Optimization Methods in Machine Learning

 Lecture 22

 Lecture 22}

Katya Scheinberg
Lehigh University
katyas@lehigh.edu

Splitting, alternating linearization and alternating direction methods

Augmented Lagrangian

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x)=0, i=1, \ldots, m
\end{array}
$$

Augmented Lagrangian function

$$
L(x, y)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{m} \frac{1}{2 \mu_{i}}\left\|f_{i}(x)\right\|^{2}
$$

Augmented Lagrangian method
For $k=1,2, \ldots$
$x^{k}=\operatorname{argmin}_{x} L\left(x, \lambda^{k}\right)$
$\lambda_{i}^{k+1}=\lambda_{i}^{k}-\frac{1}{\mu_{i}} f_{i}\left(x^{k}\right), i=1, \ldots, m$

Alternating directions (splitting) method

- Consider:

$$
\begin{array}{rl}
\min _{x} F(x) & =f(x)+g(x) \\
& \int \\
\min _{x, y} & f(x)+g(y) \\
\text { s.t. } & y=x
\end{array}
$$

- Relax constraints via Augmented Lagrangian technique

$$
\min _{x, y} f(x)+g(y)+\lambda^{\top}(y-x)+\frac{1}{2 \mu}\|y-x\|^{2}=Q_{\lambda}(x, y)
$$

Assume that $f(x)$ and $g(y)$ are both such that the above functions are easy to optimize in x or y

Alternating direction method (ADM)

- $x^{k+1}=\min _{x} Q_{\lambda}\left(x, y^{k}\right)$
- $y^{k+1}=\min _{y} Q_{\lambda}\left(x^{k+1}, y\right)$
- $\lambda^{k+1}=\lambda^{k}+\frac{1}{\mu}\left(y^{k+1}-x^{k+1}\right)$

Widely used method without complexity bounds

Combettes and Wajs, '05
Eckstein and Bertsekas, '92,
Eckstein and Svaiter, ' 08
Glowinski and Le Tallec, '89
Kiwiel, Rosa, and Ruszczynski, ' 99
Lions and Mercier '79

A slight modification of ADM

- $x^{k+1}=\min _{x} Q_{\lambda}\left(x, y^{k}\right)$
- $\lambda^{k+\frac{1}{2}}=\lambda^{k}+\frac{1}{\mu}\left(y^{k}-x^{k+1}\right)$
- $y^{k+1}=\min _{y} Q_{\lambda}\left(x^{k+1}, y\right)$
- $\lambda^{k+1}=\lambda^{k+\frac{1}{2}}+\frac{1}{\mu}\left(y^{k+1}-x^{k+1}\right)$

This turns out to be equivalent to.

Alternating linearization method (ALM)

- $x^{k+1}=\min _{x} Q_{g}\left(x, y^{k}\right)$
- $y^{k+1}=\min _{y} Q_{f}\left(x^{k+1}, y\right)$

$$
\begin{aligned}
& Q_{g}(x, y)=f(x)+\nabla g(y)^{\top}(x-y)+\frac{1}{2 \mu}\|y-x\|^{2}+g(y) \\
& Q_{f}(x, y)=f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2 \mu}\|y-x\|^{2}+g(y)
\end{aligned}
$$

Convergence rate for ALM

- $x^{k+1}=\min _{x} Q_{g}\left(x, y^{k}\right)$
- $y^{k+1}=\min _{y} Q_{f}\left(x^{k+1}, y\right)$

Th: If $\mu \leq 1 / L$ then in $O(L / \epsilon)$ iterations finds ϵ-optimal solution

Convergence rate for fast ALM

- $x^{k}:=\min _{x} Q_{g}\left(x, z^{k}\right)$
- $y^{k}:=\min _{y} Q_{f}\left(x^{k}, y\right)$
- $t_{k+1}:=\left(1+\sqrt{1+4 t_{k}^{2}}\right) / 2$
- $z^{k+1}:=y^{k}+\frac{t_{k}-1}{t_{k+1}}\left[y^{k}-y^{k-1}\right]$

Th: If $\mu \leq 1 / L$ then in $O(\sqrt{L / \epsilon})$ iterations finds ϵ-optimal solution

Alternating linearization method for nonsmooth g

$$
\min _{x} F(x)=\min _{x} f(x)+g(x)
$$

This is not true

$$
|\nabla f(x)-\nabla f(y)| \leq L\|x-y\|
$$ for $\|x\|_{1}!!!$

$Q_{g}(x, y)$ may not be an upper approximation of $\mathrm{F}(\mathrm{x})$!

