Recovering structure and using random models in derivative free optimization

Katya Scheinberg

(joint work with A. Bandeira and L.N. Vicente)

12/02/2011

Derivative free optimization

> Unconstrained optimization problem

 $\min_{x \in \Omega} f(x)$

> Function *f* ∈ C² is a result of a black box computation. It is expensive to compute and no derivative information is available.
 > Numerical noise is often present.

Main idea

- It is common in optimization to exploit structure of the objective function to improve efficiency of the methods.
- Often structure manifests itself in the sparsity of the Hessian.
- In DFO we do not know sparsity structure, but it does not mean the structure is not there.
- With recent advances in sparse structure recovery (in particular compressed sensing) we can hope to exploit the latent structures in black box optimization.
- > This requires a use of randomly sampled models

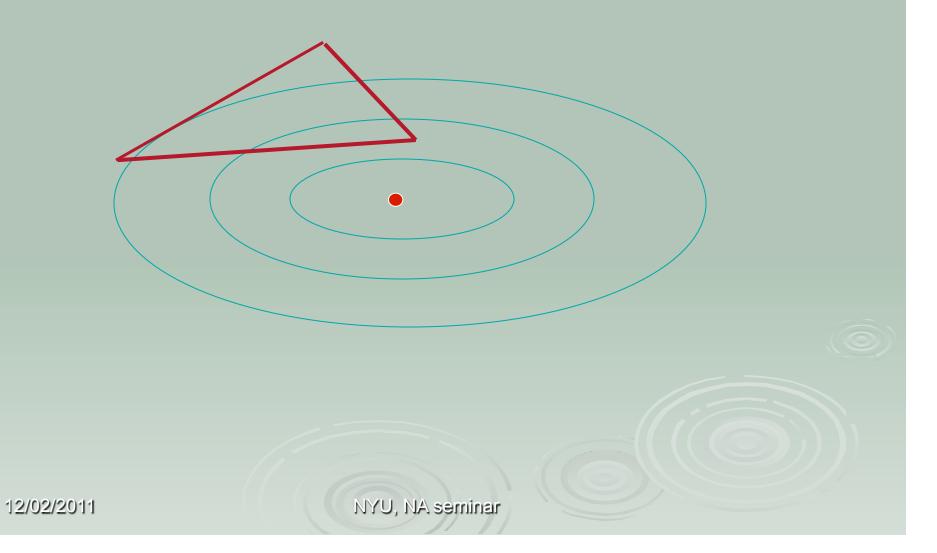
Need new convergence theory

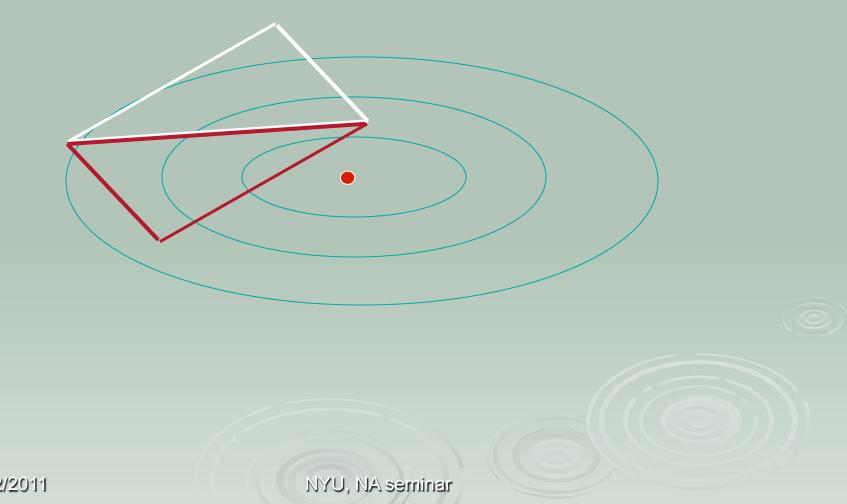
12/02/2011

