
Copyright © 2006 Axioma, Inc.

Robust Portfolio Construction

Sebastian Ceria
Chief Executive Officer

Axioma, Inc
sceria@axiomainc.com

Presentation to 
Workshop on Mixed Integer Programming

University of Miami

June 5-8, 2006



Copyright © 2006 Axioma, Inc. 1

Glossary

Assets (n)
Investable securities (U), typically stocks (equities)

Portfolio Trades
Holdings: Initial (h), final (x) (holdings are represented in % or dollars) (x-h)
Long holdings: (i : xi > 0)
Short holdings: (i: xi < 0)

Benchmark
A market portfolio: S&P 500, Russell 1000 (typically market-cap weighted) (b)

Budget
The total amount invested (B)

Expected Returns (Expected Active Returns)
A vector (α) of expectations of return (in percent), expected return of a portfolio α’x (α’(x-b))

Covariance of Returns
A matrix (Q) representing the forecasted covariances of returns

Predicted Risk of a portfolio Predicted Tracking Error
x’Qx (x-b)’Q(x-b)
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Why Don’t Practitioners Use MVO Extensively?

Naïve portfolio rules, such as equal weighting, can outperform 

traditional MVO (Jobson and Korkie)

Optimal portfolios from MVO are not necessarily well diversified
(Jorion) or intuitive (Several authors) 

MV Optimizers have the “Error Maximization Property” . MVO will 
tend to overweight assets with positive estimation error and 

underweight assets with negative estimation error (Several authors)

Unbiased risk and expected return estimators still lead to a biased 
estimate of the efficiency frontier (Several authors)

Portfolio Managers spend most of their time “cleaning up” the 
optimal portfolio provided by MVO
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Criticisms of MVO

Literature Review: There is an extensive literature that studies 
the effects of estimation error in classical mean variance 

optimization 

Jobson and Korkie, “Putting Markowitz Theory to Work”, JPM, 1981 

(and related work)

Jorion. “International Portfolio Diversification with Estimation Risk, 

Journal of Business, 1985 (and related work)

Chopra and Ziemba, The Effect of Errors in Means, Variances, and 

Covariances on Optimal Portfolio Choice”, JPM, 1993

Broadie, “Computing Efficient Frontiers Using Estimated Parameters”, 

Annals of OR, 1993

Michaud, “The Markowitz Optimization Enigma: Are Optimized 

Portfolios Optimal?”, FAJ 1989 and  “Efficient Asset Management”, 

Oxford Univ Press, 1998
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How do Practitioners “fix” MVO? (Extensions)

Simple (Linear):

Initial holdings (h)

Transaction variables (t = |x − h|)

Limits on holdings/trades (x ≤ u, t ≤ v)

Industry/Sector Holdings (∑i∈Sxi ≤ c)

Active Holdings, Industry/Sector Active Holdings (|x − b| ≤ u ,           
∑i∈S|xi − bi | ≤ c)

Limits on Turnover, Trading, Buys/Sells (∑i∈Sti ≤ c)

Complex (Linear-Quadratic):

Long/Short Portfolios (eliminate x ≥ 0)

Multiple Risk constraints xtQ x ≤ c

Multiple Tracking Error constraints (x − b)tQ (x − b)) ≤ c

Soft constraints/objectives

Add “slack” to the constraint ∑i∈Sxi = c is modified to ∑i∈Sxi + s = c

Add S2   to the objective as a penalty term
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How do Practitioners “fix” MVO? (Extensions)

Transaction cost models

Linear:  (add to the objective ∑i∈Uγiti)

Piecewise Linear (convex) 

Market impact models

Quadratic (add to the objective ∑i∈Uγiti
2)

Piecewise Linear

Risk Models (Common factors)

Exploit mathematical structure of factor models

Factor related constraints/objectives
Q matrix is split into specific and factor risk

Q = ETRE + S2

E = Exposure matrix, R = Factor Covariance Matrix (dense), S = Specific risk 
matrix (diagonal)

Typically 50-100 factors are used



Copyright © 2006 Axioma, Inc. 8

How do Practitioners “fix” MVO? (Extensions)

Fixed Transaction Costs
if ti > 0 then add ci to the objective Fixed Costs

Threshold Transactions
ti = 0 or ti ≥ c

Threshold Holdings
xi = 0 or xi ≥ c

Maximum number of Transactions/Holdings
|{i | xi ≠ 0 }| ≤ c

Round Lots on Transactions
ti ∈ {kc | k = 1,2,…}

If … then … else conditions
if {linear expression} then {linear expression} 

else {linear expression}
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Practical Solution of MVO with Extensions

In its general form, the problem is a Quadratic Objective, 
Quadratic and Linearly Constrained Mixed-Integer (Disjunctive) 

Programming Program

Even though this problem is “hard” we can “solve” efficiently most 

practical instances in a few seconds

Our algorithm includes

Preprocessing: Problem reduction and formulation improvement

Strong relaxation: Reformulation and strengthening techniques

Heuristics: Used to find feasible solutions (portfolios) fast

Relax-and-Fix

Diving

Branching: Specialized branching to exploit the structure

Cardinality constraints

Semi-continuous variables

Disjunctive statements
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Is this Enough?

