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What is on the Menu?



Menu: 4-course meal

I. Background, Definitions & Relevant Literature

II. Branchwidth of Graphic Matroids

III. Integer Programming Formulation for 

Branchwidth

IV. Conclusions & Future Work



Wagner’s Theorem

A graph H is a minor of G if H can be obtained from a 

subgraph of G by contracting edges.

Wagner’s Theorem:  A graph G is planar if and only if G

contains no minor of K5 or K3,3.

K5 K3,3
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Other surfaces

• Erdös (1930’s)

– posed the question of whether the list of minor-minimal graphs 

not embeddable in a given surface is finite.

• Archdeacon (1980) and Glover, Huneke and Wang (1979)

– proved that there are 35 minor-minimal non-projective planar 

graphs.

• Archdeacon and Huneke (1981) 

– proved the list is finite for non-orientable surfaces.

• Robertson and Seymour (1988)  GMT

– proved the list is finite for any surface.



Well-quasi-ordering and the Graph Minors 

Theorem

• A class with a reflexive and transitive relation is a 

called a quasi-order.

• A quasi-order, (Q, ≤), is well-quasi-ordered if for 

every countable sequence q1, q2, … of members of 

Q there exist 1 ≤ i < j such that qi ≤ qj.

• Graph Minors Theorem: The “minor” quasi-order 

is well-quasi-ordered.

• Example:  One quasi-order that is not well-quasi-

ordered is the “subgraph” quasi-order.



Branch Decompositions 

(Robertson and Seymour 1991)

Let G be a graph.  Let T be a tree with |E(G)| leaves 

where every non-leaf node has degree 3.

Let υ be a bijection from the edges of G to the leaves 

of T.  

The pair (T, υ) is called a branch decomposition of 

G.

0

1

2
3

4

0 1

2

3 4

G (T,ν)



Branchwidth

An edge of T, say e, partitions the edges of G into two subsets 
Ae and Be.  The middle set of e, denoted as mid(e) or 
mid(Ae, Be), is the set of nodes of G that touch edges in Ae

and edges in Be.

The width of (T,υ) is the maximum cardinality of any middle 
set of T.

The branchwidth, β(G), is the minimum width of any branch 
decomposition of G.

A branch decomposition of G is optimal if its width is equal 
to β(G).

0 1

2

3

G

e
4

0

1

2
3

4

(T,ν)



Example Graph
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Motivation

• Arnborg, Lagergren and Seese (1991), based upon the work of 

Courcelle (1990), showed that many NP-complete problems 

modeled on graphs with bounded branchwidth can be solved in 

polynomial time using a branch decomposition based algorithm on 

the graph.

• NP-complete problems modeled on graphs:

– Minimum Fill-in

– Traveling Salesman Problem

– General Minor Containment

• Constructing Branch Decompositions

• Branch decomposition based algorithms



Constructing Branch Decompositions

• Finding optimal or near-optimal branch decompositions is 

essential to the overall success of branch decomposition 

based algorithms because these algorithms are exponential 

in the width of the given branch decomposition.
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Constructing Branch Decompositions

• Robertson and Seymour (1995)

– given integer k and graph G, finds a branch 
decomposition with width 3k for some subgraph H
of G such that either H = G or β(H) ≥ k .

• Bodlaender and Thilikos (1999)

– computes branch decomposition for graphs with 
β(H) ≤ 3

• Kloks, Kratochvil, Muller (1999)

– Polynomial-time algorithm for the branchwidth of 
interval graphs

• Hicks (2005) 

– branch decomposition based algorithm to construct 
optimal branch decompositions



Planar Branch Decompositions

• Seymour and Thomas (1993)

– polynomial time algorithm to compute the branchwidth and 

an optimal branch decomposition for planar graphs

• Tamaki (2003)

– Linear-time heuristic for near-optimal branch 

decompositions of planar graphs

• Hicks (2005, 2005) 

– practical implementation of Seymour and Thomas 

algorithm

• Gu and Tamaki (2005) 

– O(n3) algorithm for an optimal branch decomposition of

a planar graph



Branchwidth Heuristics

• Cook and Seymour (1994)

– Finds separations using spectral graph theory

• Diameter Method [Hicks 2002]

– Finds separations such that nodes that are far 

apart are in different sets

• Hybrid Method  [Hicks 2002]

– Uses the Cook and Seymour heuristic for the 

initial separation but the diameter method for 

subsequent separations.