Algorithms

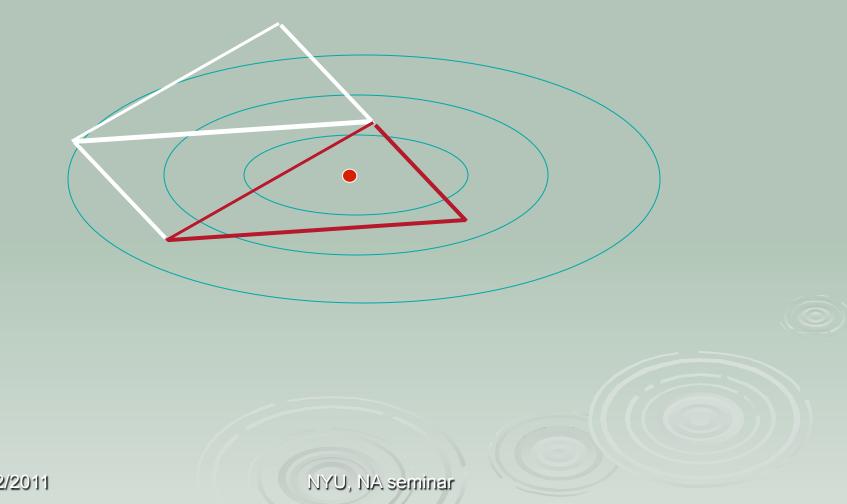
NYU, NA seminar

12/02/2011

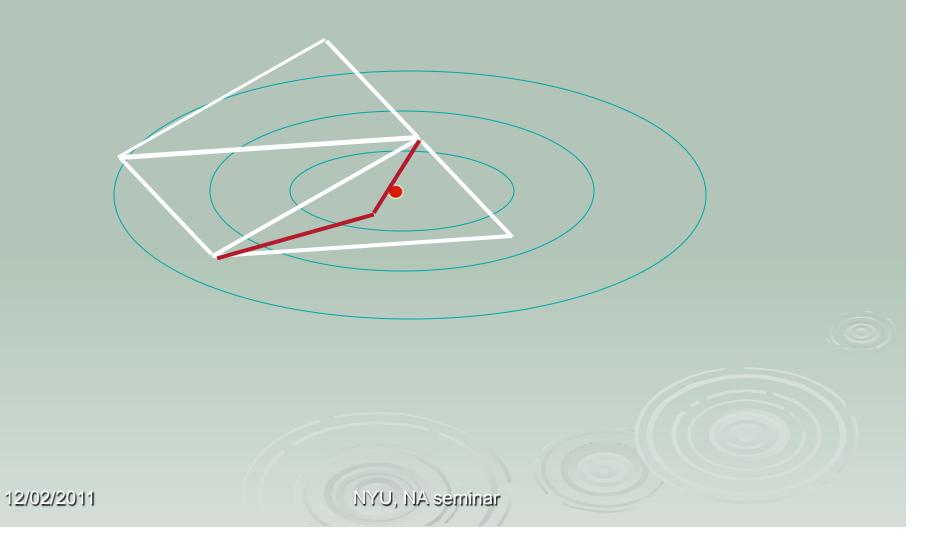


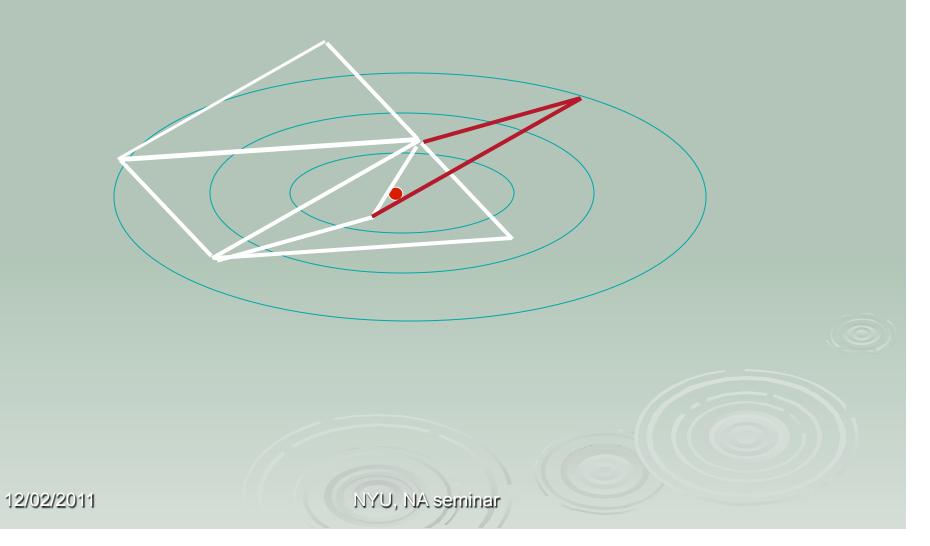


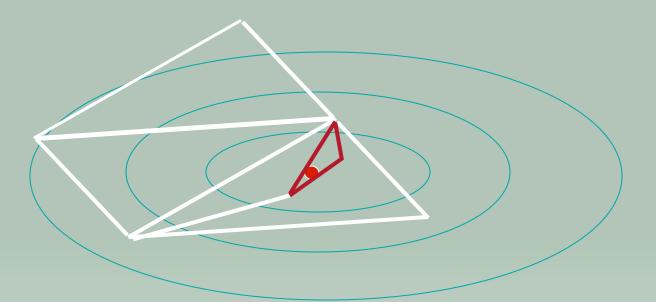
12/02/2011



12/02/2011

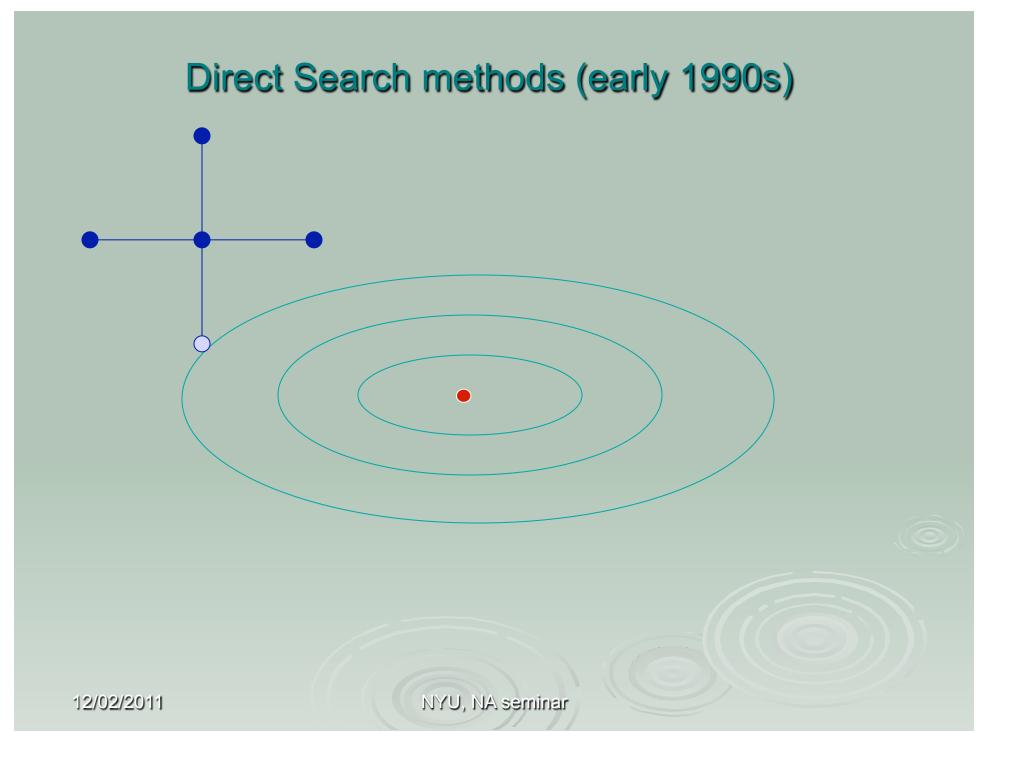


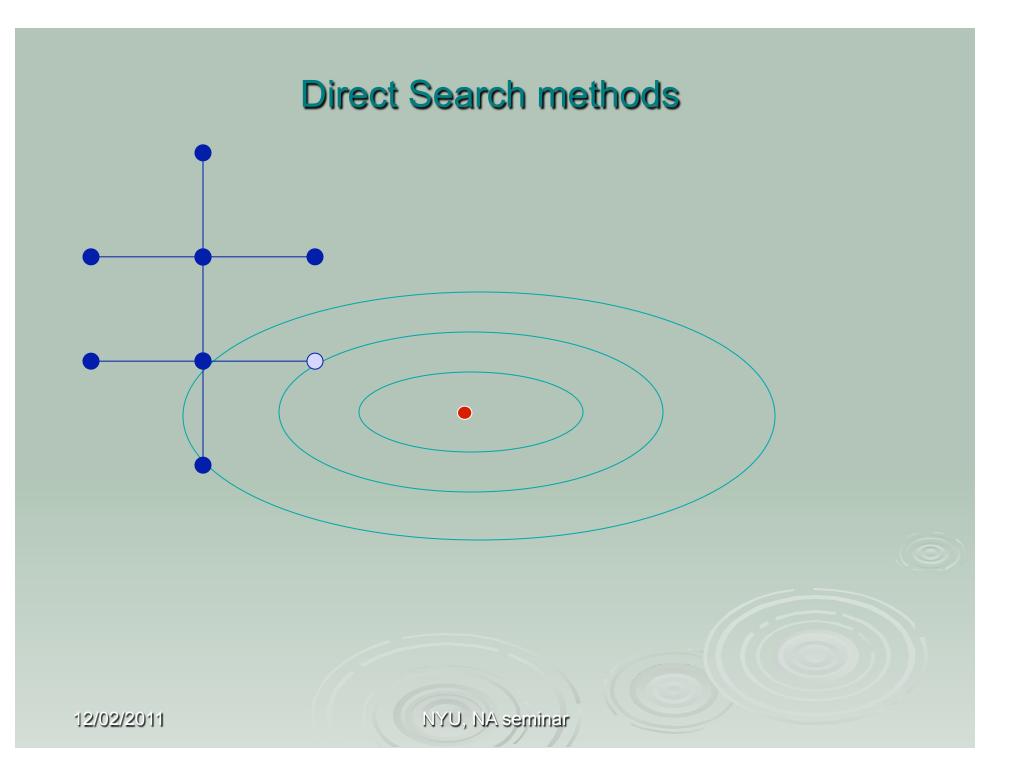


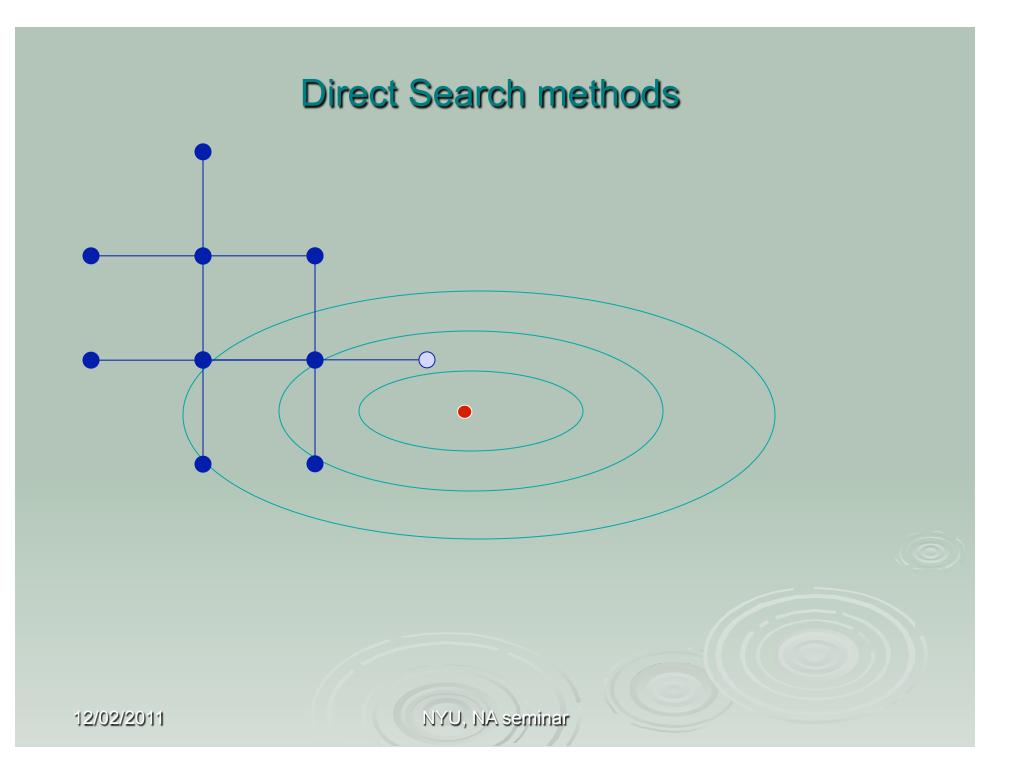


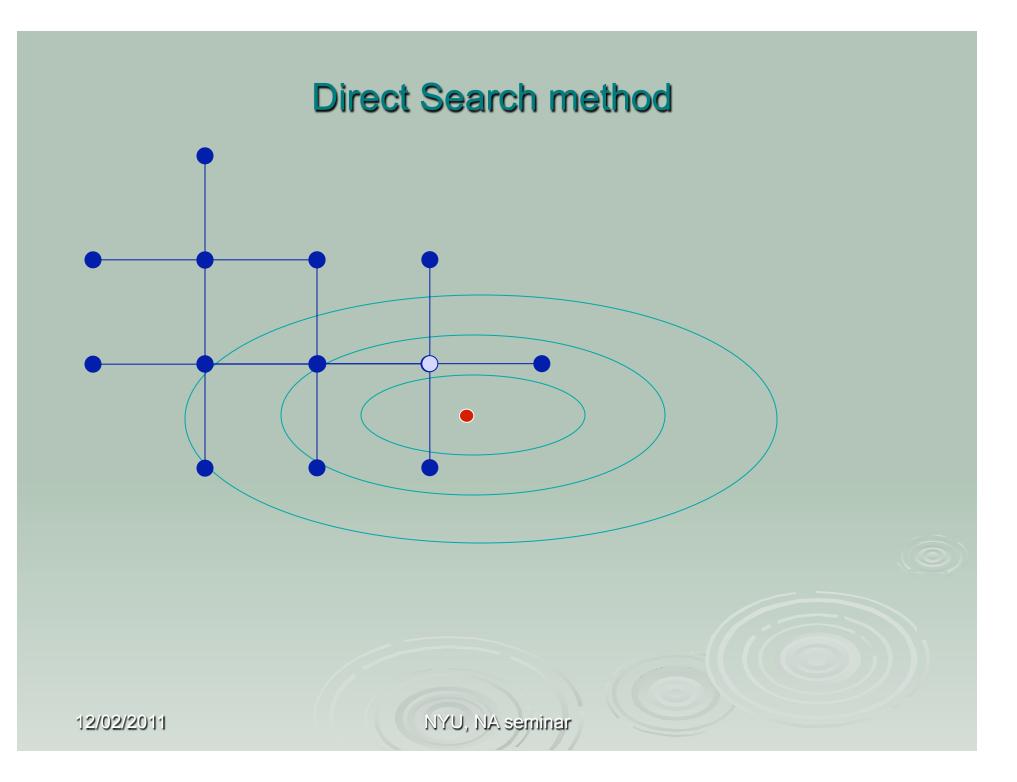
The simplex changes shape during the algorithm to adapt to curvature. But the shape can deteriorate and NM gets stuck

