An Hybrid branch-and-cut for solving MINLPs

P. Bonami

Tepper School of Business - Carnegie Mellon University
June 6, 2006

Goals

- Develop algorithms for MINLP.
- Implement and release as open source software (COIN-OR).
- Release publicly available MINLP test sets.

Goals

- Develop algorithms for MINLP.
- Implement and release as open source software (COIN-OR).
- Release publicly available MINLP test sets.

Participants

Carnegie Mellon

- Larry Biegler
- Pierre Bonami
- Gerard Cornuéjols
- Ignacio E. Grossmann
- Carl D. Laird
- François Margot
- Nick Sawaya

- Andrew R. Conn
- Laszlo Ladanyi
- Jon Lee
- Andrea Lodi
- Andreas Waechter

Solver for Mixed Integer Nonlinear Programming:

$$
(M I N L P)\left\{\begin{array}{l}
\min f(x) \\
\text { s.t. } \\
g(x) \leq 0, \\
x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{array}\right.
$$

- X bounded polyhedral set,
- $f: X \rightarrow \mathbb{R}$,
- $g: X \rightarrow \mathbb{R}^{m}$,
- f, g continuously differentiable,

Solver for Mixed Integer Nonlinear Programming:

$$
(M I N L P)\left\{\begin{array}{l}
\min f(x) \\
\text { s.t. } \\
g(x) \leq 0, \\
x \in X, \quad x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{array}\right.
$$

- X bounded polyhedral set,
- $f: X \rightarrow \mathbb{R}$,
- $g: X \rightarrow \mathbb{R}^{m}$,
- f, g continuously differentiable,

Convex MINLP
f and g convex:
Continuous relaxation "easily" solvable, three exact algorithms:
(1) NLP based branch-and-bound (Ravindran and Gupta 1985),
(2) Outer Approximation decomposition (Duran and Grossmann 1986),
(3) Hybrid LP/NLP based branch-and-cut (Quesada and Grossmann 1992).

Solver for Mixed Integer Nonlinear Programming:

$$
(M I N L P)\left\{\begin{array}{l}
\min f(x) \\
\text { s.t. } \\
g(x) \leq 0 \\
x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{array}\right.
$$

- X bounded polyhedral set,
- $f: X \rightarrow \mathbb{R}$,
- $g: X \rightarrow \mathbb{R}^{m}$,
- f, g continuously differentiable,

Convex MINLP

f and g convex:
Continuous relaxation "easily" solvable, three exact algorithms:
(1) NLP based branch-and-bound (Ravindran and Gupta 1985),
(2) Outer Approximation decomposition (Duran and Grossmann 1986),
(3) Hybrid LP/NLP based branch-and-cut (Quesada and Grossmann 1992).

Non-convex MINLP
f or g non-convex:
Only compute local optima of continuous relaxations.
Uses NLP based branch-and-bound as an heuristic for searching good solutions.

```
\(\min f(x)\)
s.t.
\(g(x) \leq 0\),
\(x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}\).
```

(assume linear objective)

Idea: linearize constraints at different points and build an equivalent MILP:

$$
(O A)\left\{\begin{array}{l}
\min f(x) \\
J_{g}\left(x^{k}\right)^{T}\left(x-x^{k}\right)+g\left(x^{k}\right) \leq 0 \\
\forall\left(x^{k}\right) \in \mathcal{T} \\
x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{array}\right.
$$

\mathcal{T} contains suitably chosen linearization points.

Outer approximation constraints

Let $F:=\left\{x: x \in X: g_{i}(x) \leq 0\right\}$
($g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex.)
Outer approximation constraint in \bar{x} :

$$
\nabla g_{j}(\bar{x})^{T}(x-\bar{x})+g_{j}(\bar{x}) \leq g_{j}(x) \leq 0 .
$$

(valid for F by convexity of g_{j} and definition of F.)

Outer approximation constraints

Let $F:=\left\{x: x \in X: g_{i}(x) \leq 0\right\}$
($g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex.)
Outer approximation constraint in \bar{x} :

$$
\nabla g_{j}(\bar{x})^{T}(x-\bar{x})+g_{j}(\bar{x}) \leq g_{j}(x) \leq 0 .
$$

(valid for F by convexity of g_{j} and definition of F.)

Outer approximation constraints

Let $F:=\left\{x: x \in X: g_{i}(x) \leq 0\right\}$
($g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex.)
Outer approximation constraint in \bar{x} :

$$
\nabla g_{j}(\bar{x})^{T}(x-\bar{x})+g_{j}(\bar{x}) \leq g_{j}(x) \leq 0 .
$$

(valid for F by convexity of g_{j} and definition of F.)

Outer approximation constraints

Let $F:=\left\{x: x \in X: g_{i}(x) \leq 0\right\}$
$\left(g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}\right.$ convex. $)$
Outer approximation constraint in \bar{x} :

$$
\nabla g_{j}(\bar{x})^{T}(x-\bar{x})+g_{j}(\bar{x}) \leq g_{j}(x) \leq 0
$$

(valid for F by convexity of g_{j} and definition of F.)

- If $g(\bar{x})=0$ tangent to feasible region.
- If $g(\bar{x})<0$ non-tight constraint.
- If $g(\bar{x})>0$ non-tight constraint cutting off \bar{x}.

Outer approximation constraints

Let $F:=\left\{x: x \in X: g_{i}(x) \leq 0\right\}$
$\left(g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}\right.$ convex. $)$
Outer approximation constraint in \bar{x} :

$$
\nabla g_{j}(\bar{x})^{T}(x-\bar{x})+g_{j}(\bar{x}) \leq g_{j}(x) \leq 0
$$

(valid for F by convexity of g_{j} and definition of F.)

- If $g(\bar{x})=0$ tangent to feasible region.
- If $g(\bar{x})<0$ non-tight constraint.
- If $g(\bar{x})>0$ non-tight constraint cutting off \bar{x}.

Outer approximation constraints

Let $F:=\left\{x: x \in X: g_{i}(x) \leq 0\right\}$
$\left(g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}\right.$ convex. $)$
Outer approximation constraint in \bar{x} :

$$
\nabla g_{j}(\bar{x})^{T}(x-\bar{x})+g_{j}(\bar{x}) \leq g_{j}(x) \leq 0
$$

(valid for F by convexity of g_{j} and definition of F.)

- If $g(\bar{x})=0$ tangent to feasible region.
- If $g(\bar{x})<0$ non-tight constraint.
- If $g(\bar{x})>0$ non-tight constraint cutting off \bar{x}.