Assume you are indifferent (from a risk perspective) between the two 
assets, how would you weigh these two assets in the optimal portfolio?  

Would you make the same choice if you knew the distribution of 
expected returns?

15.0%XYZ

Expected Return

14.5%UVW

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Expected Return (%)

UVW

XYZ
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Three Asset Example: shorting allowed, budget constraint

Expected returns and standard deviations (correlations = 20%)

Optimal weights

28%

24%

20%

σσσσ

7.00%7.00%Asset 3

7.15%7.16%Asset 2

7.16%7.15%Asset 1

αααα2αααα1

-10.28%-10.28%Asset 3

43.01%43.10%Asset 2

67.26%67.18%Asset 1

Portfolio FPortfolio E

Improving Stability
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Graphical Representation
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Three Asset Example: no shorting, budget constraint

Expected returns and standard deviations (correlations = 20%)

Optimal weights

28%

24%

20%

σσσσ

7.00%7.00%Asset 3

7.15%7.16%Asset 2

7.16%7.15%Asset 1

αααα2αααα1

0.0%0.0%Asset 3

15.7%61.9%Asset 2

84.3%38.1%Asset 1

Portfolio BPortfolio A

Improving Stability II
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Constraints Creates Instability
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Stability Experiment on the Dow 30

Instability due to changes in Expected Returns:

Use expected returns and covariance from Idzorek (2002) for Dow 30

Randomly generate 10,000 expected return estimate vectors from a
normal distribution with mean equal to the expected return and std equal 
to 0.1% of the of the std of return of the corresponding asset

Run 10,000 traditional MVO and record the weights of the resulting 
portfolios – Use a fixed risk aversion coefficient
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Figure 1: Range of Expected Returns used in MV Optimization
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Figure 2: Range of Asset Weights for MV Optimization
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Efficiency Frontiers and Classical MVO
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Estimation Error Generates Inefficiencies

� How does the True Efficiency Frontier differ from the Actual Frontier?

Estimated Frontier

Efficiency Frontier 
computed using the 
estimated expected 

returns

True Frontier

Efficiency Frontier 
computed using the 

true expected 
returns

Actual Frontier

Return for the 
portfolios in the 

Estimated Frontier 
using the true 

expected returns

* See Broadie (1993) for a detailed discussion of estimated frontiers

1. Take a Portfolio on 
the Estimated 
Frontier

2. Apply the TRUE 
expected returns

3. Measure its 
REALIZED 
expected return 
and graph 
accordingly

Actual Frontier
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One Possible Solution

A byproduct of the estimation process is a distribution of estimated 
expected returns, and not a point forecast

One option is to sample from the distribution and average the 
resulting portfolios: resampling
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Integrating the Estimation Process and Robust 
MVO

Robust MVO uses explicitly the distribution of forecasted expected 
returns (estimation error) to find a robust portfolio in ONE step
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The Proposed Solution: Robust MVO

Robust Mean-Variance Optimization relies on “Robust 
Optimization” to solve the Portfolio Construction Problem

What is Robust Optimization?
An optimization process that  incorporates uncertainties of the inputs into a 
deterministic framework

It explicitly considers estimation error within the optimization process

It was developed independently by Ben-Tal and Nemirovski. Initial applications 
were in the area of engineering

What are the advantages of using Robust MVO?
Recognize that there are errors in the estimation process and directly “exploit”
that knowledge 

Address practical portfolio construction constraints directly and explicitly

Solve the Robust MVO problem “efficiently” in “roughly” the same time as ONE 
classical mean variance optimization problem

How do we solve Robust MVO problems?
The Robust MVO problem can be formulated as a  “Second Order Cone 
Programming Problem” (Linear Programming over second-order cones)

Interior Point Algorithms are used to optimize SOCPs

“When solving 
for the efficient 
portfolios, the 
differences in 

precision of the 
estimates should 

be explicitly 
incorporated into 

the analysis”

