An Hybrid branch-and-cut for solving MINLPs

P. Bonami

Tepper School of Business - Carnegie Mellon University

June 6, 2006

Goals

- Develop algorithms for MINLP.
- Implement and release as open source software (COIN-OR).
- Release publicly available MINLP test sets.

Goals

- Develop algorithms for MINLP.
- Implement and release as open source software (COIN-OR).
- Release publicly available MINLP test sets.

Participants Carnegie Mellon

- Larry Biegler
- Pierre Bonami
- Gerard Cornuéjols
- Ignacio E. Grossmann
- Carl D. Laird
- François Margot
- Nick Sawaya

- Andrew R. Conn
- Laszlo Ladanyi
- Jon Lee
- Andrea Lodi
- Andreas Waechter

BONMIN

Solver for Mixed Integer Nonlinear Programming:

$$(MINLP) \begin{cases} \min f(x) \\ \text{s.t.} \\ g(x) \le 0, \\ x \in X, \ x_i \in \mathbb{Z} \forall i \in \mathcal{I}. \end{cases}$$

- X bounded polyhedral set,
- $f: X \to \mathbb{R}$,
- $g: X \to \mathbb{R}^m$,
- f, g continuously differentiable,

BONMIN

Solver for Mixed Integer Nonlinear Programming:

$$(MINLP) \begin{cases} \min f(x) \\ \text{s.t.} \\ g(x) \le 0, \\ x \in X, \ x_i \in \mathbb{Z} \forall i \in \mathcal{I}. \end{cases}$$

- X bounded polyhedral set,
- $f: X \to \mathbb{R}$,
- $g: X \to \mathbb{R}^m$,
- f, g continuously differentiable,

Convex MINLP

f and g convex:

Continuous relaxation "easily" solvable, three exact algorithms :

- 1 NLP based branch-and-bound (Ravindran and Gupta 1985),
- 2 Outer Approximation decomposition (Duran and Grossmann 1986),
- **3** Hybrid LP/NLP based branch-and-cut (Quesada and Grossmann 1992).

BONMIN

Solver for Mixed Integer Nonlinear Programming:

$$(MINLP) \begin{cases} \min f(x) \\ \text{s.t.} \\ g(x) \le 0, \\ x \in X, \ x_i \in \mathbb{Z} \forall i \in \mathcal{I}. \end{cases}$$

- X bounded polyhedral set,
- $f: X \to \mathbb{R}$,
- $g: X \to \mathbb{R}^m$,
- f, g continuously differentiable,

Convex MINLP

f and g convex:

Continuous relaxation "easily" solvable, three exact algorithms :

- 1 NLP based branch-and-bound (Ravindran and Gupta 1985),
- 2 Outer Approximation decomposition (Duran and Grossmann 1986),
- **3** Hybrid LP/NLP based branch-and-cut (Quesada and Grossmann 1992).

Non-convex MINLP

f or g non-convex:

Only compute local optima of continuous relaxations.

Uses NLP based branch-and-bound as an heuristic for searching good solutions.

Outer Approximation

Idea: linearize constraints at different points and build an equivalent MILP:

$$(OA) \begin{cases} \min f(x) \\ J_g(x^k)^T (x - x^k) + g(x^k) \le 0 \\ \forall (x^k) \in \mathcal{T} \\ x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}. \end{cases}$$

 ${\mathcal T}$ contains suitably chosen linearization points.

$$\nabla g_j(\bar{x})^T (x - \bar{x}) + g_j(\bar{x}) \le g_j(x) \le 0.$$

Let $F := \{x : x \in X : g_i(x) \le 0\}$ $(g_i : \mathbb{R}^n \to \mathbb{R} \text{ convex. })$ Outer approximation constraint in \bar{x} :

 $\nabla g_j(\bar{x})^T (x - \bar{x}) + g_j(\bar{x}) \le g_j(x) \le 0.$

$$\nabla g_j(\bar{x})^T (x - \bar{x}) + g_j(\bar{x}) \le g_j(x) \le 0.$$

Let $F := \{x : x \in X : g_i(x) \le 0\}$ $(g_i : \mathbb{R}^n \to \mathbb{R} \text{ convex. })$ Outer approximation constraint in \bar{x} :

 $\nabla g_j(\bar{x})^T (x - \bar{x}) + g_j(\bar{x}) \le g_j(x) \le 0.$

- If $g(\bar{x}) = 0$ tangent to feasible region.
- If $g(\bar{x}) < 0$ non-tight constraint.
- If $g(\bar{x}) > 0$ non-tight constraint cutting off \bar{x} .

Let $F := \{x : x \in X : g_i(x) \le 0\}$ $(g_i : \mathbb{R}^n \to \mathbb{R} \text{ convex. })$ Outer approximation constraint in \bar{x} :

 $\nabla g_j(\bar{x})^T (x - \bar{x}) + g_j(\bar{x}) \le g_j(x) \le 0.$

- If $g(\bar{x}) = 0$ tangent to feasible region.
- If $g(\bar{x}) < 0$ non-tight constraint.
- If $g(\bar{x}) > 0$ non-tight constraint cutting off \bar{x} .

Let $F := \{x : x \in X : g_i(x) \le 0\}$ $(g_i : \mathbb{R}^n \to \mathbb{R} \text{ convex. })$ Outer approximation constraint in \bar{x} :

 $\nabla g_j(\bar{x})^T (x - \bar{x}) + g_j(\bar{x}) \le g_j(x) \le 0.$

- If $g(\bar{x}) = 0$ tangent to feasible region.
- If $g(\bar{x}) < 0$ non-tight constraint.
- If $g(\bar{x}) > 0$ non-tight constraint cutting off \bar{x} .