OA decomposition algorithm

- Solve the continuous relaxation of (MINLP) :

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0, \\
x \in X,
\end{array}\right.
$$

[Duran, Grossmann, 86]

- Solve the continuous relaxation of $(M I N L P)$:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X
\end{array}\right.
$$

- Construct MILP with linearization in $\bar{x}^{0}\left(\mathcal{T}=\left\{\bar{x}^{0}\right\}\right)$:

$$
\begin{aligned}
& \min f(x) \\
& J_{g}\left(\bar{x}^{0}\right)\left(x-\bar{x}^{0}\right)+g\left(\bar{x}^{0}\right) \leq 0 \\
& x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{aligned}
$$

- Solve the continuous relaxation of $(M I N L P)$:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X
\end{array}\right.
$$

- Construct MILP with linearization in $\bar{x}^{0}\left(\mathcal{T}=\left\{\bar{x}^{0}\right\}\right)$:

$$
\begin{aligned}
& \min f(x) \\
& J_{g}\left(\bar{x}^{0}\right)\left(x-\bar{x}^{0}\right)+g\left(\bar{x}^{0}\right) \leq 0 \\
& x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{aligned}
$$

Solution \hat{x}^{1} gives a lower bound on (MINLP).

- Solve the continuous relaxation of $(M I N L P)$:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X
\end{array}\right.
$$

- Construct MILP with linearization in $\bar{x}^{0}\left(\mathcal{T}=\left\{\bar{x}^{0}\right\}\right)$:

$$
\begin{aligned}
& \min f(x) \\
& J_{g}\left(\bar{x}^{0}\right)\left(x-\bar{x}^{0}\right)+g\left(\bar{x}^{0}\right) \leq 0 \\
& x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{aligned}
$$

Solution \hat{x}^{1} gives a lower bound on (MINLP).

- From the solution \hat{x}^{1} build an NLP with integer variables fixed:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X, x_{i}=\hat{x}_{i}^{1} \forall i \in \mathcal{I}
\end{array}\right.
$$

- Solve the continuous relaxation of $(M I N L P)$:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X
\end{array}\right.
$$

- Construct MILP with linearization in $\bar{x}^{0}\left(\mathcal{T}=\left\{\bar{x}^{0}\right\}\right)$:

$$
\begin{aligned}
& \min f(x) \\
& J_{g}\left(\bar{x}^{0}\right)\left(x-\bar{x}^{0}\right)+g\left(\bar{x}^{0}\right) \leq 0 \\
& x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{aligned}
$$

Solution \hat{x}^{1} gives a lower bound on (MINLP).

- From the solution \hat{x}^{1} build an NLP with integer variables fixed:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X, x_{i}=\hat{x}_{i}^{1} \forall i \in \mathcal{I}
\end{array}\right.
$$

- If feasible the solution \bar{x}^{1} gives upper bound.
- Otherwise, \bar{x}^{1} minimizes constraints infeasibility,

- Solve the continuous relaxation of $(M I N L P)$:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X
\end{array}\right.
$$

- Construct MILP with linearization in $\bar{x}^{0}\left(\mathcal{T}=\left\{\bar{x}^{0}\right\}\right)$:

$$
\begin{aligned}
& \min f(x) \\
& J_{g}\left(\bar{x}^{0}\right)\left(x-\bar{x}^{0}\right)+g\left(\bar{x}^{0}\right) \leq 0 \\
& x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{aligned}
$$

Solution \hat{x}^{1} gives a lower bound on (MINLP).

- From the solution \hat{x}^{1} build an NLP with integer variables fixed:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X, x_{i}=\hat{x}_{i}^{1} \forall i \in \mathcal{I}
\end{array}\right.
$$

- If feasible the solution \bar{x}^{1} gives upper bound.
- Otherwise, \bar{x}^{1} minimizes constraints infeasibility,

- Add \bar{x}^{1} to \mathcal{T}
- Solve the continuous relaxation of $(M I N L P)$:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X
\end{array}\right.
$$

- Construct MILP with linearization in $\bar{x}^{0}\left(\mathcal{T}=\left\{\bar{x}^{0}\right\}\right)$:

$$
\begin{aligned}
& \min f(x) \\
& J_{g}\left(\bar{x}^{0}\right)\left(x-\bar{x}^{0}\right)+g\left(\bar{x}^{0}\right) \leq 0 \\
& x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{aligned}
$$

Solution \hat{x}^{1} gives a lower bound on (MINLP).

- From the solution \hat{x}^{1} build an NLP with integer variables fixed:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X, x_{i}=\hat{x}_{i}^{1} \forall i \in \mathcal{I}
\end{array}\right.
$$

- If feasible the solution \bar{x}^{1} gives upper bound.
- Otherwise, \bar{x}^{1} minimizes constraints infeasibility,

- Add \bar{x}^{1} to \mathcal{T} and iterate.
[Duran, Grossmann, 86]
- Solve the continuous relaxation of $(M I N L P)$:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X
\end{array}\right.
$$

- Construct MILP with linearization in $\bar{x}^{0}\left(\mathcal{T}=\left\{\bar{x}^{0}\right\}\right)$:

$$
\begin{aligned}
& \min f(x) \\
& J_{g}\left(\bar{x}^{0}\right)\left(x-\bar{x}^{0}\right)+g\left(\bar{x}^{0}\right) \leq 0 \\
& x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{aligned}
$$

Solution \hat{x}^{1} gives a lower bound on (MINLP).

- From the solution \hat{x}^{1} build an NLP with integer variables fixed:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X, x_{i}=\hat{x}_{i}^{1} \forall i \in \mathcal{I}
\end{array}\right.
$$

- If feasible the solution \bar{x}^{1} gives upper bound.
- Otherwise, \bar{x}^{1} minimizes constraints infeasibility, linearization cuts off $\left\{x \in X: x=\hat{x}_{i}^{1}\right\}$

- Add \bar{x}^{1} to \mathcal{T} and iterate.
[Duran, Grossmann, 86]
- Solve the continuous relaxation of $(M I N L P)$:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X
\end{array}\right.
$$

- Construct MILP with linearization in $\bar{x}^{0}\left(\mathcal{T}=\left\{\bar{x}^{0}\right\}\right)$:

$$
\begin{aligned}
& \min f(x) \\
& J_{g}\left(\bar{x}^{0}\right)\left(x-\bar{x}^{0}\right)+g\left(\bar{x}^{0}\right) \leq 0 \\
& x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{aligned}
$$

Solution \hat{x}^{1} gives a lower bound on (MINLP).