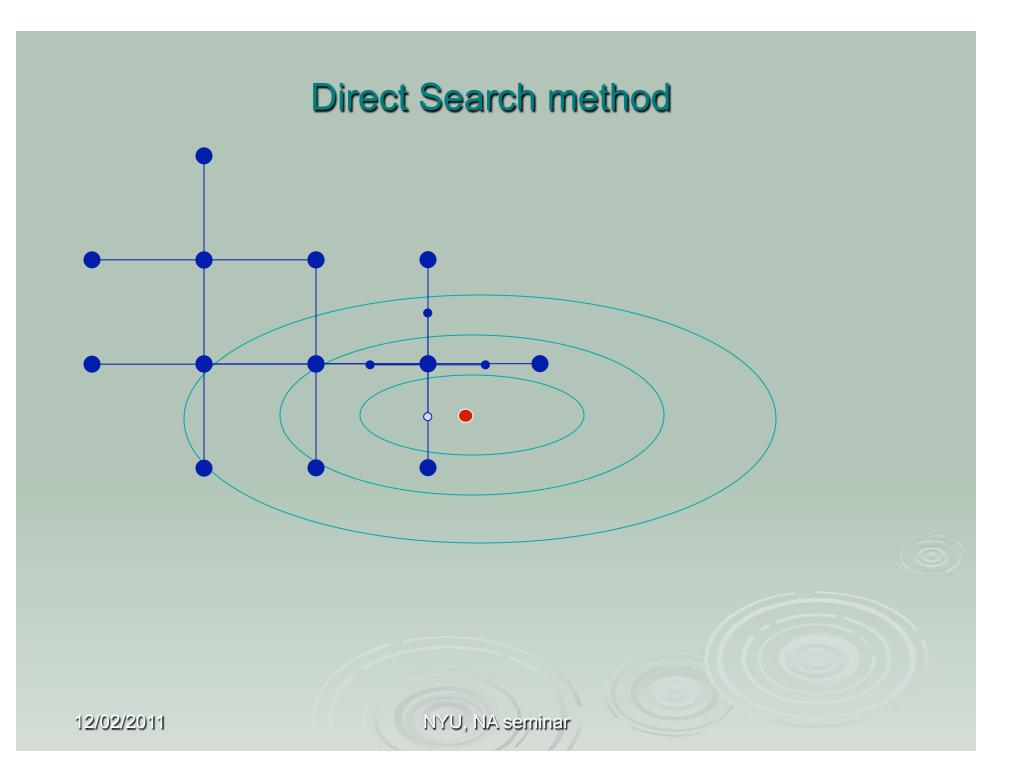
12/02/2011

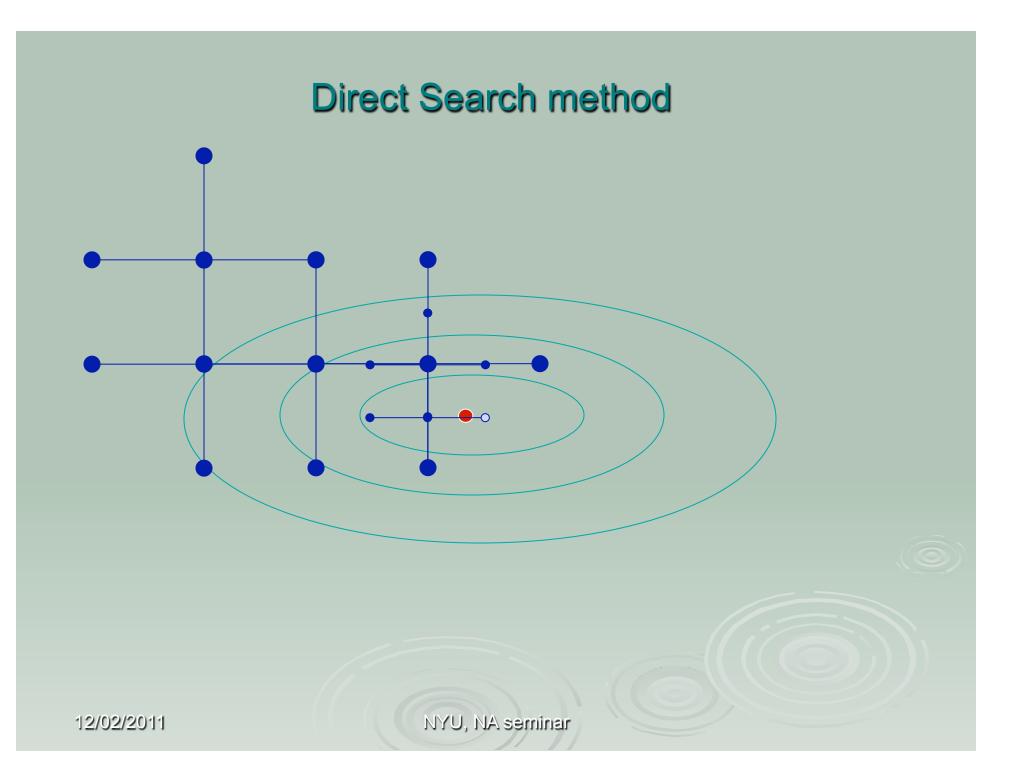


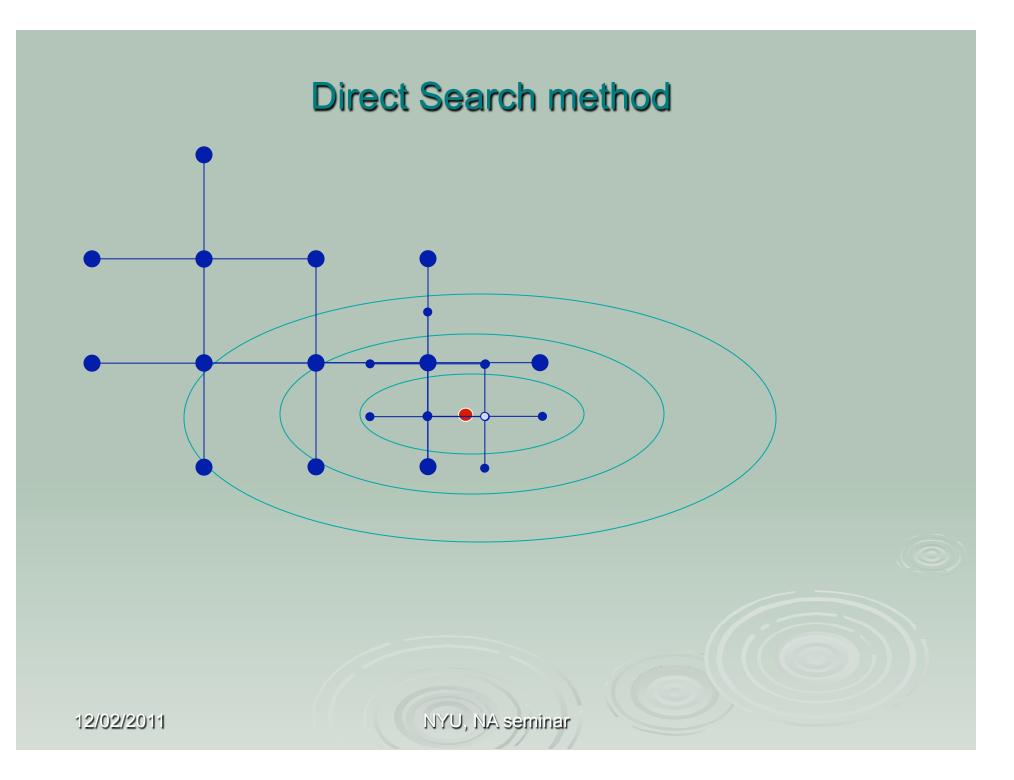


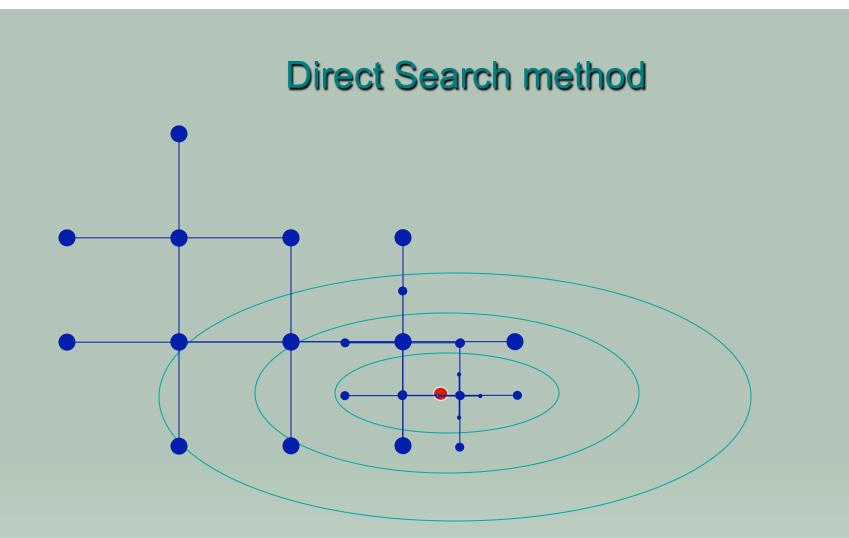








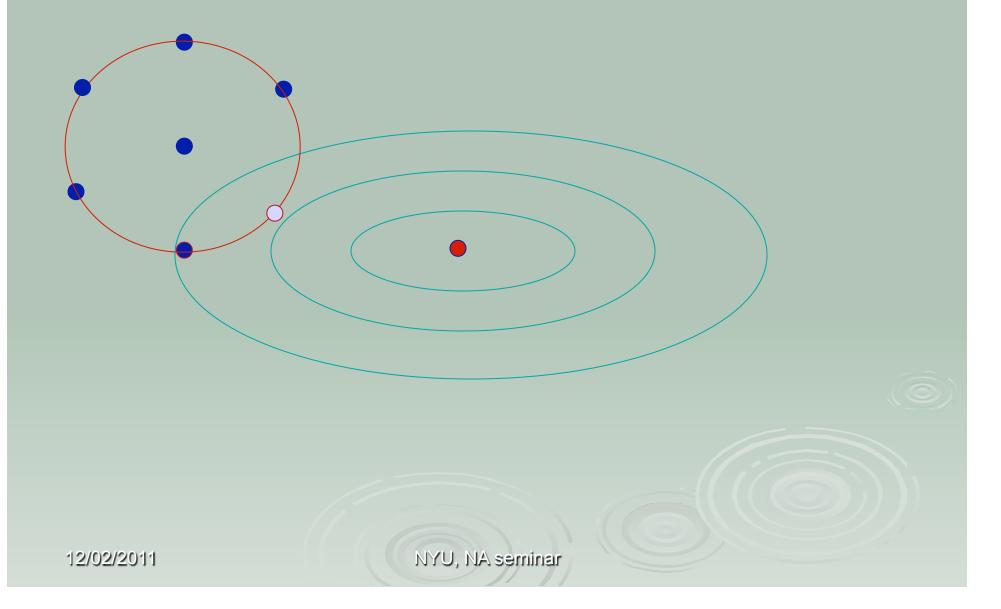




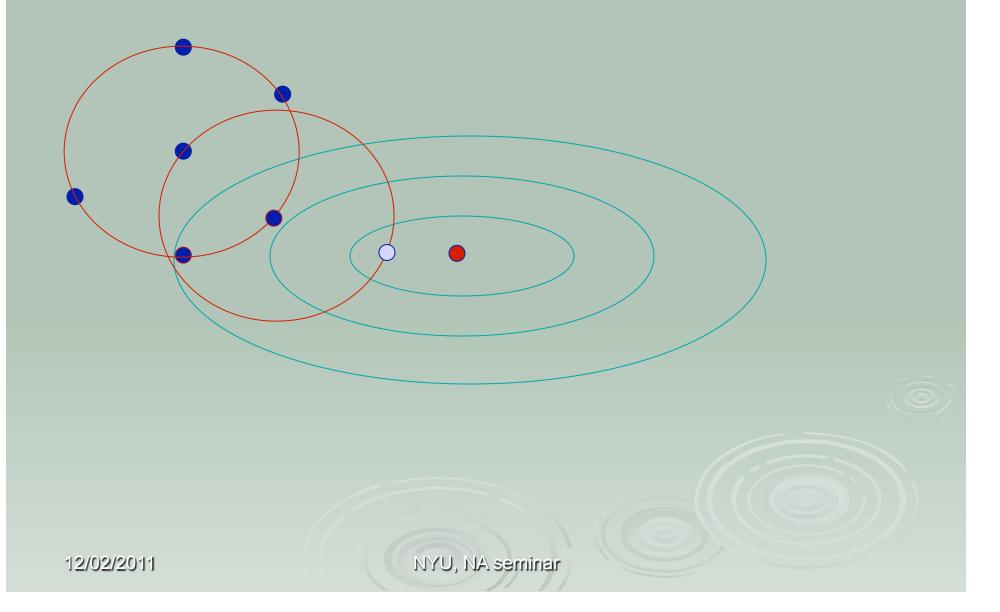
Fixed pattern, never deteriorates: theoretically convergent, but slow

12/02/2011

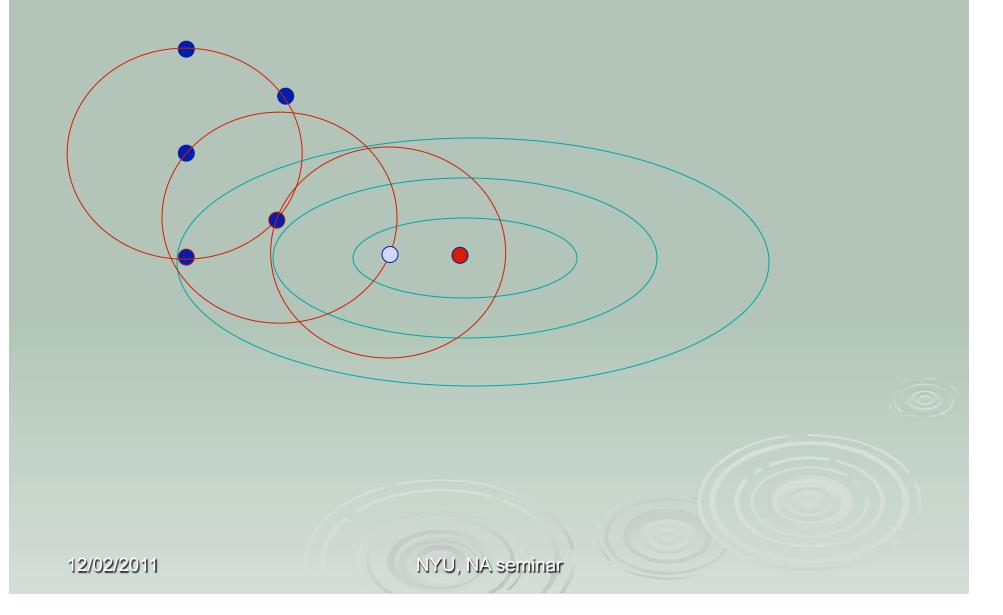
Model based trust region methods (late 90s)



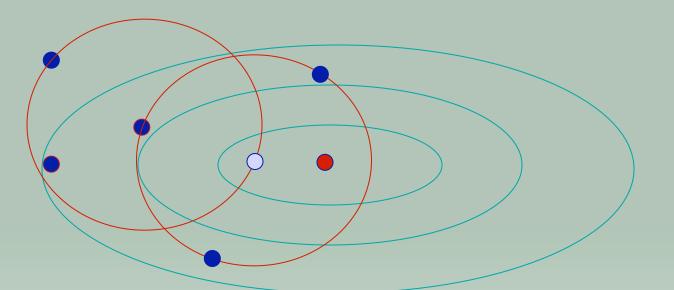
Model based trust region methods



Model based trust region methods



Model Based trust region methods



Exploits curvature, flexible efficient steps, uses second order models.

12/02/2011

What do we want?

- Get as much curvature information as possible.
- Economize on function evaluations.
- Have models which we can optimize (i.e quadratic for now).

Basic Trust Region Algorithm

- **Initialize:** Choose a class of models, initialize x_0 , $m_0(x)$, Δ_0 . Choose $\eta > 0$ and other parameters.
- Criticality step: If $||g_k(x_k)|| \leq \epsilon_c$ then make sure we have a good model in $B(x_k, \rho_k)$ for some $\rho_k \leq \mu ||g_k(x_k)||$.
- **Compute Step:** Compute s_k from $\min_{\|s\| \le \Delta_k} m_k(x_k + s)$ evaluate $f(x_k + s_k)$ and $r_k = (f(x_k) - f(x_k + s_k))/(m(x_k) - m(x_k + s_k))$.