Branch Decomposition Based Algorithms

• Robertson and Seymour (1995) 

– theoretical algorithm for testing graph minor containment

• Cook and Seymour (2003) 

– practical algorithm for solving TSP

• Fomin and Thilikos (2003)

– Theoretical algorithm for dominating set on planar graphs using 

branch decompositions

• Fomin and Thilikos (2004)

– Branchwidth of a planar graph is at most sqrt(4.5n)

• Hicks (2004) 

– practical algorithm for testing graph minor containment

• Hicks (2005) 

– practical algorithm for computing optimal branch decompositions



Get into the Meat of the Presentation



Menu: 4-course meal

I. Background, Definitions & Relevant Literature

II. Branchwidth of Graphic Matroids*

III. Integer Programming Formulation for 

Branchwidth

IV. Conclusions & Future Work

*Joint work with Nolan McMurray



Matroids

• Let S be a finite set and I be a family of 

subsets of S, called independent sets.

• M = (S, I) is called a matroid if the 

following axioms are satisfied

– ∅ ∈ I

– if J’ ⊆ J ∈ I, then J’ ∈ I

– for every A ⊆ S, every maximal independent 

subset of A has the same cardinality, rank ρ(A) 



Matroid Examples:  Cycle Matroids

• Let G = (V, E) be a graph and let S = E

• I = {J ⊆ S: J is a forest of G}

• a matroid is called graphic if it is the 
cycle matroid for some graph

• denoted M(G)



Branch Decompositions

Let M be a matroid.  Let T be a tree with |S(M)| 

leaves where every non-leaf node has degree 3.

Let υ be a bijection from the elements of S(M) to 

the leaves of T.  

The pair (T, υ) is called a branch decomposition

of M.
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Separations for Matroids

• A separation of a matroid M(S, I) is a 

pair (A, B) of complementary subsets of 

S(M).

• The order of the separation (A, B), 

denoted σ(M, A, B), is defined to be the 

following:

– ρ(A) + ρ(B) - ρ(M) +1, if A ≠ ∅ ≠ B

– 0                                  , else



Branchwidth

An edge of T, say e, partitions the edges of S(M) 
into two subsets Ae and Be.  The order of e, 
denoted as order(e), is equal to σ(M, Ae, Be).

The width of (T,υ) is the maximum order of any 
edge of T.

The branchwidth, βM(M), is the minimum width 
of any branch decomposition of M.

A branch decomposition of M is optimal if its 
width is equal to βM(M). 
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Fano Matroid and its Optimal Branch 

Decomposition
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Branchwidth of Matroids

• Dharmatilake (1996)

– Introduced branchwidth and tangles of matroids

• Geelen et al. (2002) 

– matroid analogue of GMT

• Hall et al. (2002) 

– Studied matroids of branchwidth 3 

• Hliněný (2002) 

– excluded minors of matroids with branchwidth 3



Branchwidth of Matroids

• Geelen, Gerards, Robertson, & Whittle (2003) 

– bounded size of excluded minors of matroid with 

branchwidth k

– graphic matroid conjecture

• Hicks and McMurray (2005)

– The branchwidth of a graph is equal to the branchwidth

of the graph’s cycle matroid if the graph has a cycle of 

length at least two

• Mazoit and Thomasse (2005)



Matroid Tangles (Geelen et al. 2003)

• A tangle in M(S, I) of order k is the set T corresponding to 

separations of M, each of order < k such that:

MT1:  For each separation (A, B) of M of order < k, one of 

A or B is an element of T.

MT2:  If A ∈ T  and ∃ a separation (C,D) of order < k such 

that C ⊆ A then C∈ T. 

MT3: If e ∈ S(M), then e∈ T. 

MT4:  If (A1, B1), (A2, B2), (A3, B3) are separations of such 

that A1, A2, and A3 partition S(M) then not all of A1, A2, 

and A3 can be members of T .



Matroid Tangles

• The tangle number of M, θ(M), is the 

maximum order of any tangle of M. 

• Theorem [Geelen et al. 2003]

Let M be a matroid.  If a tangle exists for M, 

then θ(M) = β(M) .

• If |S(M) | ≤ 3 or there exists a an element 

e∈S(M) such that σ(M, e, S(M) \e) ≥ k, then 

M has no tangle of order k.



Separations and Tangles of Graphs

• A separation of a graph G is a pair (G1, G2) of 

subgraphs of G with G1 ∪ G2 = (V(G1) ∪ V(G2), E(G1) 

∪ E(G2)) = G and E(G1) ∩ E(G2) = ∅.

• A tangle in G of order k is the set T corresponding to a 

set separations of G, each of order < k such that:

T1  For each separation (A, B) of G of order < k, 

either A or B is an element of T.

T2  If A1, A2, A3 ∈ T, then A1 ∪ A2 ∪ A3 ≠ G.

T3  If A ∈ T, then V(A) ≠ V(G).

• The tangle number of G, θ(G), is the maximum order 

of any tangle of G.