- From the solution \hat{x}^{1} build an NLP with integer variables fixed:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X, x_{i}=\hat{x}_{i}^{1} \forall i \in \mathcal{I}
\end{array}\right.
$$

- If feasible the solution \bar{x}^{1} gives upper bound.
- Otherwise, \bar{x}^{1} minimizes constraints infeasibility, linearization cuts off $\left\{x \in X: x=\hat{x}_{i}^{1}\right\}$

- Add \bar{x}^{1} to \mathcal{T} and iterate.
[Duran, Grossmann, 86]
- Solve the continuous relaxation of (MINLP) :

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0, \\
x \in X,
\end{array}\right.
$$

- Construct MILP with linearization in $\bar{x}^{0}\left(\mathcal{T}=\left\{\bar{x}^{0}\right\}\right)$:

$$
\begin{aligned}
& \min f(x) \\
& J_{g}\left(\bar{x}^{0}\right)\left(x-\bar{x}^{0}\right)+g\left(\bar{x}^{0}\right) \leq 0 \\
& x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{aligned}
$$

Solution \hat{x}^{1} gives a lower bound on (MINLP).

- From the solution \hat{x}^{1} build an NLP with integer variables fixed:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X, x_{i}=\hat{x}_{i}^{1} \forall i \in \mathcal{I}
\end{array}\right.
$$

- If feasible the solution \bar{x}^{1} gives upper bound.
- Otherwise, \bar{x}^{1} minimizes constraints infeasibility, linearization cuts off $\left\{x \in X: x=\hat{x}_{i}^{1}\right\}$

- Add \bar{x}^{1} to \mathcal{I} and iterate.
- Until either MILP is infeasible or the lower bound is equal to the upper bound.
[Duran, Grossmann, 86]

OA decomposition properties

If constraints qualification holds at every optimum of NLP solved:

- Solve to optimality problems defined by convex constraints.
- Finite termination if x bounded.

Has to solve a sequence of MINLP's ($>95 \%$ of computing time in our experiments).
Alternative approach [Quesada, Grossmann, 92]

- Perform a single branch-and-cut.
- Alternate between solving NLPs and LPs.
- NLP solved to find feasible solutions and improve outer approximation
- Use LP to obtain lower bounds and solutions to branch on
- start by solving continuous relaxation to get initial outer approximation.
- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
- solve linear outer approximation at current node:

$$
(O A)_{F}(\mathcal{T})\left\{\begin{array}{l}
\min f(x, y) \\
J_{g}(\bar{x})^{T}(x-\bar{x})+g(\bar{x}) \leq 0 \quad \forall \bar{x} \in \mathcal{T} \\
x \in X \cap F
\end{array}\right.
$$

(F is the modified feasibility set at current node)

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
- solve linear outer approximation at current node:

$$
(O A)_{F}(\mathcal{T})\left\{\begin{array}{l}
\min f(x, y) \\
J_{g}(\bar{x})^{T}(x-\bar{x})+g(\bar{x}) \leq 0 \quad \forall \bar{x} \in \mathcal{T} \\
x \in X \cap F
\end{array}\right.
$$

(F is the modified feasibility set at current node)

- if $(O A)_{F}(\mathcal{T})$ is integer feasible solve NLP:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0, \\
x \in X, x_{i}=\hat{x}_{i} \forall i \in \mathcal{I}
\end{array}\right.
$$

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
- solve linear outer approximation at current node:

$$
(O A)_{F}(\mathcal{T})\left\{\begin{array}{l}
\min f(x, y) \\
J_{g}(\bar{x})^{T}(x-\bar{x})+g(\bar{x}) \leq 0 \quad \forall \bar{x} \in \mathcal{T} \\
x \in X \cap F
\end{array}\right.
$$

(F is the modified feasibility set at current node)

- if $(O A)_{F}(\mathcal{T})$ is integer feasible solve NLP:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X, x_{i}=\hat{x}_{i} \forall i \in \mathcal{I}
\end{array}\right.
$$

- add its solution \bar{x} to \mathcal{T}, and repeat while solution to $(O A)_{F}(\mathcal{T})$ is integer feasible.
- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
- solve linear outer approximation at current node:

$$
(O A)_{F}(\mathcal{T})\left\{\begin{array}{l}
\min f(x, y) \\
J_{g}(\bar{x})^{T}(x-\bar{x})+g(\bar{x}) \leq 0 \quad \forall \bar{x} \in \mathcal{T} \\
x \in X \cap F
\end{array}\right.
$$

(F is the modified feasibility set at current node)

- if $(O A)_{F}(\mathcal{T})$ is integer feasible solve NLP:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X, x_{i}=\hat{x}_{i} \forall i \in \mathcal{I}
\end{array}\right.
$$

- add its solution \bar{x} to \mathcal{T}, and repeat while solution to $(O A)_{F}(\mathcal{T})$ is integer feasible.
- Fathom nodes on bounds and infeasibility only.

Disadvantages of LP/NLP branch-and-bound

- At the top of the tree outer approximation only based on continuous relaxation.
- Approximation not improved until first integer feasible solution is found.
- At that point tree may already have a large number of nodes.

Improvements
Solve more NLP's

- Initialize algorithm with a few iterations of OA decomposition.
- Helps in finding feasible solution early.
- Sometimes sufficient to solve problem.
- Solve NLP relaxation every l nodes:
- LP relaxation at node is then equal to NLP relaxation.
- start by solving continuous relaxation to get initial outer approximation.
- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
- solve linear outer approximation at current node:

$$
(O A)_{F}(\mathcal{T})\left\{\begin{array}{l}
\min f(x, y) \\
J_{g}(\bar{x})^{T}(x-\bar{x})+g(\bar{x}) \leq 0 \quad \forall \bar{x} \in \mathcal{T} \\
x \in X \cap F
\end{array}\right.
$$

(F is the modified feasibility set at current node)

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
- solve linear outer approximation at current node:

$$
(O A)_{F}(\mathcal{T})\left\{\begin{array}{l}
\min f(x, y) \\
J_{g}(\bar{x})^{T}(x-\bar{x})+g(\bar{x}) \leq 0 \quad \forall \bar{x} \in \mathcal{T} \\
x \in X \cap F
\end{array}\right.
$$

(F is the modified feasibility set at current node)

- if $(O A)_{F}(\mathcal{T})$ is integer feasible solve NLP:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0, \\
x \in X, x_{i}=\hat{x}_{i} \forall i \in \mathcal{I}
\end{array}\right.
$$