H. Markowitz
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Robust Optimization Background

Literature Review: Even though Robust Optimization is relatively a new 

discipline, there is already an extensive literature in the subject for 

portfolio management

A. Ben-Tal and A.S. Nemirovski, "Robust convex optimization", Math. Operations 

Research, 1998

A. Ben-Tal and A.S. Nemirovski, "Robust solutions to uncertain linear programs", 

Operations Research Letters, 1999

L. El Ghaoui, F. Oustry, and H. Lebret, "Robust solutions to uncertain semidefinite

programs", SIAM J. of Optimization, 1999

M. Lobo and S. Boyd, “The Worst Case Risk of a Portfolio”, 1999

R. Tütüncü and M. Koenig, “Robust Asset Allocation”, 2002 

D. Goldfarb and G. Iyengar, “Robust Portfolio Selection Problems”, Math of OR, 

2003

L. Garlappi, R. Uppal, and T. Wang, “Portfolio Selection with Parameter and Model 

Uncertainty: A Multi-Prior Approach”, 2004

D. Bertsimas and M. Sim, Robust Discrete Optimization and Downside Risk 

Measures, 2005
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How do we maximize Robust Expected Returns?

Assume the vector of expected returns α ~ N(α*,Σ)

Define an elliptical confidence region around the vector of 

estimated expected returns α* as {α: (α - α*)TΣ
-1

(α - α*) ≤ k2}

(if the errors are normally distributed k2 comes from the chi-
squared distribution)

Robust Objective: The optimization problem is defined as:

Max (Min E(return)) = Maxx Minα∈Βα∈Βα∈Βα∈Β(αααα*) E(ααααx)

And Β(α*) is the region around α* that will be taken into 
account as potential errors in the estimates of expected returns

Maximizing Robust Expected Returns

“A robust objective adjusts estimated expected returns to counter the (negative) effect 

that optimization has on the estimation errors that are present in the estimated 

expected returns”
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Intuitive Derivation of Robust MVO

Efficiency Frontiers and Classical MVO
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Mathematical Formulation of Robust MVO
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Impact of the Proposed Solution 

Measuring the improvement: How do we know we are doing better?

Reducing overestimation/underestimation

Compute the difference between the estimated and actual efficient 

frontiers

Improving stability

Compute a “measure” of the variability of weights given the variability 

in expected returns

Improving the “information transfer coefficient”, a measure that explains 

how information is being transferred

Measure of how efficiently an investment process is able to use the 
forecasting information it generates
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Intuition behind Robust MVO: Simple Example

Three Asset Example: no shorting, budget constraint

Expected returns and standard deviations (correlations = 20%)

Optimal weights

28%

24%

20%

σσσσ

7.00%7.00%Asset 3

7.15%7.16%Asset 2

7.16%7.15%Asset 1

αααα2 (B)αααα1 (A)

11.07%

45.55%

43.38%

A

Medium Aversion

11.07%

43.39%

45.54%

B

Low AversionHigh Aversion

29.05%

35.27%

35.68%

B

0.0%

52.64%

47.36%

A

0.0%29.05%Asset 3

47.35%35.69%Asset 2

52.65%35.26%Asset 1

BA
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Efficiency Frontiers and Robust MVO
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Improving Optimal Portfolio Stability and Intuition
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Figure 2: Range of Asset Weights for MV Optimization
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Figure 2: Range of Asset Weights for Robust Optimization

Resultant asset weights using error maximized optimization 
vs. Robust MVO for the prior Dow 30 example

Lower ranges in asset weights

Less variability across asset weights
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Improving the Transfer of Information

Define a measure that allows us to determine how the information

contained in the estimated expected returns is being “transferred” to the 
portfolio via the optimizer.

We use the correlation of the implied alphas to the true alphas
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Summary

Robust MVO incorporates information about the estimation process 
directly into the optimization problem

Robust MVO takes into account those estimation errors when computing 
the portfolio that maximizes utility

Robust MVO improves performance through less trading and better use 
of the information at hand

Robust MVO is a one-pass procedure which is efficiently implemented 
through an SOCP algorithm, it allows for the addition of other constraints

Robust MVO naturally diversifies, even in the absence of a risk model
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The End – Thank You
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Improving Performance

Start with a predefined covariance matrix and a vector of expected 
returns

Randomly generate a time-series of returns for each asset, with the 
appropriate correlation

To get estimated expected returns, we use “simplistic” estimators that 
average returns over previous periods with some weight assigned to 
current period (to put some look-ahead bias)

To get the distribution of errors for estimated expected return we 
compute the covariance matrix over the same time periods. We scale the 
resulting matrix by a factor 1/v

Sharpe Ratio is computed once, at the end of each run by taking the 
actual returns divided by their STD

Each back-test is run 100 times

For each time-period, we solve a problem with the following constraints

Risk constraint using the “true” covariance matrix (10% dollar-neutral)

Long/Only – Active No shorting

Turnover constraint at 7.5% (each way)

Asset bounds: 15% L/S [-15%,15%]
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Simulated Back-Test Results (Dollar-Neutral)
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Simulated Back-Test Results (Active Management 5%)
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