• Solve the continuous relaxation of $({\it MINLP})$:

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \end{cases}$$

[Duran, Grossmann, 86]

• Solve the continuous relaxation of (MINLP) :

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \end{cases}$$

• Construct MILP with linearization in \bar{x}^0 ($\mathcal{T} = \{\bar{x}^0\}$):

$$\min f(x)$$

$$J_g(\bar{x}^0) (x - \bar{x}^0) + g(\bar{x}^0) \le 0$$

$$x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$$

• Solve the continuous relaxation of $({\it MINLP})$:

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \end{cases}$$

• Construct MILP with linearization in \bar{x}^0 ($\mathcal{T} = \{\bar{x}^0\}$):

$$\min f(x)$$

$$J_g(\bar{x}^0) (x - \bar{x}^0) + g(\bar{x}^0) \le 0$$

$$x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$$

Solution \hat{x}^1 gives a lower bound on (*MINLP*).

• Solve the continuous relaxation of (MINLP) :

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \end{cases}$$

• Construct MILP with linearization in \bar{x}^0 ($\mathcal{T} = \{\bar{x}^0\}$):

$$\min f(x)$$

$$J_g(\bar{x}^0) (x - \bar{x}^0) + g(\bar{x}^0) \le 0$$

$$x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$$

Solution \hat{x}^1 gives a lower bound on (*MINLP*).

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i^1 \ \forall i \in \mathcal{I} \end{cases}$$

• Solve the continuous relaxation of (MINLP) :

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \end{cases}$$

• Construct MILP with linearization in \bar{x}^0 ($\mathcal{T} = \{\bar{x}^0\}$):

$$\min f(x)$$

$$J_g(\bar{x}^0) (x - \bar{x}^0) + g(\bar{x}^0) \le 0$$

$$x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$$

Solution \hat{x}^1 gives a lower bound on (*MINLP*).

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i^1 \ \forall i \in \mathcal{I} \end{cases}$$

- If feasible the solution \bar{x}^1 gives upper bound .
- Otherwise, \bar{x}^1 minimizes constraints infeasibility, linearization cuts off $\{x \in X : x = \hat{x}_i^1\}$

• Solve the continuous relaxation of (MINLP) :

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \end{cases}$$

• Construct MILP with linearization in \bar{x}^0 ($\mathcal{T} = \{\bar{x}^0\}$):

$$\min f(x)$$

$$J_g(\bar{x}^0) (x - \bar{x}^0) + g(\bar{x}^0) \le 0$$

$$x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$$

Solution \hat{x}^1 gives a lower bound on (*MINLP*).

• From the solution \hat{x}^1 build an NLP with integer variables fixed:

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i^1 \ \forall i \in \mathcal{I} \end{cases}$$

• If feasible the solution \bar{x}^1 gives upper bound .

.

- Otherwise, \bar{x}^1 minimizes constraints infeasibility, linearization cuts off $\{x \in X : x = \hat{x}_i^1\}$
- Add $ar{x}^1$ to ${\cal T}$

• Solve the continuous relaxation of (MINLP) :

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \end{cases}$$

• Construct MILP with linearization in \bar{x}^0 ($\mathcal{T} = \{\bar{x}^0\}$):

$$\min f(x)$$

$$J_g(\bar{x}^0) (x - \bar{x}^0) + g(\bar{x}^0) \le 0$$

$$x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$$

Solution \hat{x}^1 gives a lower bound on (*MINLP*).

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i^1 \ \forall i \in \mathcal{I} \end{cases}$$

- If feasible the solution \bar{x}^1 gives upper bound .
- Otherwise, \bar{x}^1 minimizes constraints infeasibility, linearization cuts off $\{x \in X : x = \hat{x}_i^1\}$
- Add \bar{x}^1 to \mathcal{T} and iterate.

• Solve the continuous relaxation of (MINLP) :

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \end{cases}$$

• Construct MILP with linearization in \bar{x}^0 ($\mathcal{T} = \{\bar{x}^0\}$):

$$\min f(x)$$

$$J_g(\bar{x}^0) (x - \bar{x}^0) + g(\bar{x}^0) \le 0$$

$$x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$$

Solution \hat{x}^1 gives a lower bound on (*MINLP*).

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i^1 \ \forall i \in \mathcal{I} \end{cases}$$

- If feasible the solution \bar{x}^1 gives upper bound .
- Otherwise, \bar{x}^1 minimizes constraints infeasibility, linearization cuts off $\{x \in X : x = \hat{x}_i^1\}$
- Add \bar{x}^1 to ${\mathcal T}$ and iterate.

• Solve the continuous relaxation of (MINLP) :

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \end{cases}$$

• Construct MILP with linearization in \bar{x}^0 ($\mathcal{T} = \{\bar{x}^0\}$):

$$\min f(x)$$

$$J_g(\bar{x}^0) (x - \bar{x}^0) + g(\bar{x}^0) \le 0$$

$$x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$$

Solution \hat{x}^1 gives a lower bound on (*MINLP*).

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i^1 \ \forall i \in \mathcal{I} \end{cases}$$

- If feasible the solution \bar{x}^1 gives upper bound .
- Otherwise, \bar{x}^1 minimizes constraints infeasibility, linearization cuts off $\{x \in X : x = \hat{x}_i^1\}$
- Add \bar{x}^1 to ${\mathcal T}$ and iterate.

• Solve the continuous relaxation of (MINLP) :

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \end{cases}$$

• Construct MILP with linearization in \bar{x}^0 ($\mathcal{T} = \{\bar{x}^0\}$):

$$\min f(x)$$

$$J_g(\bar{x}^0) (x - \bar{x}^0) + g(\bar{x}^0) \le 0$$

$$x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$$

Solution \hat{x}^1 gives a lower bound on (*MINLP*).

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i^1 \ \forall i \in \mathcal{I} \end{cases}$$

- If feasible the solution \bar{x}^1 gives upper bound .
- Otherwise, \bar{x}^1 minimizes constraints infeasibility, linearization cuts off $\{x \in X : x = \hat{x}_i^1\}$
- Add \bar{x}^1 to ${\mathcal T}$ and iterate.
- Until either MILP is infeasible or the lower bound is equal to the upper bound .

