Using random models in derivative free optimization

Keriya Scheinberg
Lenigh University

(mainly based on work with A. Bandeira and
L.N. Vicente and also with A.R. Conn, Ph.Toint and C. Cartis)

Derivative free optimization

> Unconstrained optimization problem

$$
\min _{x \in \Omega} f(x)
$$

- Function f is computed by a black box, no derivative information is available.
> Numerical noise is often present, but we do not account for it in this talk!
$\Rightarrow f \in \mathrm{C}^{1}$ or C^{2} and is deterministic.
> May be expensive to compute.

Black box function evaluation

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)
$$

$$
v=f\left(x_{1}, \ldots, x_{n}\right)
$$

"sample" the function values at some sample points

Sampling the black box function

How to choose and to use the sample points and the functions values defines different DFO methods

Outline

> Review with illustrations of existing methods as motivation for using models.

- Polynomial interpolation models and motivation for models based on random sample sets.
- Structure recovery using random sample sets and compressed sensing in DFO.
- Algorithms using random models and conditions on these models.
- Convergence theory for TR framework based on random models.

Algorithms

Nelder-Mead method (1965)

The simplex changes shape during the algorithm to adapt to curvature. But the shape can deteriorate and NM gets stuck

Nelder Mead on Rosenbrock

Surprisingly good, but essentially a heuristic

Direct Search methods (early 1990s)

Torczon, Dennis, Audet, Vicente, Luizzi, many

Direct Search methods

Torczon, Dennis, Audet, Vicente, Luizzi, many

Direct Search methods

Torczon, Dennis, Audet, Vicente, Luizzi, many

Direct Search method

Torczon, Dennis, Audet, Vicente, Luizzi, many

Direct Search method

Torczon, Dennis, Audet, Vicente, Luizzi, many

Direct Search method

Torczon, Dennis, Audet, Vicente, Luizzi, many

Direct Search method

Torczon, Dennis, Audet, Vicente, Luizzi, many

Direct Search method

Fixed pattern, never deteriorates: theoretically convergent, but slow

Compass Search on Rosenbrock

Very slow because of badly aligned axis directions

Random directions on Rosenbrock

Polyak, Yuditski, Nesterov, Lan, Nemirovski, Audet \& Dennis, etc Better progress, but very sensitive to step size choices

Model based trust region methods

Powell, Conn, S. Toint, Vicente, Wild, etc.

Model based trust region methods

Powell, Conn, S. Toint, Vicente, Wild, etc.

Model based trust region methods

Powell, Conn, S. Toint, Vicente, Wild, etc.

Model Based trust region methods

Exploits curvature, flexible efficient steps, uses second order models.

Second order model based TR method on Rosenbrock

Moral:

> Building and using models is a good idea.
> Randomness may offer speed up.
> Can we combine randomization and models successfully and what would we gain?

Polynomial models

Linear Interpolation

Any linear polynomial $m(x)$ can be expressed as

$$
m(x)=\alpha_{0}+\sum_{k=1}^{n} \alpha_{k} x_{k}
$$

Given an interpolation set $Y=\left\{y^{0}, \ldots, y^{n}\right\}$ the interpolation conditions are

$$
m\left(y^{i}\right)=\alpha_{0}+\sum_{k=1}^{n} \alpha_{k} y_{k}^{i}=f\left(y^{i}\right) \quad \forall i=0, \ldots, n
$$

We have a system of linear equations

$$
M(Y) \alpha=f(Y) \quad M(Y)=\left[\begin{array}{ccccc}
1 & y_{1}^{0} & y_{2}^{0} & \cdots & y_{n}^{0} \\
1 & y_{1}^{1} & y_{2}^{1} & \cdots & y_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & y_{1}^{n} & y_{2}^{n} & \cdots & y_{n}^{n}
\end{array}\right]
$$

Good vs. bad linear Interpolation

$$
\text { If } M(Y)=\left[\begin{array}{ccccc}
1 & y_{1}^{0} & y_{2}^{0} & \cdots & y_{n}^{0} \\
1 & y_{1}^{1} & y_{2}^{1} & \cdots & y_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right] \text { is nonsingular }
$$

then linear model exists for any $f(x)$

Better conditioned M => better models

Examples of sample sets for linear interpolation

Badly poised set

Finite difference sample set

Polynomial Interpolation

Given a polynomial basis $\phi=\left(\phi_{1}(x), \ldots, \phi_{q}(x)\right)$ any polynomial $m(x)$ is expressed as

$$
m(x)=\sum_{k=1}^{q} \alpha_{k} \phi_{k}(x)
$$

Given an interpolation set $Y=\left\{y^{1}, \ldots, y^{p}\right\}$ the interpolation conditions are

$$
m\left(y^{i}\right)=\sum_{k=1}^{q} \alpha_{k} \phi_{k}\left(y^{i}\right)=f\left(y^{i}\right) \quad \forall i=1, \ldots, p
$$