Accept step: If $r_k \ge \eta$ then $x_{k+1} = x_k + s_k$.

TR Update: If $r_k < \eta_1$ and the model is good, decrease Δ . If $r_k < \eta_1$ and the model is not good, improve the model. Otherwise may increase Δ_k .

What is a "good" model?

We need Taylor-like behavior of first or second order models

A model is called fully linear in $B(x, \Delta)$ if

 $\|\nabla f(x+s) - \nabla m(x+s)\| \leq \kappa_{eg} \Delta, \quad \forall s \in B(0; \Delta),$ $|f(x+s) - m(x+s)| \leq \kappa_{ef} \Delta^2, \quad \forall s \in B(0; \Delta),$ for some fixed κ_{eq} and κ_{ef} independent of x and Δ .

What is a "better" model?

We need Taylor-like behavior of first or second order models

A model is called fully quadratic in $B(x, \Delta)$ if

$$\|\nabla^2 f(x+s) - \nabla^2 m(x+s)\| \le \kappa_{eh} \Delta, \quad \forall s \in B(0; \Delta),$$
$$\|\nabla f(x+s) - \nabla m(x+s)\| \le \kappa_{eg} \Delta^2, \quad \forall s \in B(0; \Delta),$$

$$|f(x+s) - m(x+s)| \le \kappa_{ef} \Delta^3, \quad \forall s \in B(0; \Delta),$$

for some fixed κ_{eh} , κ_{eg} , κ_{ef} independent of x and Δ .

Convergence results

 Fully linear models – "first order methods" and convergence to a stationary point
 Fully quadratic models - "second order methods" and convergence to the local minimum

Conn, S. and Vicente, 2008.