OA decomposition properties

If constraints qualification holds at every optimum of NLP solved:

- Solve to optimality problems defined by convex constraints.
- Finite termination if x bounded.

Has to solve a sequence of MINLP's (> 95% of computing time in our experiments).

Alternative approach [Quesada, Grossmann, 92]

- Perform a single branch-and-cut.
- Alternate between solving NLPs and LPs.
- NLP solved to find feasible solutions and improve outer approximation
- Use LP to obtain lower bounds and solutions to branch on

$\mathsf{LP}/\mathsf{NLP} \text{ branch-and-cut}$

• start by solving continuous relaxation to get initial outer approximation.

$\mathsf{LP}/\mathsf{NLP} \text{ branch-and-cut}$

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search

$\mathsf{LP}/\mathsf{NLP} \text{ branch-and-cut}$

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
 - solve linear outer approximation at current node:

$$(OA)_F(\mathcal{T}) \begin{cases} \min f(x,y) \\ J_g(\bar{x})^T (x-\bar{x}) + g(\bar{x}) \le 0 \quad \forall \bar{x} \in \mathcal{T} \\ x \in X \cap F. \end{cases}$$

(F is the modified feasibility set at current node)

LP/NLP branch-and-cut

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
 - solve linear outer approximation at current node:

$$(OA)_F(\mathcal{T}) \begin{cases} \min f(x,y) \\ J_g(\bar{x})^T (x-\bar{x}) + g(\bar{x}) \le 0 \quad \forall \bar{x} \in \mathcal{T} \\ x \in X \cap F. \end{cases}$$

(F is the modified feasibility set at current node)

• if $(OA)_F(\mathcal{T})$ is integer feasible solve NLP:

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i \ \forall i \in \mathcal{I} \end{cases}$$

LP/NLP branch-and-cut

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
 - solve linear outer approximation at current node:

$$(OA)_F(\mathcal{T}) \begin{cases} \min f(x,y) \\ J_g(\bar{x})^T (x-\bar{x}) + g(\bar{x}) \le 0 \quad \forall \bar{x} \in \mathcal{T} \\ x \in X \cap F. \end{cases}$$

(F is the modified feasibility set at current node)

• if $(OA)_F(\mathcal{T})$ is integer feasible solve NLP:

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i \ \forall i \in \mathcal{I} \end{cases}$$

• add its solution \bar{x} to \mathcal{T} , and repeat while solution to $(OA)_F(\mathcal{T})$ is integer feasible.

LP/NLP branch-and-cut

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search
 - solve linear outer approximation at current node:

$$(OA)_F(\mathcal{T}) \begin{cases} \min f(x,y) \\ J_g(\bar{x})^T (x-\bar{x}) + g(\bar{x}) \le 0 \quad \forall \bar{x} \in \mathcal{T} \\ x \in X \cap F. \end{cases}$$

(F is the modified feasibility set at current node)

• if $(OA)_F(\mathcal{T})$ is integer feasible solve NLP:

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i \ \forall i \in \mathcal{I} \end{cases}$$

• add its solution \bar{x} to \mathcal{T} , and repeat while solution to $(OA)_F(\mathcal{T})$ is integer feasible.

• Fathom nodes on bounds and infeasibility only.

Disadvantages of LP/NLP branch-and-bound

- At the top of the tree outer approximation only based on continuous relaxation.
- Approximation not improved until first integer feasible solution is found.
- At that point tree may already have a large number of nodes.

Improvements

Solve more NLP's

- Initialize algorithm with a few iterations of OA decomposition.
 - Helps in finding feasible solution early.
 - Sometimes sufficient to solve problem.
- Solve NLP relaxation every *l* nodes:
 - LP relaxation at node is then equal to NLP relaxation.

• start by solving continuous relaxation to get initial outer approximation.

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search

• solve linear outer approximation at current node:

$$(OA)_F(\mathcal{T}) \begin{cases} \min f(x,y) \\ J_g(\bar{x})^T (x-\bar{x}) + g(\bar{x}) \le 0 \quad \forall \bar{x} \in \mathcal{T} \\ x \in X \cap F. \end{cases}$$

(F is the modified feasibility set at current node)

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search

• solve linear outer approximation at current node:

$$(OA)_F(\mathcal{T}) \begin{cases} \min f(x,y) \\ J_g(\bar{x})^T (x-\bar{x}) + g(\bar{x}) \le 0 \quad \forall \bar{x} \in \mathcal{T} \\ x \in X \cap F. \end{cases}$$

(F is the modified feasibility set at current node)

• if $(OA)_F(\mathcal{T})$ is integer feasible solve NLP:

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i \ \forall i \in \mathcal{I} \end{cases}$$

- start by solving continuous relaxation to get initial outer approximation.
- At each node of the tree search

• solve linear outer approximation at current node:

$$(OA)_F(\mathcal{T}) \begin{cases} \min f(x,y) \\ J_g(\bar{x})^T (x-\bar{x}) + g(\bar{x}) \le 0 \quad \forall \bar{x} \in \mathcal{T} \\ x \in X \cap F. \end{cases}$$

(F is the modified feasibility set at current node)

• if $(OA)_F(\mathcal{T})$ is integer feasible solve NLP:

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i \ \forall i \in \mathcal{I} \end{cases}$$

• add its solution \bar{x} to \mathcal{T} , and repeat while solution to $(OA)_F(\mathcal{T})$ is integer feasible.

• Fathom nodes on bounds and infeasibility only.