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
- solve linear outer approximation at current node:

$$
(O A)_{F}(\mathcal{T})\left\{\begin{array}{l}
\min f(x, y) \\
J_{g}(\bar{x})^{T}(x-\bar{x})+g(\bar{x}) \leq 0 \quad \forall \bar{x} \in \mathcal{T} \\
x \in X \cap F
\end{array}\right.
$$

(F is the modified feasibility set at current node)

- if $(O A)_{F}(\mathcal{T})$ is integer feasible solve NLP:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X, x_{i}=\hat{x}_{i} \forall i \in \mathcal{I}
\end{array}\right.
$$

- add its solution \bar{x} to \mathcal{T}, and repeat while solution to $(O A)_{F}(\mathcal{T})$ is integer feasible.
- Fathom nodes on bounds and infeasibility only.
- start by performing $t \mathrm{sec}$. of outer approximation decomposition.
- At each node of the tree search
- Every l nodes solve NLP relaxation:

$$
\begin{aligned}
& \min f(x) \\
& g(x) \leq 0 \\
& x \in X \cap F
\end{aligned}
$$

- solve linear outer approximation at current node:

$$
(O A)_{F}(\mathcal{T})\left\{\begin{array}{l}
\min f(x, y) \\
J_{g}(\bar{x})^{T}(x-\bar{x})+g(\bar{x}) \leq 0 \quad \forall \bar{x} \in \mathcal{T} \\
x \in X \cap F
\end{array}\right.
$$

(F is the modified feasibility set at current node)

- Strengthen outer approximation with MILP cutting planes methods
- if $(O A)_{F}(\mathcal{T})$ is integer feasible solve NLP:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0, \\
x \in X, x_{i}=\hat{x}_{i} \forall i \in \mathcal{I}
\end{array}\right.
$$

- add its solution \bar{x} to \mathcal{T}, and repeat while solution to $(O A)_{F}(\mathcal{T})$ is integer feasible.
- Fathom nodes on bounds and infeasibility only.
- Written in $\mathrm{C}++$.
- Can be used from AMPL, or using C++ library.
- Written in C++.
- Can be used from AMPL, or using C++ library.

Building blocks
Components from COIN-OR (www.coin-or.org):

- branch-and-bound, branch-and-cut framework: CbC,
- NLP solver Ipopt,
- MILP solver Cbc (alternatively Cplex),
- LP solver Clp,
- Cutting plane generation CGL (generators for OA constraints).
- Written in $\mathrm{C}++$.
- Can be used from AMPL, or using C++ library.

Building blocks
Components from COIN-OR (www.coin-or.org):

- branch-and-bound, branch-and-cut framework: CbC,
- NLP solver Ipopt,
- MILP solver Cbc (alternatively Cplex),
- LP solver Clp,
- Cutting plane generation CGL (generators for OA constraints).

Availability

To be released soon under Common Public License.

I-BB (NLP only based branch-and-bound)

- branch-and-bound framework based on Cbc ,
- nodes solved by Ipopt with enhanced warm-starting capabilities.
- Special features for non-convex problems :
- Solve each nodes with several randomly chosen starting points,
- change fathoming policies (don't trust "bounds").

I-BB (NLP only based branch-and-bound)

- branch-and-bound framework based on Cbc ,
- nodes solved by Ipopt with enhanced warm-starting capabilities.
- Special features for non-convex problems :
- Solve each nodes with several randomly chosen starting points,
- change fathoming policies (don't trust "bounds").

I-OA
Standard OA decomposition

- Implemented as a cut generator to be used in other algorithms.
- Uses either Cbc or Cplex for solving the MILPs.

I-BB (NLP only based branch-and-bound)

- branch-and-bound framework based on Cbc ,
- nodes solved by Ipopt with enhanced warm-starting capabilities.
- Special features for non-convex problems :
- Solve each nodes with several randomly chosen starting points,
- change fathoming policies (don't trust "bounds").

I-OA
Standard OA decomposition

- Implemented as a cut generator to be used in other algorithms.
- Uses either Cbc or Cplex for solving the MILPs.

I-QG
Quessada-Grossmann branch-and-cut.

I-BB (NLP only based branch-and-bound)

- branch-and-bound framework based on Cbc,
- nodes solved by Ipopt with enhanced warm-starting capabilities.
- Special features for non-convex problems :
- Solve each nodes with several randomly chosen starting points,
- change fathoming policies (don't trust "bounds").

I-OA
Standard OA decomposition

- Implemented as a cut generator to be used in other algorithms.
- Uses either Cbc or Cplex for solving the MILPs.

I-QG
Quessada-Grossmann branch-and-cut.
I-Hyb (Hybrid)
Quesada-Grossmann improved with:

- Initialization with a short time of $I-O A$.
- Solve NLP's every l nodes.
- Incorporation of MILP techniques:
- Cgl cut generators,
- Strong branching, Reliability branching

A Library of convex MINLPs

About 150 MINLP's from different sources

- Existing problems from the literature : layout and trimloss problems (T. Westerlund et al.)
- Water network problems (C.D. Laird)
- Disjunctive problems formulated both with big-M and convex-hull formulation (N. Sawaya)
available in GAMS .gms and AMPL .nl formats at:
http://egon.cheme.cmu.edu/ibm/page.htm

Computational experiments
Comparisons on 38 problems from the library:
(1) Comparison of I-BB, I-OA, I-QG and I-Hyb,
(2) Comparison of I-BB I-OA and I-Hyb with two commercial solvers:

- SBB: Nonlinear branch-and-bound based on CONOPT.
- DICOPT: OA decomposition based on CONOPT/CPLEX.

Settings for I-Hyb

- Perform 30 seconds of I-OA at the root node.
- Solve NLP relaxation every 10 nodes.
- Strong branching on LP relaxation and pseudo-costs.
- Uses MIG, MIR and Covers.

Runs on an Optetron cluster.
Time limit of 3 hours.
Performance plot
For each value of p and algorithm A gives the proportion of problem solved by A in

$$
p \times T_{\min } \text { seconds. }
$$

(Where $T_{\min }$ is the running time of the best algorithm.)

- For $p=1$: proportion of problems where A is the fastest algorithm
- For $p=\infty$: proportion of problems solved by A in time limit.

- Dicopt solves 20 of the 38 problems the fastest (≤ 3 minutes)
- I-Hyb solves the most problem when given 45 more seconds of computing time than Dicopt

Comparison of our branch-and-bound and Sbb

- I-BB is slightly slower but compares well with Sbb (on average 760 sec . vs 615 sec . on problems solved optimally by both)
- Number of nodes are comparable
- I-BB is slightly faster per node on our test set.