12/02/2011

Polynomial models

NYU, NA seminar

12/02/2011

Polynomial Interpolation

Given a polynomial basis $\phi = (\phi_1(x), \dots, \phi_q(x))$ any polynomial m(x) is expressed as

$$m(x) = \sum_{k=1}^{q} \alpha_k \phi_k(x)$$

Given an interpolation set $Y = \{y^1, \ldots, y^p\}$ the interpolation conditions are

$$m(y^i) = \sum_{k=1}^q \alpha_k \phi_k(y^i) = f(y^i) \quad \forall i = 1, \dots, p$$

The coefficient matrix of the system is:

$$M(\phi, Y) = \begin{bmatrix} \phi_1(y^1) & \phi_2(y^1) & \cdots & \phi_q(y^1) \\ \phi_1(y^2) & \phi_2(y^2) & \cdots & \phi_q(y^2) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_1(y^p) & \phi_2(y^p) & \cdots & \phi_q(y^p) \end{bmatrix} \quad (p = q).$$
12/02/2011 NYU, NA seminar

Special case - monomial quadratic basis

Specifically for $\bar{\phi} = \{1, x_1, \cdots, x_n, \frac{1}{2}x_1^2, x_1x_2, \cdots, \frac{1}{2}x_n^2\}$

$$M(\bar{\phi}, Y) = M = \begin{bmatrix} 1 & y_1^1 & \cdots & y_n^1 & \frac{1}{2}(y_1^1)^2 & y_1^1 y_2^1 & \cdots & \frac{1}{2}(y_n^1)^2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & y_1^p & \cdots & y_n^p & \frac{1}{2}(y_1^p)^2 & y_1^p y_2^p & \cdots & \frac{1}{2}(y_n^p)^2 \end{bmatrix}$$

Interpolation model:

find α : $M\alpha = f(Y)$ • $\kappa = \alpha_1$ $m(x) = \sum_{i=1}^{q} \alpha_i \bar{\phi}_i(x) = \frac{1}{2} x^\top H x + g^\top x + \kappa$ • $g = (\alpha_2, \dots, \alpha_{n+1})$ • $H_{ij} = \alpha_{n+(i-1)*n+j+1}$

12/02/2011

Fully quadratic model

$$M(\bar{\phi}, Y) = M = \begin{bmatrix} 1 & y_1^1 & \cdots & y_n^1 & \frac{1}{2}(y_1^1)^2 & y_1^1 y_2^1 & \cdots & \frac{1}{2}(y_n^1)^2 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 1 & y_1^p & \cdots & y_n^p & \frac{1}{2}(y_1^p)^2 & y_1^p y_2^p & \cdots & \frac{1}{2}(y_n^p)^2 \end{bmatrix}$$

Need p=(n+1)(n+2)/2 interpolation points!!!

Interpolation model:

find
$$\alpha$$
: $M\alpha = f(Y)$
• $\kappa = \alpha_1$
 $m(x) = \sum_{i=1}^{q} \alpha_i \bar{\phi}_i(x) = \frac{1}{2} x^\top H x + g^\top x + \kappa$
• $g = (\alpha_2, \dots, \alpha_{n+1})$
• $H_{ij} = \alpha_{n+(i-1)*n+j+1}$
12/02/2011
NYU, NA seminar

Underdetermined quadratic model

$$M(\bar{\phi}, Y) = M = \begin{bmatrix} 1 & y_1^1 & \cdots & y_n^1 & \frac{1}{2}(y_1^1)^2 & y_1^1y_2^1 & \cdots & \frac{1}{2}(y_n^1)^2 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 1 & y_1^p & \cdots & y_n^p & \frac{1}{2}(y_1^p)^2 & y_1^py_2^p & \cdots & \frac{1}{2}(y_n^p)^2 \end{bmatrix}$$

Consider p<(n+1)(n+2)/2 interpolation points!!!

Interpolation model: find α : $M\alpha = f(Y)$

Interpolation model is not unique – many choices, which to pick?

Regularized quadratic models

$$M(\bar{\phi}, Y) = M = \begin{bmatrix} 1 & y_1^1 & \cdots & y_n^1 & \frac{1}{2}(y_1^1)^2 & y_1^1 y_2^1 & \cdots & \frac{1}{2}(y_n^1)^2 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 1 & y_1^p & \cdots & y_n^p & \frac{1}{2}(y_1^p)^2 & y_1^p y_2^p & \cdots & \frac{1}{2}(y_n^p)^2 \end{bmatrix}$$

p<(n+1)(n+2)/2 – underdetermined system

"Robust" interpolation model

$$m(x) = \frac{1}{2}x^{\top}Hx + g^{\top}x + \kappa$$

$$m(x) = \frac{1}{2}x^{\top}Hx + g^{\top}x + \kappa$$

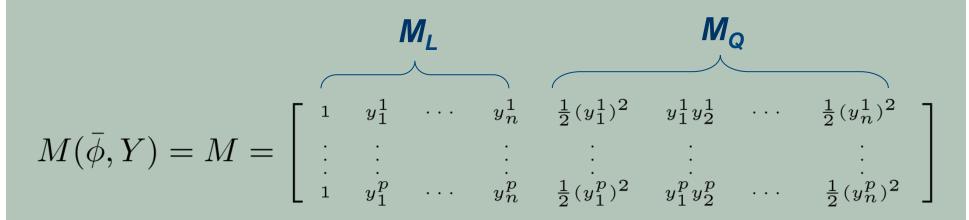
$$m(x) = \frac{1}{2}x^{\top}Hx + g^{\top}x + \kappa$$

$$\kappa = \alpha_{1}$$

$$s.t. \quad M\alpha = f(Y) \quad \bullet \quad g = (\alpha_{2}, \dots, \alpha_{n+1})$$

$$\bullet \quad H_{ij} = \alpha_{n+(i-1)*n+j+1}$$
12/02/2011
NYU, NA seminar

Minimum Frobenius Norm models



Minimum Frob norm of the Hessian model

$$\begin{split} \min_{\alpha} & \|\alpha_Q\|_2 & m(x) = \frac{1}{2}x^\top Hx + g^\top x + \kappa \\ \text{s.t.} & M_L \alpha_L + M_Q \alpha_Q = f(Y) & \bullet \alpha_L \to (k,g) \\ & \bullet \alpha_Q \to H \end{split}$$
 12/02/2011 & NYU, NA seminar

Convergence result for MFN models

Minimum Frobenius norm quadratic models are fully linear under appropriate conditions, hence can guarantee convergence to the stationary point.

Conn, S. and Vicente, 2008.

NYU, NA seminar

12/02/2011

Usefulness and limitation

In practice using MFN quadratic models is by far superior to using fully quadratic models, since good second order information can be recovered from just a few extra interpolation points.

In theory MFN quadratic models have not been shown to be better than linear models, unless p=(n+1)(n+1)/2.

Question: can we consistently build fully quadratic interpolation models with p<(n+1)(n+1)/2 points?