The coefficient matrix of the system is:

$$
M(\phi, Y)=\left[\begin{array}{cccc}
\phi_{1}\left(y^{1}\right) & \phi_{2}\left(y^{1}\right) & \cdots & \phi_{q}\left(y^{1}\right) \\
\phi_{1}\left(y^{2}\right) & \phi_{2}\left(y^{2}\right) & \cdots & \phi_{q}\left(y^{2}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\phi_{1}\left(y^{p}\right) & \phi_{2}\left(y^{p}\right) & \cdots & \phi_{q}\left(y^{p}\right)
\end{array}\right] \quad(p=q)
$$

Specifically for quadratic interpolation

Specifically for $\bar{\phi}=\left\{1, x_{1}, \cdots, x_{n}, \frac{1}{2} x_{1}^{2}, x_{1} x_{2}, \cdots, \frac{1}{2} x_{n}^{2}\right\}$

$$
M(\bar{\phi}, Y)=M=\left[\begin{array}{cccccccc}
1 & y_{1}^{1} & \cdots & y_{n}^{1} & \frac{1}{2}\left(y_{1}^{1}\right)^{2} & y_{1}^{1} y_{2}^{1} & \cdots & \frac{1}{2}\left(y_{n}^{1}\right)^{2} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
1 & y_{1}^{p} & \cdots & y_{n}^{p} & \frac{1}{2}\left(y_{1}^{p}\right)^{2} & y_{1}^{p} y_{2}^{p} & \cdots & \vdots \\
\frac{1}{2}\left(y_{n}^{p}\right)^{2}
\end{array}\right]
$$

Interpolation model:

$$
\begin{aligned}
\text { find } \alpha: M \alpha=f(Y) & \text { • } \kappa=\alpha_{1} \\
m(x)=\sum_{i=1}^{q} \alpha_{i} \bar{\phi}_{i}(x)=\frac{1}{2} x^{\top} H x+g^{\top} x+\kappa & \text { • } g=\left(\alpha_{2}, \ldots, \alpha_{n+1}\right) \\
& \text { - } H_{i j}=\alpha_{n+(i-1) * n+j+1}
\end{aligned}
$$

Sample sets and models for $f(x)=\cos (x)+\sin (y)$

Sample sets and models for $f(x)=\cos (x)+\sin (y)$

Sample sets and models for $f(x)=\cos (x)+\sin (y)$

Example that shows that we need to maintain the quality of the sample set

$$
f(x)= \begin{cases}x_{1}^{2}+\alpha\left(x_{2}^{2}+\left(10-x_{1}\right) x_{2}\right) & \text { if } x_{1}<10 ; \\ x_{1}^{2}+\alpha x_{2}^{2} & \text { if } x_{1} \geq 10,\end{cases}
$$

$08 / 20 / 2012$
ISMP 2012

$08 / 20 / 2012$
ISMP 2012

Observations:

> Building and maintaining good models is needed.

- But it requires computational and implementation effort and many function evaluations.
- Random sample sets usually produce good models, the only effort required is computing the function values.
- This can be done in parallel and random sample sets can produce good models with fewer points.

How?

"sparse" black box optimization

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)
$$

$$
\begin{aligned}
& v=f\left(x_{s}\right) \\
& S \subset\{1 . . n\}
\end{aligned}
$$

Sparse linear Interpolation

Given an interpolation set $Y=\left\{y^{0}, \ldots, y^{p}\right\}$ find

$$
m(x)=\alpha_{0}+\sum_{k=1}^{n} \alpha_{k} x_{k}
$$

with sparse coefficient vector α such that

$$
m\left(y^{i}\right)=\alpha_{0}+\sum_{k=1}^{n} \alpha_{k} y_{k}^{i}=f\left(y^{i}\right) \quad \forall i=0, \ldots, p
$$

Sparse linear Interpolation

We have an (underdetermined) system of linear equations with a sparse solution

$$
M(Y) \alpha=f(Y) \quad M(Y)=\left[\begin{array}{ccccc}
1 & y_{1}^{0} & y_{2}^{0} & \cdots & y_{n}^{0} \\
1 & y_{1}^{1} & y_{2}^{1} & \cdots & y_{n}^{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & y_{1}^{p} & y_{2}^{p} & \cdots & y_{n}^{p}
\end{array}\right]
$$

Can we find correct sparse α using less than $\mathrm{n}+1$ sample points in Y ?