Comparison of I-OA with Dicopt

- I-OA is significantly slower than Dicopt.
- Takes less iterations but MILPs are much slower to solve (uses Cbc vs. Cplex).

Goal: Obtaining (good) feasible solutions quickly
How: Do an OA decomposition oriented towards integer feasibility.

Goal: Obtaining (good) feasible solutions quickly
How: Do an OA decomposition oriented towards integer feasibility.
Feasibility Pump for MILP [Fischetti, Glover, Lodi 2004]
$\left\{\begin{array}{l}A x \leq b \\ x \in \mathbb{Z}^{n}\end{array}\right.$
Construct two sequences of points:

- $\bar{x}^{1}, \ldots, \bar{x}^{k}$ satisfying $A x \leq b$, by solving LPs.
- $\hat{x}^{1}, \ldots, \hat{x}^{k}$ satisfying $x \in \mathbb{Z}^{n}$ by rounding.

Goal: Obtaining (good) feasible solutions quickly
How: Do an OA decomposition oriented towards integer feasibility.
Feasibility Pump for MILP [Fischetti, Glover, Lodi 2004]
$\left\{\begin{array}{l}A x \leq b \\ x \in \mathbb{Z}^{n}\end{array}\right.$
Construct two sequences of points:

- $\bar{x}^{1}, \ldots, \bar{x}^{k}$ satisfying $A x \leq b$, by solving LPs.
- $\hat{x}^{1}, \ldots, \hat{x}^{k}$ satisfying $x \in \mathbb{Z}^{n}$ by rounding.

Feasibility Pump for Minlp [with Cornuéjols, Lodi, Margot]
$\left\{\begin{array}{l}g(x, y) \leq 0, \\ (x, y) \in X, x \in \mathbb{Z} .\end{array}\right.$
Construct two sequences of points:

- $\left(\bar{x}^{1}, \bar{y}^{1}\right), \ldots,\left(\bar{x}^{k}, \bar{y}^{k}\right)$ satisfying $A x \leq b$, by solving LPs.
- $\left(\hat{x}^{1}, \hat{y}^{1}\right), \ldots,\left(\hat{x}^{k}, \hat{y}^{k}\right)$ satisfying $x \in \mathbb{Z}^{n}$ by solving an MILP.

Goal: Obtaining (good) feasible solutions quickly
How: Do an OA decomposition oriented towards integer feasibility.
Feasibility Pump for MILP [Fischetti, Glover, Lodi 2004]
$\left\{\begin{array}{l}A x \leq b \\ x \in \mathbb{Z}^{n}\end{array}\right.$
Construct two sequences of points:

- $\bar{x}^{1}, \ldots, \bar{x}^{k}$ satisfying $A x \leq b$, by solving LPs.
- $\hat{x}^{1}, \ldots, \hat{x}^{k}$ satisfying $x \in \mathbb{Z}^{n}$ by rounding.

Feasibility Pump for Minlp [with Cornuéjols, Lodi, Margot]
$\left\{\begin{array}{l}g(x, y) \leq 0, \\ (x, y) \in X, x \in \mathbb{Z} .\end{array}\right.$
Construct two sequences of points:

- $\left(\bar{x}^{1}, \bar{y}^{1}\right), \ldots,\left(\bar{x}^{k}, \bar{y}^{k}\right)$ satisfying $A x \leq b$, by solving LPs.
- $\left(\hat{x}^{1}, \hat{y}^{1}\right), \ldots,\left(\hat{x}^{k}, \hat{y}^{k}\right)$ satisfying $x \in \mathbb{Z}^{n}$ by solving an MILP.
- Build an outer approximation of feasibility region.

MINLP Feasibility Pump

- Start with any solution of continuous relaxation $\left(\bar{x}^{0}, \bar{y}^{0}\right)$.

MINLP Feasibility Pump

- Start with any solution of continuous relaxation $\left(\bar{x}^{0}, \bar{y}^{0}\right)$.
- $\mathcal{T}=\left(\bar{x}^{0}, \bar{y}^{0}\right)$.
- Find point minimizing $\left\|x-\bar{x}^{0}\right\|_{1}$ in current outer approximation:
$(F O A)^{1}\left\{\begin{array}{l}\min \left\|x-\bar{x}^{0}\right\| \\ \left.g\left(\bar{x}^{k}, \bar{y}^{k}\right)+J_{g}\left(\bar{x}^{k}, \bar{y}^{k}\right)+\right)^{T}\left(\binom{x}{y}-\binom{\bar{x}^{k}}{\bar{y}^{k}}\right) \leq 0 \\ x \in \mathbb{Z}^{n_{1}}, y \in \mathbb{R}^{n_{2}}\end{array}\right.$
- Start with any solution of continuous relaxation $\left(\bar{x}^{0}, \bar{y}^{0}\right)$.
- $\mathcal{T}=\left(\bar{x}^{0}, \bar{y}^{0}\right)$.
- Find point minimizing $\left\|x-\bar{x}^{0}\right\|_{1}$ in current outer approximation:
$(F O A)^{1}\left\{\begin{array}{l}\min \left\|x-\bar{x}^{0}\right\| \\ \left.g\left(\bar{x}^{k}, \bar{y}^{k}\right)+J_{g}\left(\bar{x}^{k}, \bar{y}^{k}\right)+\right)^{T}\left(\binom{x}{y}-\binom{\bar{x}^{k}}{\bar{y}^{k}}\right) \leq 0 \\ x \in \mathbb{Z}^{n_{1}}, y \in \mathbb{R}^{n_{2}}\end{array}\right.$
- If $F O A^{1}$ is infeasible or solution $\left(\hat{x}^{1}, \hat{y}^{1}\right)$ satisfies $g\left(\hat{x}^{1}, \hat{y}^{1}\right) \leq 0$ stop.
- Otherwise, find NLP feasible point minimizing $\left\|x-\hat{x}^{1}\right\|_{2}$:

$$
(F P-N L P)^{1}\left\{\begin{array}{l}
\min \left\|x-\bar{x}^{1}\right\|_{2} \\
g(x, y) \leq 0 \\
(x, y) \in X
\end{array}\right.
$$