- start by performing t sec. of outer approximation decomposition.
- At each node of the tree search
 - Every *l* nodes solve NLP relaxation:

$\min f(x)$
$g(x) \leq 0,$
$x \in X \cap F$

• solve linear outer approximation at current node:

$$(OA)_F(\mathcal{T}) \begin{cases} \min f(x,y) \\ J_g(\bar{x})^T (x-\bar{x}) + g(\bar{x}) \le 0 \quad \forall \bar{x} \in \mathcal{T} \\ x \in X \cap F. \end{cases}$$

(F is the modified feasibility set at current node)

- Strengthen outer approximation with MILP cutting planes methods
- if $(OA)_F(\mathcal{T})$ is integer feasible solve NLP:

$$\begin{cases} \min f(x) \\ g(x) \leq 0, \\ x \in X, \ x_i = \hat{x}_i \ \forall i \in \mathcal{I} \end{cases}$$

- add its solution \bar{x} to \mathcal{T} , and repeat while solution to $(OA)_F(\mathcal{T})$ is integer feasible.
- Fathom nodes on bounds and infeasibility only.

- Written in C++.
- Can be used from AMPL, or using C++ library.

- Written in C++.
- Can be used from AMPL, or using C++ library.

Building blocks

Components from COIN-OR (www.coin-or.org):

- $\bullet\,$ branch-and-bound, branch-and-cut framework: $\rm CBC,$
- NLP solver IPOPT,
- MILP solver CBC (alternatively Cplex),
- LP solver $\mathrm{CLP}\textsl{,}$
- $\bullet\,$ Cutting plane generation ${\rm CGL}$ (generators for OA constraints).

- Written in C++.
- Can be used from AMPL, or using C++ library.

Building blocks

Components from COIN-OR (www.coin-or.org):

- \bullet branch-and-bound, branch-and-cut framework: $C{\rm BC},$
- NLP solver IPOPT,
- MILP solver CBC (alternatively Cplex),
- $\bullet~\mbox{LP}$ solver $\mbox{CLP},$
- $\bullet\,$ Cutting plane generation ${\rm CGL}$ (generators for OA constraints).

Availability

To be released soon under Common Public License.

Features of BONMIN algorithm

I-BB (NLP only based branch-and-bound)

- branch-and-bound framework based on Cbc,
- nodes solved by Ipopt with enhanced warm-starting capabilities.
- Special features for non-convex problems :
 - Solve each nodes with several randomly chosen starting points,
 - change fathoming policies (don't trust "bounds").

I-BB (NLP only based branch-and-bound)

- branch-and-bound framework based on Cbc,
- nodes solved by Ipopt with enhanced warm-starting capabilities.
- Special features for non-convex problems :
 - Solve each nodes with several randomly chosen starting points,
 - change fathoming policies (don't trust "bounds").

I-OA

Standard OA decomposition

- Implemented as a cut generator to be used in other algorithms.
- Uses either Cbc or Cplex for solving the MILPs.

I-BB (NLP only based branch-and-bound)

- branch-and-bound framework based on Cbc,
- nodes solved by Ipopt with enhanced warm-starting capabilities.
- Special features for non-convex problems :
 - Solve each nodes with several randomly chosen starting points,
 - change fathoming policies (don't trust "bounds").

I-OA

Standard OA decomposition

- Implemented as a cut generator to be used in other algorithms.
- Uses either Cbc or Cplex for solving the MILPs.

I-QG

Quessada-Grossmann branch-and-cut.

I-BB (NLP only based branch-and-bound)

- branch-and-bound framework based on Cbc,
- nodes solved by Ipopt with enhanced warm-starting capabilities.
- Special features for non-convex problems :
 - Solve each nodes with several randomly chosen starting points,
 - change fathoming policies (don't trust "bounds").

I-OA

Standard OA decomposition

- Implemented as a cut generator to be used in other algorithms.
- Uses either Cbc or Cplex for solving the MILPs.

I-QG

Quessada-Grossmann branch-and-cut.

I-Hyb (Hybrid)

Quesada-Grossmann improved with:

- Initialization with a short time of I OA.
- Solve NLP's every *l* nodes.
- Incorporation of MILP techniques:
 - Cgl cut generators,
 - Strong branching, Reliability branching

Test problems and computational testing

A Library of convex MINLPs

About 150 MINLP's from different sources

- Existing problems from the literature : layout and trimloss problems (T. Westerlund et al.)
- Water network problems (C.D. Laird)
- Disjunctive problems formulated both with big-M and convex-hull formulation (N. Sawaya)

available in GAMS .gms and AMPL .nl formats at: http://egon.cheme.cmu.edu/ibm/page.htm

Computational experiments

Comparisons on 38 problems from the library:

- 1 Comparison of I-BB, I-OA, I-QG and I-Hyb,
- 2 Comparison of I-BB I-OA and I-Hyb with two commercial solvers:
 - SBB: Nonlinear branch-and-bound based on CONOPT.
 - DICOPT: OA decomposition based on CONOPT/CPLEX.

Settings for I-Hyb

- Perform 30 seconds of I-OA at the root node.
- Solve NLP relaxation every 10 nodes.
- Strong branching on LP relaxation and pseudo-costs.
- Uses MIG, MIR and Covers.

Comparison of I-BB, I-OA, I-QG, I-Hyb

Runs on an Optetron cluster. Time limit of 3 hours.

Performance plot

For each value of p and algorithm \mbox{A} gives the proportion of problem solved by \mbox{A} in

 $p \times T_{\min}$ seconds.

(Where T_{\min} is the running time of the best algorithm.)

- For p = 1: proportion of problems where A is the fastest algorithm
- For $p = \infty$: proportion of problems solved by A in time limit.

BONMIN's I-BB, I-OA, I-Hyb, Dicopt and Sbb

- Dicopt solves 20 of the 38 problems the fastest (≤ 3 minutes)
- I-Hyb solves the most problem when given 45 more seconds of computing time than Dicopt

Comparison of our branch-and-bound and Sbb

- I-BB is slightly slower but compares well with Sbb (on average 760 sec. vs 615 sec. on problems solved optimally by both)
- Number of nodes are comparable
- I-BB is slightly faster per node on our test set.

