Using random models in derivative free optimization

Katya Scheinberg Lehigh University (mainly based on work with A. Bandeira and L.N. Vicente and also with A.R. Conn, Ph.Toint and C. Cartis)

Derivative free optimization

> Unconstrained optimization problem

 $\min_{x \in \Omega} f(x)$

- Function f is computed by a black box, no derivative information is available.
- Numerical noise is often present, but we do not account for it in this talk!

ISMP 2012

- > $f \in C^1$ or C^2 and is deterministic.
- > May be expensive to compute.

08/20/2012

Black box function evaluation

 $x = (x_1, x_2, x_3, \dots, x_n)$

 $v = f(x_1, \dots, x_n)$

All we can do is "sample" the function values at some sample points

08/20/2012

different DFO methods

08/20/2012

Outline

- Review with illustrations of existing methods as motivation for using models.
- Polynomial interpolation models and motivation for models based on random sample sets.
- Structure recovery using random sample sets and compressed sensing in DFO.
- > Algorithms using random models and conditions on these models.
- Convergence theory for TR framework based on random models.

Algorithms

08/20/2012

The simplex changes shape during the algorithm to adapt to curvature. But the shape can deteriorate and NM gets stuck

08/20/2012

Nelder Mead on Rosenbrock

Surprisingly good, but essentially a heuristic

Fixed pattern, never deteriorates: theoretically convergent, but slow

08/20/2012

Compass Search on Rosenbrock

Very slow because of badly aligned axis directions

Random directions on Rosenbrock

Polyak, Yuditski, Nesterov, Lan, Nemirovski, Audet & Dennis, etc Better progress, but very sensitive to step size choices

08/20/2012

Model based trust region methods

Model based trust region methods

08/20/2012

Model based trust region methods

Powell, Conn, S. Toint, Vicente, Wild, etc.

08/20/2012

Model Based trust region methods

Exploits curvature, flexible efficient steps, uses second order models.

08/20/2012

Second order model based TR method on Rosenbrock

08/20/2012

Moral:

 > Building and using models is a good idea.
 > Randomness may offer speed up.
 > Can we combine randomization and models successfully and what would we gain?

Polynomial models

08/20/2012

Linear Interpolation

Any linear polynomial m(x) can be expressed as

$$m(x) = \alpha_0 + \sum_{k=1}^n \alpha_k x_k$$

Given an interpolation set $Y = \{y^0, \ldots, y^n\}$ the interpolation conditions are

$$m(y^i) = \alpha_0 + \sum_{k=1}^n \alpha_k y^i_k = f(y^i) \quad \forall i = 0, \dots, n$$

We have a system of linear equations

$$M(Y)\alpha = f(Y) \qquad M(Y) = \begin{bmatrix} 1 & y_1^0 & y_2^0 & \cdots & y_n^0 \\ 1 & y_1^1 & y_2^1 & \cdots & y_n^1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & y_1^n & y_2^n & \cdots & y_n^n \end{bmatrix}$$

$$2 \qquad \text{ISMP 2012}$$

08/20/2012

Good vs. bad linear Interpolation

If
$$M(Y) = \begin{bmatrix} 1 & y_1^0 & y_2^0 & \cdots & y_n^0 \\ 1 & y_1^1 & y_2^1 & \cdots & y_n^1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & y_1^n & y_2^n & \cdots & y_n^n \end{bmatrix}$$
 is nonsingular

then linear model exists for any f(x)

Better conditioned M => better models

03/20/2012

Examples of sample sets for linear interpolation

Badly poised set

Finite difference sample set

08/20/2012

Polynomial Interpolation

Given a polynomial basis $\phi = (\phi_1(x), \dots, \phi_q(x))$ any polynomial m(x) is expressed as

$$m(x) = \sum_{k=1}^{q} \alpha_k \phi_k(x)$$

Given an interpolation set $Y = \{y^1, \ldots, y^p\}$ the interpolation conditions are

$$m(y^i) = \sum_{k=1}^q \alpha_k \phi_k(y^i) = f(y^i) \quad \forall i = 1, \dots, p.$$

The coefficient matrix of the system is:

$$M(\phi, Y) = \begin{bmatrix} \phi_1(y^1) & \phi_2(y^1) & \cdots & \phi_q(y^1) \\ \phi_1(y^2) & \phi_2(y^2) & \cdots & \phi_q(y^2) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_1(y^p) & \phi_2(y^p) & \cdots & \phi_q(y^p) \end{bmatrix} \qquad (p = q).$$