- Start with any solution of continuous relaxation $\left(\bar{x}^{0}, \bar{y}^{0}\right)$.
- $\mathcal{T}=\left(\bar{x}^{0}, \bar{y}^{0}\right)$.
- Find point minimizing $\left\|x-\bar{x}^{0}\right\|_{1}$ in current outer approximation:
$(F O A)^{1}\left\{\begin{array}{l}\min \left\|x-\bar{x}^{0}\right\| \\ \left.g\left(\bar{x}^{k}, \bar{y}^{k}\right)+J_{g}\left(\bar{x}^{k}, \bar{y}^{k}\right)+\right)^{T}\left(\binom{x}{y}-\binom{\bar{x}^{k}}{\bar{y}^{k}}\right) \leq 0 \\ x \in \mathbb{Z}^{n_{1}}, y \in \mathbb{R}^{n_{2}}\end{array}\right.$
- If $F O A^{1}$ is infeasible or solution $\left(\hat{x}^{1}, \hat{y}^{1}\right)$ satisfies $g\left(\hat{x}^{1}, \hat{y}^{1}\right) \leq 0$ stop.
- Otherwise, find NLP feasible point minimizing $\left\|x-\hat{x}^{1}\right\|_{2}$:

$$
(F P-N L P)^{1}\left\{\begin{array}{l}
\min \left\|x-\bar{x}^{1}\right\|_{2} \\
g(x, y) \leq 0 \\
(x, y) \in X
\end{array}\right.
$$

- Update outer approximation of the problem with $\left(\bar{x}^{1}, \bar{y}^{1}\right)$ and iterate.

- Start with any solution of continuous relaxation $\left(\bar{x}^{0}, \bar{y}^{0}\right)$.
- $\mathcal{T}=\left(\bar{x}^{0}, \bar{y}^{0}\right)$.
- Repeat:
- $\mathrm{i}:=\mathrm{i}+1$
- Find point minimizing $\left\|x-\bar{x}^{i-1}\right\|_{1}$ in current outer approximation:
$(F O A)^{i}\left\{\begin{array}{l}\min \left\|x-\bar{x}^{i-1}\right\| \\ \left.g\left(\bar{x}^{k}, \bar{y}^{k}\right)+J_{g}\left(\bar{x}^{k}, \bar{y}^{k}\right)+\right)^{T}\left(\binom{x}{y}-\binom{\bar{x}^{k}}{\left.\bar{y}^{k}\right)} \leq 0\right. \\ k=0 \ldots, i-1 \\ x \in \mathbb{Z}^{n_{1}}, y \in \mathbb{R}^{n_{2}}\end{array}\right.$
- If $F O A^{i}$ is infeasible or solution $\left(\hat{x}^{i}, \hat{y}^{i}\right)$ satisfies $g\left(\hat{x}^{i}, \hat{y}^{i}\right) \leq 0$ stop.
- Otherwise, find NLP feasible point minimizing $\left\|x-\hat{x}^{i}\right\|_{2}$:

$$
(F P-N L P)^{i}\left\{\begin{array}{l}
\min \left\|x-\bar{x}^{i}\right\|_{2} \\
g(x, y) \leq 0 \\
(x, y) \in X
\end{array}\right.
$$

- Update outer approximation of the problem with $\left(\bar{x}^{i}, \bar{y}^{i}\right)$ and iterate.

- Start with any solution of continuous relaxation $\left(\bar{x}^{0}, \bar{y}^{0}\right)$.
- $\mathcal{T}=\left(\bar{x}^{0}, \bar{y}^{0}\right)$.
- Repeat:
- $\mathrm{i}:=\mathrm{i}+1$
- Find point minimizing $\left\|x-\bar{x}^{i-1}\right\|_{1}$ in current outer approximation:
$(F O A)^{i}\left\{\begin{array}{l}\min \left\|x-\bar{x}^{i-1}\right\| \\ \left.g\left(\bar{x}^{k}, \bar{y}^{k}\right)+J_{g}\left(\bar{x}^{k}, \bar{y}^{k}\right)+\right)^{T}\left(\binom{x}{y}-\binom{\bar{x}^{k}}{\left.\bar{y}^{k}\right)} \leq 0\right. \\ k=0 \ldots, i-1 \\ x \in \mathbb{Z}^{n_{1}}, y \in \mathbb{R}^{n_{2}}\end{array}\right.$
- If $F O A^{i}$ is infeasible or solution $\left(\hat{x}^{i}, \hat{y}^{i}\right)$ satisfies $g\left(\hat{x}^{i}, \hat{y}^{i}\right) \leq 0$ stop.
- Otherwise, find NLP feasible point minimizing $\left\|x-\hat{x}^{i}\right\|_{2}$:

$$
(F P-N L P)^{i}\left\{\begin{array}{l}
\min \left\|x-\bar{x}^{i}\right\|_{2} \\
g(x, y) \leq 0 \\
(x, y) \in X
\end{array}\right.
$$

- Update outer approximation of the problem with $\left(\bar{x}^{i}, \bar{y}^{i}\right)$ and iterate.

- Start with any solution of continuous relaxation $\left(\bar{x}^{0}, \bar{y}^{0}\right)$.
- $\mathcal{T}=\left(\bar{x}^{0}, \bar{y}^{0}\right)$.
- Repeat:
- $\mathrm{i}:=\mathrm{i}+1$
- Find point minimizing $\left\|x-\bar{x}^{i-1}\right\|_{1}$ in current outer approximation:
$(F O A)^{i}\left\{\begin{array}{l}\min \left\|x-\bar{x}^{i-1}\right\| \\ \left.g\left(\bar{x}^{k}, \bar{y}^{k}\right)+J_{g}\left(\bar{x}^{k}, \bar{y}^{k}\right)+\right)^{T}\left(\binom{x}{y}-\binom{\bar{x}^{k}}{\left.\bar{y}^{k}\right)} \leq 0\right. \\ k=0 \ldots, i-1 \\ x \in \mathbb{Z}^{n_{1}}, y \in \mathbb{R}^{n_{2}}\end{array}\right.$
- If $F O A^{i}$ is infeasible or solution $\left(\hat{x}^{i}, \hat{y}^{i}\right)$ satisfies $g\left(\hat{x}^{i}, \hat{y}^{i}\right) \leq 0$ stop.
- Otherwise, find NLP feasible point minimizing $\left\|x-\hat{x}^{i}\right\|_{2}$:

$$
(F P-N L P)^{i}\left\{\begin{array}{l}
\min \left\|x-\bar{x}^{i}\right\|_{2} \\
g(x, y) \leq 0 \\
(x, y) \in X
\end{array}\right.
$$

- Update outer approximation of the problem with $\left(\bar{x}^{i}, \bar{y}^{i}\right)$ and iterate.