Comparison of I-OA with Dicopt

- I-OA is significantly slower than Dicopt.
- Takes less iterations but MILPs are much slower to solve (uses Cbc vs. Cplex).

Goal: Obtaining (good) feasible solutions quickly How: Do an OA decomposition oriented towards integer feasibility.

Goal: Obtaining (good) feasible solutions quickly How: Do an OA decomposition oriented towards integer feasibility.

FEASIBILITY PUMP FOR MILP [FISCHETTI, GLOVER, LODI 2004]

 $\int Ax \le b$

 $x \in \mathbb{Z}^n$

Construct two sequences of points:

- $\bar{x}^1, \ldots, \bar{x}^k$ satisfying $Ax \leq b$, by solving LPs.
- $\hat{x}^1, \ldots, \hat{x}^k$ satisfying $x \in \mathbb{Z}^n$ by rounding.

Goal: Obtaining (good) feasible solutions quickly How: Do an OA decomposition oriented towards integer feasibility.

FEASIBILITY PUMP FOR MILP [FISCHETTI, GLOVER, LODI 2004]

 $Ax \leq b$

 $x \in \mathbb{Z}^n$

Construct two sequences of points:

- $\bar{x}^1, \ldots, \bar{x}^k$ satisfying $Ax \leq b$, by solving LPs.
- $\hat{x}^1, \ldots, \hat{x}^k$ satisfying $x \in \mathbb{Z}^n$ by rounding.

FEASIBILITY PUMP FOR MINLP [WITH CORNUÉJOLS, LODI, MARGOT]

 $\begin{cases} g(x,y) \leq 0, \\ (x,y) \in X, \; x \in \mathbb{Z}. \\ \text{Construct two sequences of points:} \end{cases}$

- $(\bar{x}^1, \bar{y}^1), \dots, (\bar{x}^k, \bar{y}^k)$ satisfying $Ax \leq b$, by solving LPs.
- $(\hat{x}^1, \hat{y}^1), \dots, (\hat{x}^k, \hat{y}^k)$ satisfying $x \in \mathbb{Z}^n$ by solving an MILP.

Goal: Obtaining (good) feasible solutions quickly How: Do an OA decomposition oriented towards integer feasibility.

FEASIBILITY PUMP FOR MILP [FISCHETTI, GLOVER, LODI 2004]

 $\int Ax \le b$

 $x \in \mathbb{Z}^n$

Construct two sequences of points:

- $\bar{x}^1, \ldots, \bar{x}^k$ satisfying $Ax \leq b$, by solving LPs.
- $\hat{x}^1, \ldots, \hat{x}^k$ satisfying $x \in \mathbb{Z}^n$ by rounding.

FEASIBILITY PUMP FOR MINLP [WITH CORNUÉJOLS, LODI, MARGOT]

 $\int g(x,y) \le 0,$

$$(x,y) \in X, x \in \mathbb{Z}.$$

Construct two sequences of points:

- $(\bar{x}^1, \bar{y}^1), \dots, (\bar{x}^k, \bar{y}^k)$ satisfying $Ax \leq b$, by solving LPs.
- $(\hat{x}^1, \hat{y}^1), \dots, (\hat{x}^k, \hat{y}^k)$ satisfying $x \in \mathbb{Z}^n$ by solving an MILP.
- Build an outer approximation of feasibility region.

• Start with any solution of continuous relaxation $(\bar{x}^0, \bar{y}^0).$

- Start with any solution of continuous relaxation (\bar{x}^0, \bar{y}^0) . • $\mathcal{T} = (\bar{x}^0, \bar{y}^0)$.
- Find point minimizing $||x \bar{x}^0||_1$ in current outer approximation:

$$(FOA)^{1} \begin{cases} \min ||x - \bar{x}^{0}|| \\ g(\bar{x}^{k}, \bar{y}^{k}) + J_{g}(\bar{x}^{k}, \bar{y}^{k}) +)^{T} \left(\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} \bar{x}^{k} \\ \bar{y}^{k} \end{pmatrix} \right) \leq 0 \\ x \in \mathbb{Z}^{n_{1}}, \ y \in \mathbb{R}^{n_{2}} \end{cases}$$

• Find point minimizing $||x - \bar{x}^0||_1$ in current outer approximation:

$$(FOA)^{1} \begin{cases} \min ||x - \bar{x}^{0}|| \\ g(\bar{x}^{k}, \bar{y}^{k}) + J_{g}(\bar{x}^{k}, \bar{y}^{k}) +)^{T} \left(\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} \bar{x}^{k} \\ \bar{y}^{k} \end{pmatrix} \right) \leq 0 \\ x \in \mathbb{Z}^{n_{1}}, \ y \in \mathbb{R}^{n_{2}} \end{cases}$$

- If $FOA^1\,$ is infeasible or solution (\hat{x}^1,\hat{y}^1) satisfies $g(\hat{x}^1,\hat{y}^1)\leq 0$ stop.
- Otherwise, find NLP feasible point minimizing $||x-\hat{x}^1||_2$:

$$(FP - NLP)^{1} \begin{cases} \min ||x - \bar{x}^{1}||_{2} \\ g(x, y) \leq 0, \\ (x, y) \in X. \end{cases}$$

• Find point minimizing $||x - \bar{x}^0||_1$ in current outer approximation:

$$(FOA)^{1} \begin{cases} \min ||x - \bar{x}^{0}|| \\ g(\overline{x}^{k}, \overline{y}^{k}) + J_{g}(\overline{x}^{k}, \overline{y}^{k}) +)^{T} \left(\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} \overline{x}^{k} \\ \overline{y}^{k} \end{pmatrix} \right) \leq 0 \\ x \in \mathbb{Z}^{n_{1}}, \ y \in \mathbb{R}^{n_{2}} \end{cases}$$

- If $FOA^1\,$ is infeasible or solution (\hat{x}^1,\hat{y}^1) satisfies $g(\hat{x}^1,\hat{y}^1)\leq 0$ stop.
- Otherwise, find NLP feasible point minimizing $||x \hat{x}^1||_2$:

$$(FP - NLP)^1 \begin{cases} \min ||x - \overline{x}^1||_2\\ g(x, y) \le 0,\\ (x, y) \in X. \end{cases}$$

- Update outer approximation of the problem with (\bar{x}^1,\bar{y}^1) and iterate.