Using celebrated compressed sensing reSults (CandeskTao, Donono, etc)

By solving $\quad \min \|\alpha\|_{1}: M(Y) \alpha=f(Y)$
Whenever $\quad M(Y)=\left[\begin{array}{ccccc}1 & y_{1}^{0} & y_{2}^{0} & \cdots & y_{n}^{0} \\ 1 & y_{1}^{1} & y_{2}^{1} & \cdots & y_{n}^{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & y_{1}^{p} & y_{2}^{p} & \cdots & y_{n}^{p}\end{array}\right]$ has RIP

Using celebrated compressed sensing results and random matrix theory
 (Candes\&Tao, Donono, Raunut, eic)

Does $M(Y)=\left[\begin{array}{ccccc}1 & y_{1}^{0} & y_{2}^{0} & \cdots & y_{n}^{0} \\ 1 & y_{1}^{1} & y_{2}^{1} & \cdots & y_{n}^{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & y_{1}^{p} & y_{2}^{p} & \cdots & y_{n}^{p}\end{array}\right] \quad$ have RIP?

Yes, with high prob., when Y is random and $p=O(|S| \log n)$

Note: $O(|S| \log n) \ll n$

Quadratic interpolation models

$$
M(\bar{\phi}, Y)=M=\left[\begin{array}{cccccccc}
1 & y_{1}^{1} & \cdots & y_{n}^{1} & \frac{1}{2}\left(y_{1}^{1}\right)^{2} & y_{1}^{1} y_{2}^{1} & \cdots & \frac{1}{2}\left(y_{n}^{1}\right)^{2} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
1 & y_{1}^{p} & \cdots & y_{n}^{p} & \frac{1}{2}\left(y_{1}^{p}\right)^{2} & y_{1}^{p} y_{2}^{p} & \cdots & \frac{1}{2}\left(y_{n}^{p}\right)^{2}
\end{array}\right]
$$

Need $\mathrm{p}=(\mathrm{n}+1)(\mathrm{n}+2) / 2$ sample points!!!

Interpolation model:

$$
\text { find } \alpha: M \alpha=f(Y)
$$

$$
\begin{aligned}
m(x)=\sum_{i=1}^{q} \alpha_{i} \bar{\phi}_{i}(x)=\frac{1}{2} x^{\top} H x+g^{\top} x+\kappa & \bullet g=\left(\alpha_{2}, \ldots, \alpha_{n+1}\right) \\
& \bullet H_{i j}=\alpha_{n+(i-1) * n+j+1}
\end{aligned}
$$

Example of a model with sparse Hessian

Colson, Toint

$$
\begin{gathered}
\min f(x)=\sum_{i}^{n}\left(\left(x_{i}^{2}-x_{n}^{2}\right)^{2}-4 x_{i}\right) \\
\nabla_{i j}^{2} f(x)=0, \quad \forall i \neq j, j \neq n
\end{gathered}
$$

α has only $2 n+n$ nonzeros

Can we recover the sparse α using less than $O(n)$ points?

Sparse quadratic interpolation models

Recover sparse α
min
α
s.t.

$$
\left\|\alpha_{Q}\right\|_{1}
$$

$$
M_{L} \alpha_{L}+M_{Q} \alpha_{Q}=f(Y)
$$

$m(x)=\frac{1}{2} x^{\top} H x+g^{\top} x+\kappa$

- $\alpha_{L} \rightarrow(k, g)$
- $\alpha_{Q} \rightarrow H$

Does RIP hold for this matrix?

Does RIP hold for this matrix?