03/20/2012

Specifically for quadratic interpolation

Specifically for $\bar{\phi} = \{1, x_1, \cdots, x_n, \frac{1}{2}x_1^2, x_1x_2, \cdots, \frac{1}{2}x_n^2\}$

$$M(\bar{\phi}, Y) = M = \begin{bmatrix} 1 & y_1^1 & \cdots & y_n^1 & \frac{1}{2}(y_1^1)^2 & y_1^1 y_2^1 & \cdots & \frac{1}{2}(y_n^1)^2 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 1 & y_1^p & \cdots & y_n^p & \frac{1}{2}(y_1^p)^2 & y_1^p y_2^p & \cdots & \frac{1}{2}(y_n^p)^2 \end{bmatrix}$$

Interpolation model:

find α : $M\alpha = f(Y)$ $m(x) = \sum_{i=1}^{q} \alpha_i \bar{\phi}_i(x) = \frac{1}{2} x^\top H x + g^\top x + \kappa$ $\bullet g = (\alpha_2, \dots, \alpha_{n+1})$ $\bullet H_{ij} = \alpha_{n+(i-1)*n+j+1}$

03/20/2012

Sample sets and models for f(x)=cos(x)+sin(y)

08/20/2012
Sample sets and models for f(x)=cos(x)+sin(y)

Sample sets and models for f(x)=cos(x)+sin(y)

0.4 0.6

0.6 0.2

0.8

0.2

0

Example that shows that we need to maintain the quality of the sample set $f(x) = \begin{cases} x_1^2 + \alpha(x_2^2 + (10 - x_1)x_2) & \text{if } x_1 < 10; \\ x_1^2 + \alpha x_2^2 & \text{if } x_1 \ge 10, \end{cases}$

Observations:

- > Building and maintaining good models is needed.
- But it requires computational and implementation effort and many function evaluations.
- Random sample sets usually produce good models, the only effort required is computing the function values.
- This can be done in parallel and random sample sets can produce good models with fewer points.

How?

"sparse" black box optimization

Sparse linear Interpolation

Given an interpolation set $Y = \{y^0, \ldots, y^p\}$ find

$$m(x) = \alpha_0 + \sum_{k=1}^n \alpha_k x_k$$

with sparse coefficient vector α such that

$$m(y^i) = \alpha_0 + \sum_{k=1}^n \alpha_k y^i_k = f(y^i) \quad \forall i = 0, \dots, p$$

Sparse linear Interpolation

We have an (underdetermined) system of linear equations with a sparse solution

$$M(Y)\alpha = f(Y) \qquad M(Y) = \begin{bmatrix} 1 & y_1^0 & y_2^0 & \cdots & y_n^0 \\ 1 & y_1^1 & y_2^1 & \cdots & y_n^1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & y_1^p & y_2^p & \cdots & y_n^p \end{bmatrix}$$

Can we find correct sparse α using less than n+1 sample points in Y?

08/20/2012

Using celebrated compressed sensing results (Candes&Tao, Donoho, etc)

By solving $\min \|\alpha\|_{1} : M(Y)\alpha = f(Y)$ Whenever $M(Y) = \begin{bmatrix} 1 & y_{1}^{0} & y_{2}^{0} & \cdots & y_{n}^{0} \\ 1 & y_{1}^{1} & y_{2}^{1} & \cdots & y_{n}^{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & y_{1}^{p} & y_{2}^{p} & \cdots & y_{n}^{p} \end{bmatrix}$ has RIP

Using celebrated compressed sensing results and random matrix theory

(Candes&Tao, Donoho, Rauhut, etc)

Does
$$M(Y) = \begin{bmatrix} 1 & y_1^0 & y_2^0 & \cdots & y_n^0 \\ 1 & y_1^1 & y_2^1 & \cdots & y_n^1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & y_1^p & y_2^p & \cdots & y_n^p \end{bmatrix}$$

have **RIP**?

Yes, with high prob., when Y is random and $p=O(|S|\log n)$

Note: O(|S|log n)<<n

03/20/2012

Quadratic interpolation models

$$M(\bar{\phi}, Y) = M = \begin{bmatrix} 1 & y_1^1 & \cdots & y_n^1 & \frac{1}{2}(y_1^1)^2 & y_1^1 y_2^1 & \cdots & \frac{1}{2}(y_n^1)^2 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 1 & y_1^p & \cdots & y_n^p & \frac{1}{2}(y_1^p)^2 & y_1^p y_2^p & \cdots & \frac{1}{2}(y_n^p)^2 \end{bmatrix}$$

Need p=(n+1)(n+2)/2 sample points!!!