- $T = (\bar{x}^0, \bar{y}^0).$
- Repeat:
- i:= i+1
- Find point minimizing $||x \bar{x}^{i-1}||_1$ in current outer approximation:

$$(FOA)^{i} \begin{cases} \min ||x - \overline{x}^{i-1}|| \\ g(\overline{x}^{k}, \overline{y}^{k}) + J_{g}(\overline{x}^{k}, \overline{y}^{k}) +)^{T} \left(\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} \overline{x}^{k} \\ \overline{y}^{k} \end{pmatrix} \right) \leq 0 \\ k = 0 \dots, i-1 \\ x \in \mathbb{Z}^{n_{1}}, \ y \in \mathbb{R}^{n_{2}} \end{cases}$$

- If FOA^i is infeasible or solution (\hat{x}^i, \hat{y}^i) satisfies $g(\hat{x}^i, \hat{y}^i) \leq 0$ stop.
- Otherwise, find NLP feasible point minimizing $||x \hat{x}^i||_2$:

$$FP - NLP)^{i} \begin{cases} \min ||x - \bar{x}^{i}||_{2} \\ g(x, y) \leq 0, \\ (x, y) \in X. \end{cases}$$

• Update outer approximation of the problem with (\bar{x}^i, \bar{y}^i) and iterate.

- $T = (\bar{x}^0, \bar{y}^0).$
- Repeat:
- i:= i+1
- Find point minimizing $||x \bar{x}^{i-1}||_1$ in current outer approximation:

$$(FOA)^{i} \begin{cases} \min ||x - \overline{x}^{i-1}|| \\ g(\overline{x}^{k}, \overline{y}^{k}) + J_{g}(\overline{x}^{k}, \overline{y}^{k}) +)^{T} \left(\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} \overline{x}^{k} \\ \overline{y}^{k} \end{pmatrix} \right) \leq 0 \\ k = 0 \dots, i-1 \\ x \in \mathbb{Z}^{n_{1}}, \ y \in \mathbb{R}^{n_{2}} \end{cases}$$

- If FOA^i is infeasible or solution (\hat{x}^i, \hat{y}^i) satisfies $g(\hat{x}^i, \hat{y}^i) \leq 0$ stop.
- Otherwise, find NLP feasible point minimizing $||x \hat{x}^i||_2$:

$$FP - NLP)^{i} \begin{cases} \min ||x - \bar{x}^{i}||_{2} \\ g(x, y) \leq 0, \\ (x, y) \in X. \end{cases}$$

• Update outer approximation of the problem with (\bar{x}^i, \bar{y}^i) and iterate.

- $T = (\bar{x}^0, \bar{y}^0).$
- Repeat:
- i:= i+1
- Find point minimizing $||x \bar{x}^{i-1}||_1$ in current outer approximation:

$$(FOA)^{i} \begin{cases} \min ||x - \overline{x}^{i-1}|| \\ g(\overline{x}^{k}, \overline{y}^{k}) + J_{g}(\overline{x}^{k}, \overline{y}^{k}) +)^{T} \left(\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} \overline{x}^{k} \\ \overline{y}^{k} \end{pmatrix} \right) \leq 0 \\ k = 0 \dots, i-1 \\ x \in \mathbb{Z}^{n_{1}}, \ y \in \mathbb{R}^{n_{2}} \end{cases}$$

- If FOA^i is infeasible or solution (\hat{x}^i, \hat{y}^i) satisfies $g(\hat{x}^i, \hat{y}^i) \leq 0$ stop.
- Otherwise, find NLP feasible point minimizing $||x \hat{x}^i||_2$:

$$FP - NLP)^{i} \begin{cases} \min ||x - \bar{x}^{i}||_{2} \\ g(x, y) \leq 0, \\ (x, y) \in X. \end{cases}$$

• Update outer approximation of the problem with (\bar{x}^i, \bar{y}^i) and iterate.

Termination

FP can not cycle (if x is bounded: finite termination):

- If all functions g_i are convex and constraint qualification holds at every NLP optimum.
- If constraint qualification does not hold at every NLP add cut:

$$(\bar{x}^i - \hat{x}^i)^T (x - \bar{x}^i) \ge 0$$

- If functions g_i are not convex but the region $\{g(x, y) \leq 0\}$ is add only binding OA constraints at \bar{x}^i .
- MILPs don't have to be solved to optimality.

Iterated feasibility pump (IFP)

After a feasible solution of cost $\alpha=f(\bar{x},\bar{y})$ has been found. Add the constraint

 $f(x,y) \le \alpha - \epsilon$

to problem formulation and relaunch FP.

Implementation

- Implemented as a stand-alone heuristic.
- Ipopt3.0 for solving the NLPs.
- Cplex9.0 for solving MILPs.

Test problems

65 convex MINLPs

- 12 from literature
- 43 from our library

Comparison with classical OA

- First feasible solution obtained by FP and OA.
- Best feasible solution obtained by IFP and OA after 1 minute.

Computational results

First feasible solution

Time limit 2 hours.

- Quality of solution obtained by OA better than the one obtained by FP.
- FP much faster than OA (4 problems take more than 10 sec. with FP, 21 with OA)
- FP finds a feasible solution to all 65 problems, OA does not for 5 problems.
- trimloss6-7-12 no feasible solution known before.

1 minute of IFP vs. OA

- IFP finds solution for 63 problems, OA for 50.
- Quality of solutions very comparable.
- IFP proves optimality of 30 problems, OA of 38.