Actually we need RIP for M_{Q} and some other property on M_{L}

Using results from random matrix theory

 (Raunut, Bandeira, S. \& Vincente) $M(\bar{\phi}, Y)=M=\left[\begin{array}{ccccccc}\overbrace{1}^{1} & y_{1}^{1} & \cdots & y_{n}^{1} & \overbrace{\frac{1}{2}\left(y_{1}^{1}\right)^{2}} & y_{1}^{1} y_{2}^{1} & \cdots \\ \vdots & \vdots & & \vdots & \frac{1}{2}\left(y_{n}^{1}\right)^{2} \\ \vdots & y_{1}^{p} & \cdots & \vdots & \vdots & \vdots & \vdots \\ 1 & y_{n}^{p} & \frac{1}{2}\left(y_{1}^{p}\right)^{2} & y_{1}^{p} y_{2}^{p} & \cdots & \frac{1}{2}\left(y_{n}^{p}\right)^{2}\end{array}\right]$
Yes, with high probability, when Y is random and $p=O\left((n+s)(\log n)^{4}\right)$

Note: $p=O\left((n+s)(\log n)^{4}\right) \ll n^{2}$ (sometimes)

For more detailed analysis see Afonso Bandeira's talk

Model-based method on 2-dimensional Rosenbrock function lifted into 10 dimensional space

Consider $f\left(x_{1}, x_{2}, \ldots, x_{10}\right)=\operatorname{Rosenbrock}\left(x_{1}, x_{2}\right)$

To build full quadratic interpolation we need 66 points. We test two methods:

1. Deterministic model-based TR method: builds a model using whatever points it has on hand up to 66 in the neighborhood of the current iterate, using MFN Hessian models (standard reliable good approach).
2. Random model based TR method: builds sparse models using 31 randomly sampled points.

Deterministic MFN model based method

Random sparse model based method

Comparison of sparse vs MFN models (no randomness) within TR on CUTER problems

Algorithms based on random models

- We now forget about sample sets and how we build the models.
- We focus on properties of the models that are essential for convergence.
- Ensure that those properties are satisfied by models we just discussed.

What do we need from a deterministic model for convergence?

We need Taylor-like behavior of first-order models
A model is called κ-fully-linear in $B(x, \Delta)$, for $\kappa=\left(\kappa_{e f}, \kappa_{e g}\right)$ if

$$
\begin{gathered}
\|\nabla f(x+s)-\nabla m(x+s)\| \leq \kappa_{e g} \Delta, \quad \forall s \in B(0 ; \Delta) \\
|f(x+s)-m(x+s)| \leq \kappa_{e f} \Delta^{2}, \quad \forall s \in B(0 ; \Delta)
\end{gathered}
$$

What do we need from a model to explore the curvature?

We may want Taylor-like behavior of second-order models
A model is called κ-fully-quadratic in $B(x, \Delta)$ for $\kappa=\left(\kappa_{e f}, \kappa_{e g}, \kappa_{e h}\right)$ if

$$
\begin{gathered}
\left\|\nabla^{2} f(x+s)-\nabla^{2} m(x+s)\right\| \leq \kappa_{e h} \Delta, \quad \forall s \in B(0 ; \Delta) \\
\|\nabla f(x+s)-\nabla m(x+s)\| \leq \kappa_{e g} \Delta^{2}, \quad \forall s \in B(0 ; \Delta) \\
|f(x+s)-m(x+s)| \leq \kappa_{e f} \Delta^{3}, \quad \forall s \in B(0 ; \Delta)
\end{gathered}
$$

What do we need from a random model for convergence?

We need likely Taylor-like behavior of first-order models
A random model is called (κ, δ)-fully-linear in $B(x, \Delta)$ if

$$
\begin{gathered}
\|\nabla f(x+s)-\nabla m(x+s)\| \leq \kappa_{e g} \Delta, \quad \forall s \in B(0 ; \Delta), \\
|f(x+s)-m(x+s)| \leq \kappa_{e f} \Delta^{2}, \quad \forall s \in B(0 ; \Delta),
\end{gathered}
$$

with probability at least $1-\delta$.

What do we need from a random model to explore curvature?

We need likely Taylor-like behavior of second order models
A random model is called (κ, δ)-fully-quadratic in $B(x, \Delta)$ if

$$
\begin{gathered}
\left\|\nabla^{2} f(x+s)-\nabla^{2} m(x+s)\right\| \leq \kappa_{e h} \Delta, \quad \forall s \in B(0 ; \Delta), \\
\|\nabla f(x+s)-\nabla m(x+s)\| \leq \kappa_{e g} \Delta^{2}, \quad \forall s \in B(0 ; \Delta), \\
|f(x+s)-m(x+s)| \leq \kappa_{e f} \Delta^{3}, \quad \forall s \in B(0 ; \Delta),
\end{gathered}
$$

with probability at least $1-\delta$.

What random models have such properties?