Interpolation model:

find
$$\alpha$$
: $M\alpha = f(Y)$
• $\kappa = \alpha_1$
 $m(x) = \sum_{i=1}^{q} \alpha_i \bar{\phi}_i(x) = \frac{1}{2} x^\top H x + g^\top x + \kappa$
• $g = (\alpha_2, \dots, \alpha_{n+1})$
• $H_{ij} = \alpha_{n+(i-1)*n+j+1}$
08/20/2012

Example of a model with sparse Hessian Colson, Toint

$$\min f(x) = \sum_{i}^{n} ((x_i^2 - x_n^2)^2 - 4x_i)$$

$$\nabla_{ij}^2 f(x) = 0, \ \forall i \neq j, j \neq n$$

α has only 2n+n nonzeros

Can we recover the sparse α using less than O(n) points?

08/20/2012

Sparse quadratic interpolation models Mo Μ, $M(\bar{\phi}, Y) = M = \begin{bmatrix} 1 & y_1^1 & \cdots & y_n^1 & \frac{1}{2}(y_1^1)^2 & y_1^1 y_2^1 & \cdots & \frac{1}{2}(y_n^1)^2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & y_1^p & \cdots & y_n^p & \frac{1}{2}(y_1^p)^2 & y_1^p y_2^p & \cdots & \frac{1}{2}(y_n^p)^2 \end{bmatrix}$ Recover sparse α $m(x) = \frac{1}{2}x^{\top}Hx + g^{\top}x + \kappa$ min $\|\alpha_Q\|_1$ α s.t. $M_L \alpha_L + M_Q \alpha_Q = f(Y)$ • $\alpha_L \to (k,g)$ • $\alpha_Q \to H$

08/20/2012

$M(\bar{\phi}, Y) = M = \begin{bmatrix} 1 & y_1^1 & \cdots & y_n^1 & \frac{1}{2}(y_1^1)^2 & y_1^1y_2^1 & \cdots & \frac{1}{2}(y_n^1)^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & y_1^p & \cdots & y_n^p & \frac{1}{2}(y_1^p)^2 & y_1^py_2^p & \cdots & \frac{1}{2}(y_n^p)^2 \end{bmatrix}$

Actually we need RIP for M_Q and some other property on M_L

08/20/2012

Yes, with high probability, when Y is random and $p=O((n+s)(\log n)^4)$

Note: *p*=*O*((*n*+*s*)(*log n*)⁴)<<n² (sometimes)

For more detailed analysis see Afonso Bandeira's talk ISMP 2012 Tue 15:15 - 16:45, room: H 3503

Model-based method on 2-dimensional Rosenbrock function lifted into 10 dimensional space

Consider $f(x_1, x_2, \dots, x_{10})$ =Rosenbrock(x_1, x_2)

To build full quadratic interpolation we need 66 points. We test two methods:

- 1. Deterministic model-based TR method: builds a model using whatever points it has on hand up to 66 in the neighborhood of the current iterate, using MFN Hessian models (standard reliable good approach).
- 2. Random model based TR method: builds sparse models using 31 randomly sampled points.

Deterministic MFN model based method

Random sparse model based method

08/20/2012

Comparison of sparse vs MFN models (no randomness) within TR on CUTER problems

Algorithms based on random models

- We now forget about sample sets and how we build the models.
- We focus on properties of the models that are essential for convergence.
- Ensure that those properties are satisfied by models we just discussed.

What do we need from a deterministic model for convergence?

We need Taylor-like behavior of first-order models

A model is called κ -fully-linear in $B(x, \Delta)$, for $\kappa = (\kappa_{ef}, \kappa_{eg})$ if $\|\nabla f(x+s) - \nabla m(x+s)\| \leq \kappa_{eg} \Delta, \quad \forall s \in B(0; \Delta),$ $|f(x+s) - m(x+s)| \leq \kappa_{ef} \Delta^2, \quad \forall s \in B(0; \Delta),$

What do we need from a model to explore the curvature?