12/02/2011

$$\begin{aligned} \mathbf{Example}\\ \min f(x) &= \sum_{i}^{n} ((x_{i}^{2} - x_{n}^{2})^{2} - 4x_{i})\\ \nabla_{ij}^{2} f(x) &= 0, \ \forall i \neq j, j \neq n\\ (f(y^{0}), \nabla_{ij} f(y^{0})) \rightarrow \alpha_{L} \quad \nabla^{2} f(y^{0}) \rightarrow \alpha_{Q}\\ m(x) &= (\bar{\phi}_{L}^{\top}, \bar{\phi}_{Q}^{\top}) \begin{pmatrix} \alpha_{L} \\ \alpha_{Q} \end{pmatrix} \longleftarrow \begin{aligned} \mathbf{Taylor}\\ \mathbf{model} \end{aligned}$$

(α_L , α_Q) has only 2n+n nonzeros

 (ψ_L,ψ)

3n points are enough to recover the fully quadratic model

Colson, Toint, 2004

12/02/2011

NYU, NA seminar

Q

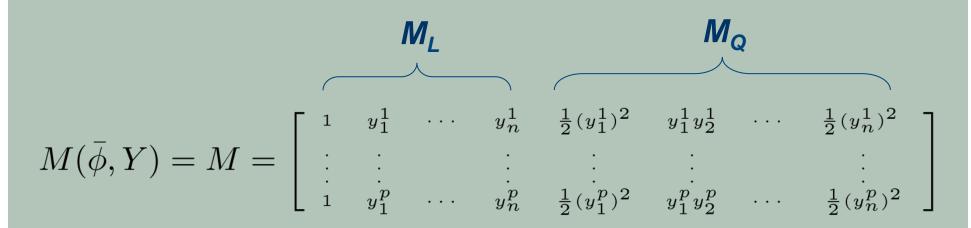
 α_Q /

But usually we do not the sparsity structure of the Hessian. Moreover, it may depend of the region of local approximation...

We want to recover the sparse model by using few sample points

Sounds familiar? – use compressed sensing ideas!

Minimum Frobenius Norm models



Minimum Frob norm of the Hessian model

 $\min_{\alpha} \quad \|\alpha_Q\|_2 \qquad \qquad m(x) = \frac{1}{2}x^\top H x + g^\top x + \kappa$ s.t. $M_L \alpha_L + M_Q \alpha_Q = f(Y) \quad \bullet \quad \alpha_L \to (k,g)$ $\bullet \quad \alpha_Q \to H$

$M(\bar{\phi}, Y) = M = \begin{bmatrix} 1 & y_1^1 & \cdots & y_n^1 & \frac{1}{2}(y_1^1)^2 & y_1^1y_2^1 & \cdots & \frac{1}{2}(y_n^1)^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & y_1^p & \cdots & y_n^p & \frac{1}{2}(y_1^p)^2 & y_1^py_2^p & \cdots & \frac{1}{2}(y_n^p)^2 \end{bmatrix}$

Sparse interpolation model

 $\min_{\alpha} \qquad \|\alpha_Q\|_1 \qquad \qquad m(x) = \frac{1}{2}x^\top H x + g^\top x + \kappa$ s.t. $M_L \alpha_L + M_Q \alpha_Q = f(Y) \qquad \bullet \ \alpha_L \to (k,g)$ $\bullet \ \alpha_Q \to H$

Sparse interpolation model recovery

NYU, NA seminar

Recovery by using the I_1 -norm Recovering sparse solution, x such that Ax=b given matrix A $\in \mathbb{R}^{m \times n}$, m<<n

The system is underdetermined, but if card(x)=s<m, can recover signal,

 $\begin{array}{ll} \min & ||x||_0 \\ s.t. & Ax = b. \end{array}$

Under certain conditions of matrix A (RIP) recover x from

$$\begin{array}{ll} \min & ||x||_1 \\ s.t. & Ax = b. \end{array}$$

NYU, NA seminar

Candes, Tao, Donoho.....

Partial recovery by the I₁-norm

Assume x_1 is dense and but if $card(x_2)=s-r < m-r$, then recover signal, $min ||x_2||_0$ $s.t. A_1x_1 + A_2x_2 = b.$

Under modified conditions of matrix A (partial RIP) recover x from

$$\min ||x_2||_1 \\ s.t. \quad A_1 x_1 + A_2 x_2 = b.$$

RIP => Partial RIP

NYU, NA seminar

Vaswavi &Lu' 10, Bandeira, S and Vicente' 10

Sparse recovery for interpolation

We want to recover (partially) sparse vector α such that

$$M(\phi, Y)\alpha = f(Y) \qquad (*)$$

We need $M(\phi, Y)$ to satisfy (partial) RIP. How can this be done? Choose appropriate Y and ϕ

Definition 1. A "suitable basis" $\phi = \{\phi_1, ..., \phi_q\}$ is an orthonormal basis, in the domain \mathcal{D} for the measure μ , satisfying the K-boundedness condition; i.e.,

$$\int_{\mathcal{D}} \phi_i(x) \phi_j(x) d\mu(x) = \delta_{ij}$$

and $\max_{x \in \mathcal{D}} |\phi_j(x)| \leq K$, for all $i, j = 1, \ldots, q$, for which the solution of (*) is expected to be sparse.

12/02/2011

Random matrix property

Theorem 1. Let ϕ be a "suitable basis". Let a sample set $Y = \{y^1, ..., y^p\} \subset \mathcal{D}$ be chosen randomly (i.i.d) according to the probability measure μ . If the number of samples p satisfies

$$\frac{p}{\log p} \geq c_1 K^2 s (\log s)^2 \log q$$
$$p \geq c_2 K^2 s \log\left(\frac{1}{\varepsilon}\right),$$

Then, the sparse solution is recovered with probability at least $1 - \varepsilon$ ($M(\phi, Y)$) satisfies the RIP property)

12/02/2011

NYU, NA seminar

Rauhut' 10

Suitable basis

Definition 1. We define the basis ψ as the following (n + 1)(n + 2)/2 polynomials:

$$\psi_1(x) = 1$$

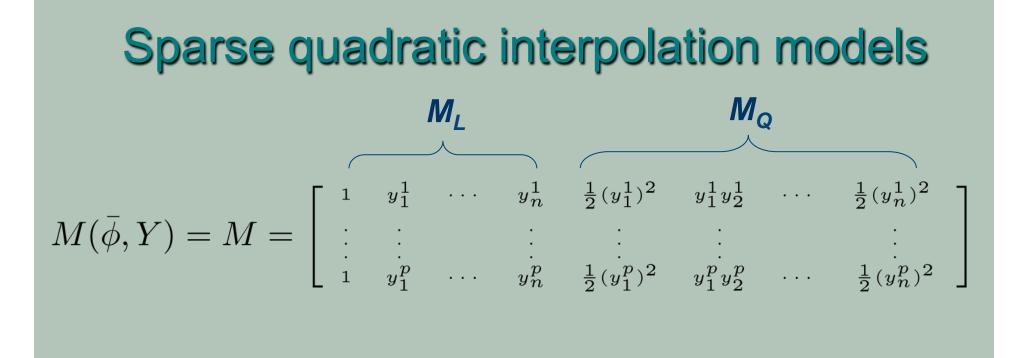
$$\psi_{1+i}(x) = \frac{\sqrt{3}}{\Delta} x_i$$

$$\psi_{n+1+(i-1)*n+j}(x) = \frac{3}{\Delta^2} x_i x_j$$

$$\psi_{n+2+(i-1)*n}(x) = \frac{3\sqrt{5}}{2} \frac{1}{\Delta^2} x_i^2 - \frac{\sqrt{5}}{2}.$$

 $\psi(x)$ is *K*-bounded and orthonormal on a hypercube or radius Δ centered at zero.