Termination

FP can not cycle (if x is bounded: finite termination):

- If all functions g_{i} are convex and constraint qualification holds at every NLP optimum.
- If constraint qualification does not hold at every NLP add cut:

$$
\left(\bar{x}^{i}-\hat{x}^{i}\right)^{T}\left(x-\bar{x}^{i}\right) \geq 0
$$

- If functions g_{i} are not convex but the region $\{g(x, y) \leq 0\}$ is add only binding OA constraints at \bar{x}^{i}.
- MILPs don't have to be solved to optimality.

Iterated feasibility pump (IFP)
After a feasible solution of cost $\alpha=f(\bar{x}, \bar{y})$ has been found.
Add the constraint

$$
f(x, y) \leq \alpha-\epsilon
$$

to problem formulation and relaunch FP.

Implementation

- Implemented as a stand-alone heuristic.
- Ipopt3.0 for solving the NLPs.
- Cplex9.0 for solving MILPs.

Test problems
65 convex MINLPs

- 12 from literature
- 43 from our library

Comparison with classical OA

- First feasible solution obtained by FP and OA.
- Best feasible solution obtained by IFP and OA after 1 minute.

First feasible solution
Time limit 2 hours.

- Quality of solution obtained by OA better than the one obtained by FP.
- FP much faster than OA (4 problems take more than 10 sec . with FP, 21 with OA)
- FP finds a feasible solution to all 65 problems, OA does not for 5 problems.
- trimloss6-7-12 no feasible solution known before.

1 minute of IFP vs. OA

- IFP finds solution for 63 problems, OA for 50
- Quality of solutions very comparable.
- IFP proves optimality of 30 problems, OA of 38 .

Enhanced Outer Approximation Algorithm

Combination of OA and FP.
Principle

- Start by performing one minute of IFP to get a good feasible solution (and OA constraints).
- Launch a classical OA decomposition but every time the NLP is infeasible launch an FP to try to obtain a feasible solution.
- Solve the continuous relaxation of $(M I N L P)$:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0, \\
x \in X,
\end{array}\right.
$$

- Construct MILP with linearization in $\bar{x}^{0}\left(\mathcal{T}=\left\{\bar{x}^{0}\right\}\right)$:

$$
\begin{aligned}
& \min f(x) \\
& J_{g}\left(\bar{x}^{0}\right)\left(x-\bar{x}^{0}\right)+g\left(\bar{x}^{0}\right) \leq 0 \\
& x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I} .
\end{aligned}
$$

Solution \hat{x}^{1} gives a lower bound on (MINLP).

- From the solution \hat{x}^{1} build an NLP with integer variables fixed:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0, \\
x \in X, x_{i}=\hat{x}_{i}^{1} \forall i \in \mathcal{I}
\end{array}\right.
$$

- If feasible the solution \bar{x}^{1} gives upper bound .
- Otherwise, \bar{x}^{1} minimizes constraints infeasibility. Linearization cuts off $\left\{x \in X: x=\hat{x}_{i}^{1}\right\}$
- Add \bar{x}^{1} to \mathcal{I} and iterate.
- Until either MILP is infeasible or the lower bound is equal to the upper bound.
- Solve the continuous relaxation of (MINLP) :

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X
\end{array}\right.
$$

- Perform 1 minute of IFP add all the NLP feasible points found to \mathcal{T}
- Construct MILP with linearization for all $\bar{x} \in \mathcal{T}$:

$$
\begin{aligned}
& \min f(x) \\
& J_{g}(\bar{x})(x-\bar{x})+g(\bar{x}) \leq 0 \quad \forall \bar{x} \in \mathcal{T} \\
& x \in X, x_{i} \in \mathbb{Z} \forall i \in \mathcal{I}
\end{aligned}
$$

Solution \hat{x} gives a lower bound on (MINLP).

- From the solution \hat{x} build an NLP with integer variables fixed:

$$
\left\{\begin{array}{l}
\min f(x) \\
g(x) \leq 0 \\
x \in X, x_{i}=\hat{x}_{i} \forall i \in \mathcal{I}
\end{array}\right.
$$

- If feasible the solution \bar{x} gives upper bound.
- Otherwise, Launch an FP for at most 2 minutes and 5 iterations add all NLP feasible solution to \mathcal{T}
- Add \bar{x} to \mathcal{T} and iterate.
- Until either MILP is infeasible or the lower bound is equal to the upper bound.

On a subset of 15 hardest problems with OA from previous experiment:

Name	OA enhanced by FP				OA			
	ub	time to find ub		time to find lb	ub	time to find ub	lb	time to find Ib
CLay0304M	40262.4	79	*	82	40262.4	12	*	14
CLay0305H	8092.5	4	*	32	8092.5	24	*	24
CLay0305M	8092.5	4	*	24	8092.5	75	*	75
fo7_2	17.74	4	*	103	17.74	20	*	128
fo7	20.72	260	*	260	20.72	24	*	197
fo8	22.38	573	*	835	22.38	727	*	906
fo9	23.46	1160	*	2613	23.46	5235	*	6024
o7_2	116.94	189	*	2312	118.86	5651	114.08	7200
-7	131.64	5	*	6055	none	-	122.79	7200
SLay10M	129580	1778	*	3421	129580	336	128531	7200
trimloss2	5.3	0.17	*	0.22	5.3	0.21	*	0.21
trimloss4	8.3	10	*	423	8.3	785	*	785
trimloss5	10.7	485	3.31	7200	none	-	5.9	7200
trimloss6	16.5	2040	3.5	7200	none	-	6.5	7200
trimloss7	27.5	387	2.6	7200	none	-	3.3	7200
trimloss12	none	-	5.47	7200	none	-	9.58	7200

On a subset of 15 hardest problems with OA from previous experiment:

Name	OA enhanced by FP				OA			
	ub	time to find ub		time to find lb	ub	time to find ub	lb	time to find Ib
CLay0304M	40262.4	79	*	82	40262.4	12	*	14
CLay0305H	8092.5	4	*	32	8092.5	24	*	24
CLay0305M	8092.5	4	*	24	8092.5	75	*	75
fo7_2	17.74	4	*	103	17.74	20	*	128
fo7	20.72	260	*	260	20.72	24	*	197
fo8	22.38	573	*	835	22.38	727	*	906
fo9	23.46	1160	*	2613	23.46	5235	*	6024
o7_2	116.94	189	*	2312	118.86	5651	114.08	7200
-7	131.64	5	*	6055	none	-	122.79	7200
SLay10M	129580	1778	*	3421	129580	336	128531	7200
trimloss2	5.3	0.17	*	0.22	5.3	0.21	*	0.21
trimloss4	8.3	10	*	423	8.3	785	*	785
trimloss5	10.7	485	3.31	7200	none	-	5.9	7200
trimloss6	16.5	2040	3.5	7200	none	-	6.5	7200
trimloss7	27.5	387	2.6	7200	none	-	3.3	7200
trimloss12	none	-	5.47	7200	none	-	9.58	7200