Combination of OA and FP.

Principle

- Start by performing one minute of IFP to get a good feasible solution (and OA constraints).
- Launch a classical OA decomposition but every time the NLP is infeasible launch an FP to try to obtain a feasible solution.

• Solve the continuous relaxation of (MINLP) :

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \end{cases}$$

• Construct MILP with linearization in \bar{x}^0 ($\mathcal{T} = \{\bar{x}^0\}$) :

$$\min f(x)$$

$$J_g(\bar{x}^0) (x - \bar{x}^0) + g(\bar{x}^0) \le 0$$

$$x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$$

Solution \hat{x}^1 gives a lower bound on (*MINLP*).

• From the solution \hat{x}^1 build an NLP with integer variables fixed:

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i^1 \ \forall i \in \mathcal{I} \end{cases}$$

- If feasible the solution \bar{x}^1 gives upper bound .
- Otherwise, \bar{x}^1 minimizes constraints infeasibility. Linearization cuts off $\{x \in X : x = \hat{x}_i^1\}$
- Add \bar{x}^1 to \mathcal{T} and iterate.
- Until either MILP is infeasible or the lower bound is equal to the upper bound .

• Solve the continuous relaxation of (MINLP) :

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \end{cases}$$

- Perform 1 minute of IFP add all the NLP feasible points found to ${\cal T}$
- Construct MILP with linearization for all $\overline{x} \in \mathcal{T}$:

$$\min f(x)$$

$$J_g(\bar{x}) (x - \bar{x}) + g(\bar{x}) \le 0 \quad \forall \bar{x} \in \mathcal{T}$$

$$x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$$

Solution \hat{x} gives a lower bound on (*MINLP*).

• From the solution \hat{x} build an NLP with integer variables fixed:

$$\begin{cases} \min f(x) \\ g(x) \le 0, \\ x \in X, \ x_i = \hat{x}_i \ \forall i \in \mathcal{I} \end{cases}$$

- If feasible the solution \bar{x} gives upper bound .
- Otherwise, Launch an FP for at most 2 minutes and 5 iterations add all NLP feasible solution to ${\cal T}$
- Add \bar{x} to \mathcal{T} and iterate.
- Until either MILP is infeasible or the lower bound is equal to the upper bound .

		A enhance			OA			
		time to		time to		time to		time to
Name	ub	find ub	lb	find lb	ub	find ub	lb	find lb
CLay0304M	40262.4	79	*	82	40262.4	12	*	14
CLay0305H	8092.5	4	*	32	8092.5	24	*	24
CLay0305M	8092.5	4	*	24	8092.5	75	*	75
fo7_2	17.74	4	*	103	17.74	20	*	128
fo7	20.72	260	*	260	20.72	24	*	197
fo8	22.38	573	*	835	22.38	727	*	906
fo9	23.46	1160	*	2613	23.46	5235	*	6024
o7_2	116.94	189	*	2312	118.86	5651	114.08	7200
07	131.64	5	*	6055	none	—	122.79	7200
SLay10M	129580	1778	*	3421	129580	336	128531	7200
trimloss2	5.3	0.17	*	0.22	5.3	0.21	*	0.21
trimloss4	8.3	10	*	423	8.3	785	*	785
trimloss5	10.7	485	3.31	7200	none	—	5.9	7200
trimloss6	16.5	2040	3.5	7200	none	—	6.5	7200
trimloss7	27.5	387	2.6	7200	none		3.3	7200
trimloss12	none		5.47	7200	none		9.58	7200

On a subset of $15\ {\rm hardest}\ {\rm problems}\ {\rm with}\ {\rm OA}\ {\rm from}\ {\rm previous}\ {\rm experiment:}$

	0.	A enhance	ed by F	<u>.</u> Р	OA			
		time to		time to		time to		time to
Name	ub	find ub	lb	find lb	ub	find ub	lb	find Ib
CLay0304M	40262.4	79	*	82	40262.4	12	*	14
CLay0305H	8092.5	4	*	32	8092.5	24	*	24
CLay0305M	8092.5	4	*	24	8092.5	75	*	75
fo7_2	17.74	4	*	103	17.74	20	*	128
fo7	20.72	260	*	260	20.72	24	*	197
fo8	22.38	573	*	835	22.38	727	*	906
fo9	23.46	1160	*	2613	23.46	5235	*	6024
o7_2	116.94	189	*	2312	118.86	5651	114.08	7200
07	131.64	5	*	6055	none	—	122.79	7200
SLay10M	129580	1778	*	3421	129580	336	128531	7200
trimloss2	5.3	0.17	*	0.22	5.3	0.21	*	0.21
trimloss4	8.3	10	*	423	8.3	785	*	785
trimloss5	10.7	485	3.31	7200	none	_	5.9	7200
trimloss6	16.5	2040	3.5	7200	none	_	6.5	7200
trimloss7	27.5	387	2.6	7200	none		3.3	7200
trimloss12	none		5.47	7200	none		9.58	7200

On a subset of 15 hardest problems with OA from previous experiment:

	OA enhanced by FP				OA			
		time to		time to		time to		time to
Name	ub	find ub	lb	find lb	ub	find ub	lb	find lb
CLay0304M	40262.4	79	*	82	40262.4	12	*	14
CLay0305H	8092.5	4	*	32	8092.5	24	*	24
CLay0305M	8092.5	4	*	24	8092.5	75	*	75
fo7_2	17.74	4	*	103	17.74	20	*	128
fo7	20.72	260	*	260	20.72	24	*	197
fo8	22.38	573	*	835	22.38	727	*	906
fo9	23.46	1160	*	2613	23.46	5235	*	6024
o7_2	116.94	189	*	2312	118.86	5651	114.08	7200
07	131.64	5	*	6055	none	—	122.79	7200
SLay10M	129580	1778	*	3421	129580	336	128531	7200
trimloss2	5.3	0.17	*	0.22	5.3	0.21	*	0.21
trimloss4	8.3	10	*	423	8.3	785	*	785
trimloss5	10.7	485	3.31	7200	none	_	5.9	7200
trimloss6	16.5	2040	3.5	7200	none	_	6.5	7200
trimloss7	27.5	387	2.6	7200	none	_	3.3	7200
trimloss12	none		5.47	7200	none		9.58	7200