- Linear interpolation and regression models based on random sample sets of $n+1$ points are ($\kappa, \delta)$)-fully-linear.
- Quadratic interpolation and regression models based on random sample sets of $(n+1)(n+1) / 2$ points are (κ, δ) -fully-quadratic.
- Sparse linear interpolation and reg. models based on smaller random sample sets are (κ, δ)-fully-linear.
- Sparse quadratic interpolation and reg. models based on smaller random sample sets are (κ, δ)-fully-quadratic.
> Taylor models based on finite difference derivative evaluations with asynchronous faulty parallel function evaluations are (κ, δ)-FL or FQ.
- Gradient sampling models? Other examples?

Basic Trust Region Algorithm

Model selection

Pick a random model $m_{k}(x)$ which is κ-fully-linear in $B\left(x_{k}, \Delta_{k}\right)$ w.p. $1-\delta$.
Compute potential step
Compute a point x^{+}which minimizes (reduces) $m(x)$ in $B\left(x_{k}, \Delta_{k}\right)$.
Compute $f\left(x^{+}\right)$and check if f is reduced comparably to m by x^{+}.
Successful step
If yes and if the radius Δ_{k} is not too big compared to $\nabla m_{k}\left(x_{k}\right)$ then we take the step and increase Δ_{k} by a constant factor.

Unsuccessful step
Otherwise, decrease Δ_{k} by the constant factor and repeat the iteration.

Convergence results for the basic TR framework

If models are fully linear with prob. $1-\delta>0.5$ then with probability one $\lim \left\|\nabla f\left(x_{k}\right)\right\|=0$

If models are fully quadratic w. p. $1-\delta>0.5$ then with probability one
liminf max $\left\{\left|\mid \nabla f\left(x_{k}\right) \|, \lambda_{\text {min }}\left(\nabla^{2} f\left(x_{k}\right)\right)\right\}=0\right.$

For lim result δ need to decrease occasionally

For details see Afonso Bandeira's talk on Tue 15:15-16:45, room: H 3503

Intuition behind the analysis shown through line search ideas

When $m(x)$ is linear ~ line search instead of Δ_{k} use $\alpha_{k}\left\|\nabla m_{k}\left(x_{k}\right)\right\|$

Model selection step
Pick a random model $m_{k}(x)=f\left(x_{k}\right)+g_{k}^{\top}\left(x-x_{k}\right)$
κ-fully-linear in $B\left(x_{k}, \alpha_{k}\left\|g_{k}\right\|\right)$ w.p. $1-\delta$.
Compute Step
$x^{+}=x_{k}-\alpha_{k} g_{k}$. Check if f is sufficiently reduced an x^{+}.
Successful step
If yes accept x^{+}as the new iterate.
Increase α_{k} by a constant factor if not too large.
Unsuccessful step
Otherwise decrease α_{k} by the constant factor. Repeat the iteration.

Random directions vs. random fully linear model gradients

Key observation for line search convergence

If m_{k} is κ-fully linear and ∇f is L-Lipschitz continuous then when α_{k} is small enough (i.e. $\alpha_{k} \leq(1-\theta) /(L / 2+\kappa)$)

$$
f\left(x^{+}\right)=f\left(x_{k}-\alpha_{k} g_{k}\right) \leq f\left(x_{k}\right)-\alpha_{k} \theta\left\|g_{k}\right\|^{2}
$$

Successful step!

Analysis of line search convergence

Assume m_{k} is always κ-fully linear

$$
\begin{gathered}
\alpha_{k} \geq C \forall k \\
\quad \text { and }
\end{gathered}
$$

C is a constant depending on κ, θ, L, etc

$$
\text { if }\left\|\nabla f\left(x_{k}\right)\right\| \geq \epsilon \text { then }\left\|g_{k}\right\| \geq \epsilon / 2
$$

$$
f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \frac{C \theta \epsilon^{2}}{4}
$$

Convergence!!