We may want Taylor-like behavior of second-order models

A model is called κ -fully-quadratic in $B(x, \Delta)$ for $\kappa = (\kappa_{ef}, \kappa_{eg}, \kappa_{eh})$ if

$$\|\nabla^2 f(x+s) - \nabla^2 m(x+s)\| \leq \kappa_{eh} \Delta, \quad \forall s \in B(0; \Delta),$$

$$\begin{aligned} \|\nabla f(x+s) - \nabla m(x+s)\| &\leq \kappa_{eg} \,\Delta^2, \quad \forall s \in B(0;\Delta), \\ |f(x+s) - m(x+s)| &\leq \kappa_{ef} \,\Delta^3, \quad \forall s \in B(0;\Delta), \end{aligned}$$

What do we need from a random model for convergence?

We need likely Taylor-like behavior of first-order models

A random model is called (κ, δ) -fully-linear in $B(x, \Delta)$ if

 $\|\nabla f(x+s) - \nabla m(x+s)\| \le \kappa_{eg} \Delta, \quad \forall s \in B(0; \Delta),$

 $|f(x+s) - m(x+s)| \leq \kappa_{ef} \Delta^2, \quad \forall s \in B(0; \Delta),$

with probability at least $1 - \delta$.

What do we need from a random model to explore curvature?

We need likely Taylor-like behavior of second order models

A random model is called (κ, δ) -fully-quadratic in $B(x, \Delta)$ if $\|\nabla^2 f(x+s) - \nabla^2 m(x+s)\| \leq \kappa_{eh} \Delta, \quad \forall s \in B(0; \Delta),$ $\|\nabla f(x+s) - \nabla m(x+s)\| \leq \kappa_{eg} \Delta^2, \quad \forall s \in B(0; \Delta),$ $|f(x+s) - m(x+s)| \leq \kappa_{ef} \Delta^3, \quad \forall s \in B(0; \Delta),$ with probability at least $1 - \delta$.

What random models have such properties?

- > Linear interpolation and regression models based on random sample sets of n+1 points are (κ , δ)-fully-linear.
- > Quadratic interpolation and regression models based on random sample sets of (n+1)(n+1)/2 points are (κ, δ) -fully-quadratic.
- > Sparse linear interpolation and reg. models based on smaller random sample sets are (κ , δ)-fully-linear.
- > Sparse quadratic interpolation and reg. models based on smaller random sample sets are (κ , δ)-fully-quadratic.
- > Taylor models based on finite difference derivative evaluations with asynchronous faulty parallel function evaluations are (κ , δ)-FL or FQ.
- > Gradient sampling models? Other examples?

Basic Trust Region Algorithm

Model selection

Pick a random model $m_k(x)$ which is κ -fully-linear in $B(x_k, \Delta_k)$ w.p. $1-\delta$.

Compute potential step

Compute a point x^+ which minimizes (reduces) m(x) in $B(x_k, \Delta_k)$. Compute $f(x^+)$ and check if f is reduced comparably to m by x^+ .

Successful step

If yes and if the radius Δ_k is not too big compared to $\nabla m_k(x_k)$ then we take the step and increase Δ_k by a constant factor.

Unsuccessful step

Otherwise, decrease Δ_k by the constant factor and repeat the iteration.

Convergence results for the basic TR framework

If models are fully linear with prob. $1-\delta > 0.5$ then with probability *one* $\lim ||\nabla f(x_k)|| = 0$

If models are fully quadratic w. p. $1-\delta > 0.5$ then with probability *one liminf max* {|| $\nabla f(x_k)$ ||, $\lambda_{min}(\nabla^2 f(x_k))$ }=0

For *lim* result δ need to decrease occasionally

For details see Afonso Bandeira's talk on Tue 15:15 - 16:45, room: H 3503

Intuition behind the analysis shown through line search ideas

08/20/2012

When m(x) is linear ~ line search instead of Δ_k use $\alpha_k || \nabla m_k(x_k) ||$

Model selection step

Pick a random model $m_k(x) = f(x_k) + g_k^{\top}(x - x_k)$ κ -fully-linear in $B(x_k, \alpha_k ||g_k||)$ w.p. $1 - \delta$.

Compute Step

 $x^+ = x_k - \alpha_k g_k$. Check if f is sufficiently reduced an x^+ .

Successful step

If yes accept x^+ as the new iterate. Increase α_k by a constant factor if not too large.

Unsuccessful step

Otherwise decrease α_k by the constant factor. Repeat the iteration.

Random directions vs. random fully linear model gradients

Key observation for line search convergence

If m_k is κ -fully linear and ∇f is *L*-Lipschitz continuous then when α_k is small enough (i.e. $\alpha_k \leq (1-\theta)/(L/2+\kappa)$)

$$f(x^+) = f(x_k - \alpha_k g_k) \le f(x_k) - \frac{\alpha_k \theta}{\|g_k\|^2}$$

Successful step!