12/02/2011



Sparse interpolation model

 $\min_{\alpha} \quad \|\alpha_Q\|_1 \qquad \qquad m(x) = \frac{1}{2}x^\top H x + g^\top x + \kappa$ s.t. $M_L \alpha_L + M_Q \alpha_Q = f(Y) \qquad \bullet \ \alpha_L \to (k,g)$ $\bullet \ \alpha_Q \to H$

We should not assume that interpolation model is exactly sparse

12/02/2011

Sparse quadratic approximation models

We assume that there exists a fully quadratic model $m^*(x)$ of f(x) with sparse Hessian.

$$m^*(x) = \sum_{i=0}^p \alpha_i^* \phi(x)$$

where $||M(\phi, Y)\alpha^* - f(Y)|| \le O(\Delta^3)$, and α_Q^* is sparse

We seek α : (α may not equal α^*) $\min_{\alpha} \|\alpha_Q\|_1$ s.t. $\|M_L \alpha_L + M_Q \alpha_Q - f(Y)\| \le O(\Delta^3)$ NYU, NA seminar

Noisy recovery using random points

Theorem 1. Under the same assumptions, with probability at least $1 - \varepsilon$, $\varepsilon \in (0, 1)$, the following holds for every s-sparse vector x: Let noisy samples $f(Y) = M(\phi, Y)x + \epsilon$ with

 $\|\epsilon\|_2 \le \eta$

be given, for any positive η , and let x^* be the solution of the noisy ℓ_1 -minimization problem with $A = M(\phi, Y)$. Then,

$$\|x - x^*\|_2 \le \frac{d}{\sqrt{p}} \eta$$

for some universal constant d > 0.

Rauhut' 10

12/02/2011

Main theorem

Theorem 1. Let $m(x) = \sum_i \alpha \psi_i(x)$ be an s-sparse fully quadratic model of fon $\Delta \in (0, \Delta_{\max}]$. Given p random points, $Y = \{y^1, ..., y^p\}$, chosen uniformly in $B_{\infty}(0; \Delta)$, with

$$\frac{p}{\log p} \ge c\left(s+n+1\right)\log^2\left(s+n+1\right)\log n,\tag{1}$$

with probability larger than $1 - n^{-\gamma \log p}$, the solution m^* to the ℓ_1 -minimization problem is a fully quadratic model of f on $B_{\infty}(0; \Delta)$.

<u>Conclusion:</u> we can construct fully quadratic models of functions with sparse Hessians with O(n) sample points (with high probability).

Bandeira, S and Vicente' 10

12/02/2011

New paradigm for "good" models

Probabilistic Taylor-like behavior of first or second order models

A random model is called fully linear in $B(x, \Delta)$ if with probability $1 - \delta$

 $\|\nabla f(x+s) - \nabla m(x+s)\| \le \kappa_{eg} \Delta, \quad \forall s \in B(0; \Delta),$ $|f(x+s) - m(x+s)| \le \kappa_{ef} \Delta^2, \quad \forall s \in B(0; \Delta),$

for some fixed κ_{eg} and κ_{ef} independent of x, Δ and δ .

What is a "better" model?

We need Taylor-like behavior of first or second order models

A model is called fully quadratic in $B(x, \Delta)$ if with probability at least $1 - \delta$

$$\|\nabla^2 f(x+s) - \nabla^2 m(x+s)\| \le \kappa_{eh} \Delta, \quad \forall s \in B(0; \Delta),$$

$$\|\nabla f(x+s) - \nabla m(x+s)\| \le \kappa_{eg} \Delta^2, \quad \forall s \in B(0; \Delta),$$
$$|f(x+s) - m(x+s)| \le \kappa_{ef} \Delta^3, \quad \forall s \in B(0; \Delta),$$

for some fixed κ_{eh} , κ_{eg} , κ_{ef} independent of x, Δ and δ .

So what about convergence?

The previous theory does not apply as it relies on knowing if the model is "good".

12/02/2011

Consider a simple TR Algorithm

Initialize: Choose a class of models, initialize x_0 , $m_0(x)$, Δ_0 . Choose $\eta_1 > 0$, $\eta_2 > 0$ and $\gamma > 1$.

Model selection step Build a random model $m_k(x)$ which is fully-linear in $B(x_k, \Delta_k)$ with probability $1 - \delta$.

Compute Step: Compute s_k from $\min_{\|s\| \le \Delta_k} m_k(x_k + s)$ evaluate $f(x_k + s_k)$ and $r_k = (f(x_k) - f(x_k + s_k))/(m(x_k) - m(x_k + s_k))$.

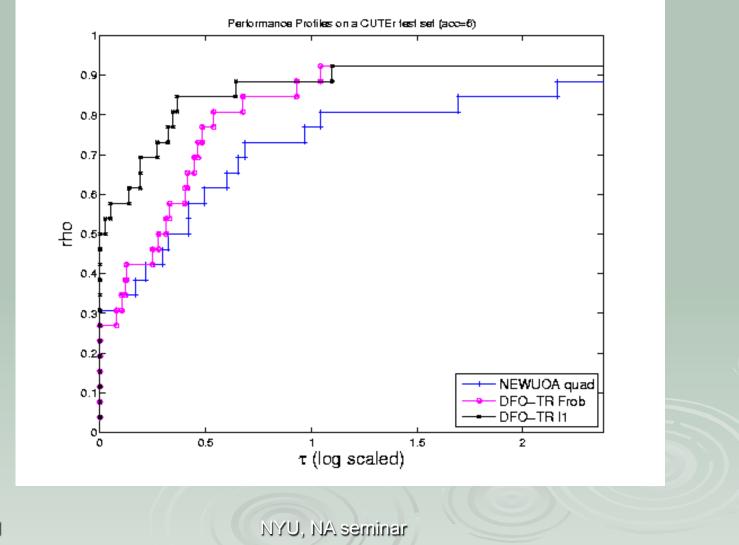
Successful step: If $r_k \ge \eta_1$ and $\nabla m_k(x_k) \ge \eta_2 \Delta_k$ then $x_{k+1} = x_k + s_k$ and $\Delta_{k+1} = \gamma \Delta_k$.

Unsuccessful step: If $r_k < \eta_1$ or $\nabla m_k(x_k) < \eta_2 \Delta_k$ then $x_{k+1} = x_k$ and $\Delta_{k+1} = \gamma^{-1} \Delta_k$.

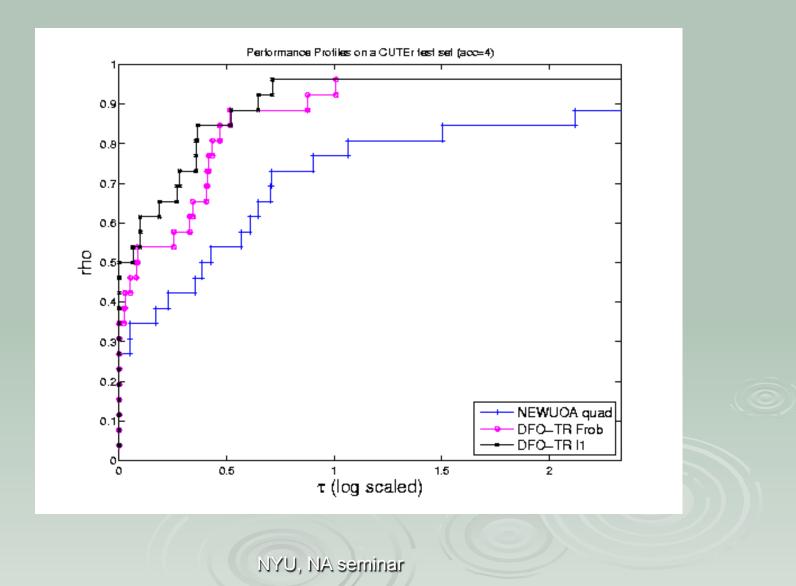
Result: if δ <0.5 then with probability 1 liminf ∇ f(x_k) =0

12/02/2011

Comparison for Δ_{min} =10⁻⁶



Comparison for Δ_{min} =10-4



Work to do

- Complete convergence theory based on random models.
- Improving the results using new partial recovery results.
- > Extending to different models.
- > Recovering other types of structure.
- Efficient implementation.

Thank you!

NYU, NA seminar