On a subset of 15 hardest problems with OA from previous experiment:

Name	OA enhanced by FP				OA			
	ub	time to find ub		time to find lb	ub	time to find ub	lb	time to find Ib
CLay0304M	40262.4	79	*	82	40262.4	12	*	14
CLay0305H	8092.5	4	*	32	8092.5	24	*	24
CLay0305M	8092.5	4	*	24	8092.5	75	*	75
fo7_2	17.74	4	*	103	17.74	20	*	128
fo7	20.72	260	*	260	20.72	24	*	197
fo8	22.38	573	*	835	22.38	727	*	906
fo9	23.46	1160	*	2613	23.46	5235	*	6024
o7_2	116.94	189	*	2312	118.86	5651	114.08	7200
-7	131.64	5	*	6055	none	-	122.79	7200
SLay10M	129580	1778	*	3421	129580	336	128531	7200
trimloss2	5.3	0.17	*	0.22	5.3	0.21	*	0.21
trimloss4	8.3	10	*	423	8.3	785	*	785
trimloss5	10.7	485	3.31	7200	none	-	5.9	7200
trimloss6	16.5	2040	3.5	7200	none	-	6.5	7200
trimloss7	27.5	387	2.6	7200	none	-	3.3	7200
trimloss12	none	-	5.47	7200	none	-	9.58	7200

On a subset of 15 hardest problems with OA from previous experiment:

Name	OA enhanced by FP				OA			
	ub	time to find ub		time to find lb	ub	time to find ub	lb	time to find Ib
CLay0304M	40262.4	79	*	82	40262.4	12	*	14
CLay0305H	8092.5	4	*	32	8092.5	24	*	24
CLay0305M	8092.5	4	*	24	8092.5	75	*	75
fo7_2	17.74	4	*	103	17.74	20	*	128
fo7	20.72	260	*	260	20.72	24	*	197
fo8	22.38	573	*	835	22.38	727	*	906
fo9	23.46	1160	*	2613	23.46	5235	*	6024
o7_2	116.94	189	*	2312	118.86	5651	114.08	7200
-7	131.64	5	*	6055	none	-	122.79	7200
SLay10M	129580	1778	*	3421	129580	336	128531	7200
trimloss2	5.3	0.17	*	0.22	5.3	0.21	*	0.21
trimloss4	8.3	10	*	423	8.3	785	*	785
trimloss5	10.7	485	3.31	7200	none	-	5.9	7200
trimloss6	16.5	2040	3.5	7200	none	-	6.5	7200
trimloss7	27.5	387	2.6	7200	none	-	3.3	7200
trimloss12	none	-	5.47	7200	none	-	9.58	7200

On a subset of 15 hardest problems with OA from previous experiment:

Name	OA enhanced by FP				OA			
	ub	time to find ub		time to find lb	ub	time to find ub	lb	time to find Ib
CLay0304M	40262.4	79	*	82	40262.4	12	*	14
CLay0305H	8092.5	4	*	32	8092.5	24	*	24
CLay0305M	8092.5	4	*	24	8092.5	75	*	75
fo7_2	17.74	4	*	103	17.74	20	*	128
fo7	20.72	260	*	260	20.72	24	*	197
fo8	22.38	573	*	835	22.38	727	*	906
fo9	23.46	1160	*	2613	23.46	5235	*	6024
o7_2	116.94	189	*	2312	118.86	5651	114.08	7200
-7	131.64	5	*	6055	none	-	122.79	7200
SLay10M	129580	1778	*	3421	129580	336	128531	7200
trimloss2	5.3	0.17	*	0.22	5.3	0.21	*	0.21
trimloss4	8.3	10	*	423	8.3	785	*	785
trimloss5	10.7	485	3.31	7200	none	-	5.9	7200
trimloss6	16.5	2040	3.5	7200	none	-	6.5	7200
trimloss7	27.5	387	2.6	7200	none	-	3.3	7200
trimloss12	none	-	5.47	7200	none	-	9.58	7200

On a subset of 15 hardest problems with OA from previous experiment:

Name	OA enhanced by FP				OA			
	ub	time to find $u b$		time to find lb	ub	time to find ub	lb	time to find lb
CLay0304M	40262.4	79	*	82	40262.4	12	*	14
CLay0305H	8092.5	4	*	32	8092.5	24	*	24
CLay0305M	8092.5	4	*	24	8092.5	75	*	75
fo7_2	17.74	4	*	103	17.74	20	*	128
fo7	20.72	260	*	260	20.72	24	*	197
fo8	22.38	573	*	835	22.38	727	*	906
fo9	23.46	1160	*	2613	23.46	5235	*	6024
-7_2	116.94	189	*	2312	118.86	5651	114.08	7200
-7	131.64	5	*	6055	none	-	122.79	7200
SLay10M	129580	1778	*	3421	129580	336	128531	7200
trimloss2	5.3	0.17	*	0.22	5.3	0.21	*	0.21
trimloss4	8.3	10	*	423	8.3	785	*	785
trimloss5	10.7	485	3.31	7200	none	-	5.9	7200
trimloss6	16.5	2040	3.5	7200	none	-	6.5	7200
trimloss7	27.5	387	2.6	7200	none	-	3.3	7200
trimloss12	none	-	5.47	7200	none	-	9.58	7200

Parallel Implementation [L. Ladanyi]

- Using BCP as branch-and-cut framework,
- Prototypes of simplified I-Hyb and I-BB

Non-convex MINLPs
Trying to find heuristics to obtain good solutions in I-BB.
Stochastic programming (with M. Lejeune Tepper SoB)
Problems formulated as convex MINLPs

- Probabilistically constrained problems enforcing system/network reliability level
- Reservoir management,
- supply chain management,
- financial applications (cash-matching)
- Robust/Probabilistic with random technology matrix problems integer constrained
- integer constrained portfolio optimization problems.
- Research reports :
- An Algorithmic Framework for convex Mixed Integer Nonlinear Programs (with IBM-CMU group),
- A Feasibility Pump for MINLP (with G. Cornujols, A. Lodi, F. Margot).
- Library of convex test problems available in Gams and Ampl .nl formats.