Tangle of Order 3 for K4
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({a,b}, G), ({a,c}, G), ({a,d}, G), ({b,c}, G), 

({b,d}, G), ({c,d}, G), (G[a,b], G\ab), (G[a,c], 

G\ac), (G[a,d], G\ad), (G[b,c], G\bc), (G[b,d], 

G\bd), (G[c,d], G\cd)}



Graph Tangles and Branchwidth

• Theorem (Robertson and Seymour 1991):  

For any loopless graph G such that E(G) ≠

∅ , max(β(G), 2) = θ(G).

• Tangles can be used to prove lower bounds 

for branchwidth.



Cycle Matroid and Graph Separations

σ(M, A, B) = |V(A)| – κ(A) + |V(B)| – κ(B) – |V(G)| + κ(G) + 1 

= |V(A) ∩ V(B)| – κ(A) – κ(B) + κ(G) + 1 



Main Theorem (Hicks and McMurray 2005)

• Lemma:  Let G be a connected graph with 

β(G)  ≥ 3 and let TG be a tangle for G of 

order k ≥ 3.  Let TM(G) denote the set of 

separations of M(G) with order < k such that 

A∈TM(G) if for every component H of G[A], 

there exists C ∈TG such that E(H) ⊆ E(C).

Then TM(G) is a tangle of M(G) of order k.

• Main theorem:  Let G be a graph with a 

cycle of at least 2 then β(G) = β(M(G))



Graphic Matroids and Planar Graphs

• Given matroid M(S, I) then M*(S, I*) is called the 

dual of M if ∀ J ∈I then S\J ∈ I*.

• Theorem [Whitney 1933]:  A graph is G is planar 

if and only if M*(G) is graphic.

• Corrollary:  Let G be a graph with a cycle of 

length at least two and let G* be its planar dual 

then β(G) = β(G*).



Planar Graphs and their Duals

• Theorem (RS 1994, Hicks 2000):  Let G be 

a loopless planar graph and G* be the 

corresponding dual and loopless.  Then β(G) 

= β(G*).
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More to Digest



Menu: 4-course meal

I. Background, Definitions & Relevant Literature

II. Branchwidth of Graphic Matroids

III. Integer Programming Formulation for 

Branchwidth*

IV. Conclusions & Future Work

*Joint work with Elif Kotologlu and J. Cole Smith



Integer Programming Formulation for 

Branchwidth

• Steiner tree packing problem

• IP formulation

• Relevant Cuts

• Difficulties with Formulation

• Preliminary Results



Steiner Tree Packing

• Given a graph G = (V, E) with edge 

capacities ce for all e∈E and a list of 
terminal sets T = {T1, …, TN}, find Steiner 

trees S1, …, SN for each terminal set such 

that each edge e∈E is at most ce of the 

Steiner trees.



Steiner Tree Packing 
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The Concept

N:SteinerN:Steiner nodesnodes

M: nodesM: nodes

correspondingcorresponding

to the edges to the edges 

of Gof G

…
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Formulation

• z: the largest width in the branch decomposition 
(the largest load on an edge in a Steiner tree 
packing) 

• uij for each (i,j) in A
• 1 if an edge between Steiner node i and j is on the 

branch decomposition,

• 0 otherwise

• tei

• 1 if a leaf node e is connected to Steiner node i in N, 

• 0 otherwise



Formulation

• yij
ef

• 1 if the edge (i,j) is on the path in between the leaf 
nodes e and f, for (e,f) in Iv and v in V, 

• 0 otherwise 

• qi
ef

• 1 if the node i is on the path in between e and f, for (e,f)
in Iv and v in V, 

• 0 otherwise 

• zij
v

• 1 if the edge (i,j) in A is used in the Steiner tree for v, 

• 0 otherwise



Formulation



Formulation



Difficulties
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Other difficulties

• This model doesn’t fit most models in the 

literature

– The underlying graph is not planar

– No edges between terminals

– No edge capacity (most models have capacity 

at one)



Cuts

• γ-cuts on branch decomposition\leaves

γ(S) ≤ |S|-1       for all S subset of N

• δ-cuts on branch decomposition\leaves

δ(P) ≥ 1       for all P subset of N

• δ-Steiner cuts

δ(W) ≥ 1       for all W subset of V' s.t. both W and (V'-

W) intersects with some Steiner tree Sk



Preliminary Results
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Conclusions

• General Overview of Research in Branch 

Decompositions

• Branchwidth of Graphic Matroids

• Integer Programming formulation for 

Branchwidth



Satisfied or Too Much Information?



Future Work

• Develop new cuts

• Develop and implement lower bounds for 

branchwidth

• Constructing branch decompositions for 

hypergraphs
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