Idea: with line search can accept different μ values, including zero, for g

Examples of applications of alternating linearization method

Sparse Inverse Covariance Selection

$$
\begin{gathered}
\underbrace{\max _{X \succ 0}(\operatorname{lndet}(X)-\operatorname{Tr}(A X))-\rho\|X\|_{1}}_{f(x)} \\
\underbrace{}_{g(x)} \\
X^{k+1}:=\operatorname{argmin}_{X}\left\{f(X)+\frac{1}{2 \mu_{k+1}}\left\|X-\left(Y^{k}+\mu_{k+1} \Lambda^{k}\right)\right\|_{F}^{2}\right\}
\end{gathered}
$$

Eigenvalue decomposition $O\left(n^{3}\right)$ ops. Same as one gradient of $f(X)$
$Y^{k+1}:=\operatorname{argmin}_{Y}\left\{g(Y)+\frac{1}{2 \mu_{k+1}}\left\|Y-\left(X^{k+1}-\mu_{k+1}\left(A-\left(X^{k+1}\right)^{-1}\right)\right)\right\|_{F}^{2}\right\}$
Shrinkage $\mathbf{O}\left(\mathbf{n}^{2}\right)$ ops

Sparse Inverse Covariance Selection

$$
\max _{X \succ 0}(\operatorname{lndet}(X)-\operatorname{Tr}(A X))-\lambda\|X\|_{1}
$$

$$
X^{k+1}:=\operatorname{argmin}_{X}\left\{f(X)+\frac{f(x)}{2 \mu_{k+1}}\left\|X-\left(Y^{k}+\mu_{k+1} \Lambda^{k}\right)\right\|_{F}^{2}\right\}
$$

$V \operatorname{Diag}(d) V^{\top}$ - the spectral decomposition of $Y^{k}+\mu_{k+1}\left(\Lambda^{k}-A\right)$

$$
\begin{gathered}
\gamma_{i}=\left(d_{i}+\sqrt{d_{i}^{2}+4 \mu_{k+1}}\right) / 2, \quad i=1, \ldots, p \\
X^{k+1}:=V \operatorname{Diag}(\gamma) V^{\top}
\end{gathered}
$$

Eigenvalue decomposition $O\left(n^{3}\right)$ ops. Same as one gradient of $f(X)$

Lasso or group Lasso

$$
\begin{gathered}
\underbrace{\min _{x}\|A x-b\|^{2}+\rho\|x\|_{1}}_{f(x)} \underbrace{}_{g(x)} \\
x^{k+1}:=\operatorname{argmin}_{x}\left\{f(x)+\frac{1}{2 \mu_{k+1}}\left\|x-\left(y^{k}+\mu_{k+1} \lambda^{k}\right)\right\|^{2}\right\}
\end{gathered}
$$

Eigenvalue decomposition $O\left(n^{3}\right)$ ops. Same as one gradient of $f(X)$

$$
y^{k+1}:=\operatorname{argmin}_{y}\left\{g(y)+\frac{1}{2 \mu_{k+1}}\left\|y-\left(x^{k+1}-\mu_{k+1} A^{\top}(A x-b)\right)\right\|^{2}\right\}
$$

Shrinkage O(n²) ops

Robust PCA

$$
\begin{gathered}
\begin{array}{c}
\min _{X}\|X\|_{*}+\underbrace{\rho\|M-X\|_{1}}_{g(x)} \\
\underbrace{}_{f(x)} \underbrace{k+1}:=\operatorname{argmin}_{X}\left\{f(X)+\frac{1}{2 \mu_{k+1}}\left\|X-\left(Y^{k}+\mu_{k+1} \Lambda^{k}\right)\right\|_{F}^{2}\right\}
\end{array}
\end{gathered}
$$

Eigenvalue decomposition $O\left(n^{3}\right)$ ops. Same as one gradient of $f(X)$

$$
\begin{gathered}
Y^{k+1}:=\operatorname{argmin}_{Y}\left\{g(Y)+\frac{1}{2 \mu_{k+1}}\left\|Y-\left(X^{k+1}-\mu_{k+1} \Lambda^{k+\frac{1}{2}}\right)\right\|_{F}^{2}\right\} \\
\text { Shrinkage } \mathbf{O}\left(\mathbf{n}^{2}\right) \text { ops }
\end{gathered}
$$

Recall Collaborative Prediction?

$$
\min _{X \in \mathrm{R}^{n \times m}} f(X)+\|X\|_{*}
$$

$$
\begin{gathered}
\min _{Y} Q_{f}(X, Y) \\
\min _{Y}\left[\frac{1}{2 \mu}\|Y-Z\|_{F}^{2}+\|Y\|_{*}\right] \\
Z=P \operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\} Q^{\top} \\
Y^{*}=P \operatorname{diag}\left\{\sigma_{1}^{*}, \sigma_{2}^{*}, \ldots, \sigma_{n}^{*}\right\} Q^{\top}, \sigma_{i}^{*}= \begin{cases}\sigma_{i}-\mu & \text { if } \sigma_{i}>\mu \\
\text { solution! } \\
0 & \text { if }-\mu \leq \sigma_{i} \leq \mu \\
\sigma_{i}+\mu & \text { if } \sigma_{i}<-\mu\end{cases}
\end{gathered}
$$