Analysis of line search convergence

Assume m_{k} is almes κ-fully linear w.p. $\geq 1-\delta$

$$
\begin{gathered}
\alpha_{k} \geq \\
\text { and } \\
\text { if }\left\|\nabla f\left(x_{k}\right)\right\| \geq \epsilon \text { then }\left\|g_{k}\right\| \geq \epsilon / 2 \quad \text { w.p. } \geq 1-\delta
\end{gathered}
$$

success

$$
\begin{gathered}
f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \frac{\alpha_{k} \theta \epsilon^{2}}{4} \quad \text { w.p. } \geq 1-\delta \\
\alpha_{k+1}=\gamma \alpha_{k}
\end{gathered}
$$

no success

$$
\alpha_{k+1}=\gamma^{-1} \alpha_{k} \quad \text { w.p. } \leq \delta
$$

Analysis via martingales

Analyze two stochastic processes: X_{k} and Y_{k} :

$$
\begin{aligned}
& X_{k+1}= \begin{cases}\min \left\{C, \gamma X_{k}\right\} & \text { w.p. } 1-\delta \\
\gamma^{-1} X_{k} & \text { w.p. } \delta\end{cases} \\
& Y_{k+1}= \begin{cases}Y_{k}+X_{k} \theta \epsilon^{2} / 4 & \text { w.p. } 1-\delta \\
Y_{k} & \text { w.p. } \delta\end{cases}
\end{aligned}
$$

We observe that

$$
\begin{gathered}
\alpha_{k} \geq X_{k} \\
f\left(x_{0}\right)-f\left(x_{k}\right) \geq Y_{k}
\end{gathered}
$$

If random models are independent of the past, then X_{k} and Y_{k} are random walks, otherwise they are submartingales if $\delta \leq 1 / 2$.

Analysis via martingales

Analyze two stochastic processes: X_{k} and Y_{k} :

$$
\begin{aligned}
& X_{k+1}= \begin{cases}\min \left\{C, \gamma X_{k}\right\} & \text { w.p. } 1-\delta \\
\gamma^{-1} X_{k} & \text { w.p. } \delta\end{cases} \\
& Y_{k+1}= \begin{cases}Y_{k}+X_{k} \theta \epsilon^{2} / 4 & \text { w.p. } 1-\delta \\
Y_{k} & \text { w.p. } \delta\end{cases}
\end{aligned}
$$

We observe that

$$
\begin{gathered}
\alpha_{k} \geq X_{k} \\
f\left(x_{0}\right)-f\left(x_{k}\right) \geq Y_{k}
\end{gathered}
$$

X_{k} does not converge to 0 w.p. $1=>$ algorithm converges Expectations of Y_{k} and X_{k} will facilitate convergence rates.

Behavior of X_{k} for $\gamma=2, \mathrm{C}=1$ and $\delta=0.45$

Future work

- Convergence rates theory based on random models.
- Extend algorithmic random model frameworks.
- Extending to new types of models.
- Recovering different types of function structure.
- Efficient implementations.

Thank you!

Analysis of line search convergence

If m_{k} is κ-fully linear

$$
\left\|g_{k}-\nabla f\left(x_{k}\right)\right\| \leq \kappa \Delta_{k}=\kappa \alpha_{k}\left\|g_{k}\right\|
$$

If ∇f is L-Lipschitz continuous and $\alpha_{k} \leq(1-\theta) /(L / 2+\kappa)$

$$
\begin{aligned}
& \qquad f\left(x_{k}-\alpha_{k} * g_{k}\right) \leq f\left(x_{k}\right)-\alpha_{k} \theta\left\|g_{k}\right\|^{2} \\
& \text { If }\left\|\nabla f\left(x_{k}\right)\right\| \geq \epsilon \text { then }\left\|g_{k}\right\| \geq \epsilon / 2 \text { and } \\
& \qquad f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \frac{\alpha_{k} \theta \epsilon^{2}}{4}
\end{aligned}
$$

Hence only so many line search steps are needed to get a small gradient

Analysis of line search convergence

If m_{k} is κ-fully linear

$$
\left\|g_{k}-\nabla f\left(x_{k}\right)\right\| \leq \kappa \Delta_{k}=\kappa \alpha_{k}\left\|g_{k}\right\|
$$

If ∇f is L-Lipschitz continuous and $\alpha_{k} \leq(1-\theta) /(L / 2+\kappa)$

$$
\begin{aligned}
& \qquad f\left(x_{k}-\alpha_{k} * g_{k}\right) \leq f\left(x_{k}\right)-\alpha_{k} \theta\left\|g_{k}\right\|^{2} \\
& \text { If }\left\|\nabla f\left(x_{k}\right)\right\| \geq \epsilon \text { then }\left\|g_{k}\right\| \geq \epsilon / 2 \text { and } \\
& \qquad f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \frac{\alpha_{k} \theta \epsilon^{2}}{4}
\end{aligned}
$$

We assumed that $m_{k}(x)$ is κ-fully-linear every time.