On a subset of $15\ {\rm hardest}\ {\rm problems}\ {\rm with}\ {\rm OA}\ {\rm from}\ {\rm previous}\ {\rm experiment:}$

		A enhance			OA			
		time to		time to		time to		time to
Name	ub	find ub	lb	find lb	ub	find ub	lb	find lb
CLay0304M	40262.4	79	*	82	40262.4	12	*	14
CLay0305H	8092.5	4	*	32	8092.5	24	*	24
CLay0305M	8092.5	4	*	24	8092.5	75	*	75
fo7_2	17.74	4	*	103	17.74	20	*	128
fo7	20.72	260	*	260	20.72	24	*	197
fo8	22.38	573	*	835	22.38	727	*	906
fo9	23.46	1160	*	2613	23.46	5235	*	6024
o7_2	116.94	189	*	2312	118.86	5651	114.08	7200
о7	131.64	5	*	6055	none	—	122.79	7200
SLay10M	129580	1778	*	3421	129580	336	128531	7200
trimloss2	5.3	0.17	*	0.22	5.3	0.21	*	0.21
trimloss4	8.3	10	*	423	8.3	785	*	785
trimloss5	10.7	485	3.31	7200	none	_	5.9	7200
trimloss6	16.5	2040	3.5	7200	none	_	6.5	7200
trimloss7	27.5	387	2.6	7200	none	_	3.3	7200
trimloss12	none		5.47	7200	none		9.58	7200

On a subset of $15\ {\rm hardest}\ {\rm problems}\ {\rm with}\ {\rm OA}\ {\rm from}\ {\rm previous}\ {\rm experiment:}$

		A enhance			OA			
		time to		time to		time to		time to
Name	ub	find ub	lb	find lb	ub	find ub	lb	find lb
CLay0304M	40262.4	79	*	82	40262.4	12	*	14
CLay0305H	8092.5	4	*	32	8092.5	24	*	24
CLay0305M	8092.5	4	*	24	8092.5	75	*	75
fo7_2	17.74	4	*	103	17.74	20	*	128
fo7	20.72	260	*	260	20.72	24	*	197
fo8	22.38	573	*	835	22.38	727	*	906
fo9	23.46	1160	*	2613	23.46	5235	*	6024
o7_2	116.94	189	*	2312	118.86	5651	114.08	7200
о7	131.64	5	*	6055	none	—	122.79	7200
SLay10M	129580	1778	*	3421	129580	336	128531	7200
trimloss2	5.3	0.17	*	0.22	5.3	0.21	*	0.21
trimloss4	8.3	10	*	423	8.3	785	*	785
trimloss5	10.7	485	3.31	7200	none	_	5.9	7200
trimloss6	16.5	2040	3.5	7200	none	_	6.5	7200
trimloss7	27.5	387	2.6	7200	none	_	3.3	7200
trimloss12	none		5.47	7200	none		9.58	7200

On a subset of $15\ {\rm hardest}\ {\rm problems}\ {\rm with}\ {\rm OA}\ {\rm from}\ {\rm previous}\ {\rm experiment:}$

	OA enhanced by FP				OA			
		time to		time to		time to		time to
Name	ub	find ub	lb	find lb	ub	find ub	lb	find lb
CLay0304M	40262.4	79	*	82	40262.4	12	*	14
CLay0305H	8092.5	4	*	32	8092.5	24	*	24
CLay0305M	8092.5	4	*	24	8092.5	75	*	75
fo7_2	17.74	4	*	103	17.74	20	*	128
fo7	20.72	260	*	260	20.72	24	*	197
fo8	22.38	573	*	835	22.38	727	*	906
fo9	23.46	1160	*	2613	23.46	5235	*	6024
o7_2	116.94	189	*	2312	118.86	5651	114.08	7200
07	131.64	5	*	6055	none	—	122.79	7200
SLay10M	129580	1778	*	3421	129580	336	128531	7200
trimloss2	5.3	0.17	*	0.22	5.3	0.21	*	0.21
trimloss4	8.3	10	*	423	8.3	785	*	785
trimloss5	10.7	485	3.31	7200	none	—	5.9	7200
trimloss6	16.5	2040	3.5	7200	none	—	6.5	7200
trimloss7	27.5	387	2.6	7200	none		3.3	7200
trimloss12	none		5.47	7200	none		9.58	7200

On a subset of $15\ {\rm hardest}\ {\rm problems}\ {\rm with}\ {\rm OA}\ {\rm from}\ {\rm previous}\ {\rm experiment:}$

Parallel Implementation [L. Ladanyi]

- Using BCP as branch-and-cut framework,
- Prototypes of simplified I-Hyb and I-BB

Non-convex MINLPs

Trying to find heuristics to obtain good solutions in I-BB.

Stochastic programming (with M. Lejeune Tepper SoB)

Problems formulated as convex MINLPs

- Probabilistically constrained problems enforcing system/network reliability level
 - Reservoir management,
 - supply chain management,
 - financial applications (cash-matching)
- Robust/Probabilistic with random technology matrix problems integer constrained
 - integer constrained portfolio optimization problems.

Links

IBM-CMU MINLP web site

http://egon.cheme.cmu.edu/ibm/page.htm

- Research reports :
 - An Algorithmic Framework for convex Mixed Integer Nonlinear Programs (with IBM-CMU group),
 - A Feasibility Pump for MINLP (with G. Cornujols, A. Lodi, F. Margot).
- Library of convex test problems available in Gams and Ampl .nl formats.