08/20/2012

Analysis of line search convergence

Assume m_k is always κ -fully linear

 $\alpha_k \ge C \; \forall k$

C is a constant depending on κ , θ , L, etc

and

if $\|\nabla f(x_k)\| \ge \epsilon$ then $\|g_k\| \ge \epsilon/2$

 $f(x_k) - f(x_{k+1}) \ge \frac{C\theta\epsilon^2}{4}$

Convergence!!

03/20/2012

Analysis of line search convergence

Assume m_k is above κ -fully linear w.p. $\geq 1-\delta$

and if $\|
abla f(x_k)\| \geq \epsilon$ then $\|g_k\| \geq \epsilon/2$ w.p. $\geq 1-\delta$

success

 $f(x_k) - f(x_{k+1}) \ge \frac{\alpha_k \theta \epsilon^2}{4}$ w.p. $\ge 1-\delta$ $\alpha_{k+1} = \gamma \alpha_k$

no success

 $\alpha_{k+1} = \gamma^{-1} \alpha_k$

ISMP 2012

w.p. $\leq \delta$

Analysis via martingales

Analyze two stochastic processes: X_k and Y_k :

$$X_{k+1} = \begin{cases} \min\{C, \gamma X_k\} & \text{w.p. } 1 - \delta \\ \gamma^{-1} X_k & \text{w.p. } \delta \end{cases}$$

$$Y_{k+1} = \begin{cases} Y_k + X_k \theta \epsilon^2 / 4 & \text{w.p. } 1 - \delta \\ Y_k & \text{w.p. } \delta \end{cases}$$

We observe that

 $\alpha_k \ge X_k$ $f(x_0) - f(x_k) \ge Y_k$

If random models are independent of the past, then X_k and Y_k are random walks, otherwise they are submartingales if $\delta \le 1/2$.
Analysis via martingales

Analyze two stochastic processes: X_k and Y_k :

$$X_{k+1} = \begin{cases} \min\{C, \gamma X_k\} & \text{w.p. } 1 - \delta \\ \gamma^{-1} X_k & \text{w.p. } \delta \end{cases}$$

$$Y_{k+1} = \begin{cases} Y_k + X_k \theta \epsilon^2 / 4 & \text{w.p. } 1 - \delta \\ Y_k & \text{w.p. } \delta \end{cases}$$

We observe that

 $\alpha_k \ge X_k$ $f(x_0) - f(x_k) \ge Y_k$

 X_k does not converge to 0 w.p. 1 => algorithm converges Expectations of Y_k and X_k will facilitate convergence rates.

08/20/2012

Behavior of X_k for γ =2, C=1 and δ =0.45

 X_k

08/20/2012

ISMP 2012

k

Future work

- Convergence rates theory based on random models.
- > Extend algorithmic random model frameworks.
- > Extending to new types of models.
- > Recovering different types of function structure.
- > Efficient implementations.

Thank you!

08/20/2012

Analysis of line search convergence

If m_k is κ -fully linear

$$\|g_k - \nabla f(x_k)\| \le \kappa \Delta_k = \kappa \alpha_k \|g_k\|$$

If ∇f is *L*-Lipschitz continuous and $\alpha_k \leq (1-\theta)/(L/2+\kappa)$

$$f(x_k - \alpha_k * g_k) \le f(x_k) - \alpha_k \theta \|g_k\|^2$$

If $\|\nabla f(x_k)\| \ge \epsilon$ then $\|g_k\| \ge \epsilon/2$ and

$$f(x_k) - f(x_{k+1}) \ge \frac{\alpha_k \theta \epsilon^2}{4}$$

Hence only so many line search steps are needed to get a small gradient

03/20/2012

Analysis of line search convergence

If m_k is κ -fully linear

$$\|g_k - \nabla f(x_k)\| \le \kappa \Delta_k = \kappa \alpha_k \|g_k\|$$

If ∇f is *L*-Lipschitz continuous and $\alpha_k \leq (1-\theta)/(L/2+\kappa)$

$$f(x_k - \alpha_k * g_k) \le f(x_k) - \alpha_k \theta \|g_k\|^2$$

If $\|\nabla f(x_k)\| \ge \epsilon$ then $\|g_k\| \ge \epsilon/2$ and

$$f(x_k) - f(x_{k+1}) \ge \frac{\alpha_k \theta \epsilon^2}{4}$$

We assumed that $m_k(x)$ is κ -fully-linear every time.

08/20/2012