

425 facets
(3) Fix $x_{2}=1, x_{6}=0$

91 facets
(-) Fix $x_{2}=1, x_{6}=1$
541 facets

© Total : 1747 facets

Comparing Variable Branching with Value Disjunction

Experiments with branching

The simplification effect of branching

(1) Fix $x_{2}=0, x_{6}=0$ 690 facets

Initial Problem
2 constraints and 12 variables
13083 facets
(2) Fix $x_{2}=0, x_{6}=1$

425 facets
(3) Fix $x_{2}=1, x_{6}=0$

91 facets
(c) Fix $x_{2}=1, x_{6}=1$

541 facets
© Total : 1747 facets

Comparing Variable Branching with Value Disjunction

Experiments with branching

The simplification effect of branching

Initial Problem
2 constraints and 12 variables
13083 facets
(1) Fix $x_{2}=0, x_{6}=0$ 690 facets
(2) Fix $x_{2}=0, x_{6}=1$

425 facets
(3) Fix $x_{2}=1, x_{6}=0$

91 facets
(a) Fix $x_{2}=1, x_{6}=1$

541 facets
(3) Total : 1747 facets

Comparing Variable Branching with Value Disjunction

Experiments with branching

The simplification effect of branching

Initial Problem
2 constraints and 12 variables
13083 facets
(1) Fix $x_{2}=0, x_{6}=0$ 690 facets
(2) Fix $x_{2}=0, x_{6}=1$

425 facets
(3) Fix $x_{2}=1, x_{6}=0$

91 facets
(-) Fix $x_{2}=1, x_{6}=1$
541 facets

(6) Total : 1747 facets

Comparing Variable Branching with Value Disjunction

Experiments with branching

The simplification effect of branching

Initial Problem
2 constraints and 12 variables
13083 facets
(1) Fix $x_{2}=0, x_{6}=0$ 690 facets
(2) Fix $x_{2}=0, x_{6}=1$

425 facets
(3) Fix $x_{2}=1, x_{6}=0$

91 facets
(9) Fix $x_{2}=1, x_{6}=1$

541 facets

© Total : 1747 facets

Comparing Variable Branching with Value Disjunction

Experiments with branching

The simplification effect of branching

Initial Problem
2 constraints and 12 variables
13083 facets
(1) Fix $x_{2}=0, x_{6}=0$ 690 facets
(2) Fix $x_{2}=0, x_{6}=1$

425 facets
(3) Fix $x_{2}=1, x_{6}=0$

91 facets
(9) Fix $x_{2}=1, x_{6}=1$ 541 facets
(5) Total : 1747 facets

Comparing Variable Branching with Value Disjunction

Experiments with branching

The simplification effect of branching

Initial Problem

2 constraints and 12 variables

13083 facets

(1) Fix $x_{2}=0, x_{6}=0$ 690 facets
(2) Fix $x_{2}=0, x_{6}=1$ 425 facets
(3) Fix $x_{2}=1, x_{6}=0$

91 facets
(9) Fix $x_{2}=1, x_{6}=1$

541 facets
(5) Total : 1747 facets

Comparing Variable Branching with Value Disjunction

$\binom{12}{2}$ possible choices of $x_{i}, x_{j} \quad\binom{12}{3}$ possible choices of x_{r}, x_{s}, x_{t}
Compute the number of facets for all four cases

$$
\begin{array}{ll}
x_{i}=0, x_{j}=0, x_{i}=1, x_{j}=1 & x_{r}+x_{s}+x_{t}=0, x_{r}+x_{s}+x_{t}=1 \\
x_{i}=1, x_{j}=0, x_{i}=0, x_{j}=1 & x_{r}+x_{s}+x_{t}=2, x_{r}+x_{s}+x_{t}=3
\end{array}
$$

Branching on value disjunctions vs. 2-variable branching

Claim

It is efficient to use value disjunction on a set of variables that are similar (that have the same structure).

Ranking formula

We create a ranking formula that allows us to say whether a triple of variables is
structured or not.
has a good ranking
$\left(\begin{array}{ccc}-23 & 12 & -6 \\ 4 & -1 & -14\end{array}\right)$ has a bad ranking

Branching on value disjunctions vs. 2-variable branching

Claim

It is efficient to use value disjunction on a set of variables that are similar (that have the same structure).

Ranking formula

We create a ranking formula that allows us to say whether a triple of variables is structured or not.

$$
\begin{gathered}
\left(\begin{array}{ccc}
7 & 8 & 7 \\
11 & 9 & 10
\end{array}\right) \text { has a good ranking } \\
\left(\begin{array}{ccc}
-23 & 12 & -6 \\
4 & -1 & -14
\end{array}\right) \text { has a bad ranking }
\end{gathered}
$$

Branching on value disjunctions vs. 2-variable branching ("unstructured")

Histograms of the total number of facets in the subproblems

$$
\begin{array}{rrrrrrrrrrrrr}
11 & -7 & 9 & 10 & -2 & 7 & 14 & -15 & 4 & -5 & -2 & -19 & \leq 0 \\
6 & 18 & -4 & -9 & 17 & -11 & 5 & -12 & 5 & 3 & -18 & 7 & \leq 0
\end{array}
$$

Branching on value disjunctions vs. 2-variable branching ("structured")

Histograms of the total number of facets in the subproblems

$$
\begin{array}{rrrrrrrrrrrrr}
7 & 6 & 7 & 15 & -21 & -15 & -23 & -12 & 12 & -6 & 11 & 10 & \leq 0 \\
10 & 10 & 9 & -21 & 4 & -3 & 4 & 13 & -1 & -14 & 2 & -6 & \leq 0
\end{array}
$$

Branching on market split

The market split problem

$$
\begin{array}{ll}
\min & \sum_{i=1}^{m}\left|s_{i}\right| \\
\text { s. t. } & \sum_{j=1}^{n} a_{i j} x_{j}+s_{i}=b \\
& x_{j} \in\{0,1\} .
\end{array}
$$

The value disjunction branching strategy

We suppose $a_{i j} \in[0,100]$
For each row i, we select all the variables $j \in T_{i}$ with $a_{i j} \geq 70$ and create m new rows

on which we branch simultaneously on the values

Branching on market split

The market split problem

$$
\begin{array}{ll}
\min & \sum_{i=1}^{m}\left|s_{i}\right| \\
\text { s. t. } & \sum_{j=1}^{n} a_{i j} x_{j}+s_{i}=b \\
& x_{j} \in\{0,1\} .
\end{array}
$$

The value disjunction branching strategy

We suppose $a_{i j} \in[0,100]$.
For each row i, we select all the variables $j \in T_{i}$ with $a_{i j} \geq 70$ and create m new rows

$$
\sum_{k=1}^{x}
$$

on which we branch simultaneously on the values.

Branching for market split and mas instances

			CPLEX 9.1			Value Disjunctions		
Name	Rows	Cols	Nodes $\left(10^{6}\right)$	Time (s)		Nodes $\left(10^{6}\right)$	Time (s)	
mspl535-1	5	35		13.8	2431		3.8	809
mspl535-2	5	35		11.9	2084		4.2	865
mspl535-3	5	35	17	2946		9.8	1970	
mspl540-4	5	40	321	55918		105	20873	
mspl540-5	5	40	231	39787		87	17267	
mspl540-6	5	40	188	30532		97	19162	
mspl650-7	6	50	$* * *$	$* * *$		20400	4.4 M	
mas74	13	151	4.4	2463		1.2	1194	
mas76	12	151	0.667	289		0.063	35	

Computation times in CPU seconds on a Sun Fire V890 with 1200 MHz UltraSPARC-IV processors

