Lecture 18 Optimization approaches to Sparse Regularized Regression

Least Squares Linear Regression

Lasso

Primal-Dual pair of problems

$$\min \quad \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1$$

$$\min \quad \frac{1}{2} x^{\top} A^{\top} A x \\ s.t. \quad \|A^{\top} (Ax - b)\|_{\infty} \le \lambda$$

Optimality Conditions

(i)
$$x_i < 0$$
, and $(A^{\top}(Ax - b))_i = \lambda$,
(ii) $x_i > 0$, and $(A^{\top}(Ax - b))_i = -\lambda$,
(iii) $x_i = 0$, and $-\lambda \le A^{\top}(Ax - b)_i \le \lambda$

An active set approach

Optimality Conditions

(i)
$$x_i < 0$$
, and $(A^{\top}(Ax - b))_i = \lambda$,
(ii) $x_i > 0$, and $(A^{\top}(Ax - b))_i = -\lambda$,
(iii) $x_i = 0$, and $-\lambda \leq A^{\top}(Ax - b)_i \leq \lambda$ - relax.

Given any x we partition $I = \{1, \ldots, n\}$ into I_p , I_n and I_z :

- $\forall i \in I_p \ x_i > 0.$
- $\forall i \in I_n \ x_i < 0.$
- $\forall i \in I_z \ x_i = 0.$

Active set approach

Given a partition
$$(x_p, x_n, x_z), x_z = 0.$$

min $\frac{1}{2} ||A_p x_p + A_n x_n - b||^2 + \lambda ||(x_p, x_n)||_1$

Check
$$||A^{\top}(A_{(p,n)}x_{(p,n)}-b)||_{\infty} \leq \lambda$$

Active set approach

$$\min \quad \frac{1}{2} ||A_p x_p + A_n x_n - b||^2 + \lambda \sum_{i \in I_p} x_i - \lambda \sum_{i \in I_n} x_i$$

- Get a solution (x_p^*, x_n^*) by solving a system of linear equations
- Check if $x_p^* > 0$, and $x_n^* < 0$, if yes, continue...
- If not, find

-

$$i^* = \operatorname{argmin} \{ \min_{i \in I_p: x_i^* < 0} x_i / (x_i - x_i^*), \min_{i \in I_n: x_n^* > 0} -x_i / (x_i^* - x_i) \}$$

- Move i^* to I_z , update I_p and I_n
- Repeat the step

Checking optimality, choosing next nonzero element Check $||A^{\top}(A_{(p,n)}x_{(p,n)}-b)||_{\infty} \leq \lambda$

• Given solution $(x_p, x_n, 0)$ we know

$$(A_p^{\top}(A_p x_p + A_n x_n - b))_i = \lambda,$$

$$(A_n^{\top}(A_p x_p + A_n x_n - b))_i = -\lambda,$$

• Check if

$$-\lambda \le (A_z^{\top}(A_p x_p + A_n x_n - b))_i \le \lambda$$

if true, then optimal solution is reached, otherwise...

- Choose $i^* = \operatorname{argmax}_{i \in I_z} \{-\min(A_z^{\top}(A_p x_p + A_n x_n b)) \max(A_z^{\top}(A_p x_p + A_n x_n b))\}$
- Move i^* into I_p or I_n according to the sign of $(A_z^{\top}(A_p x_p + A_n x_n b))_{i^*}$, update I_z .

Least angle regression

Choose I_p and I_n compute $x_{(n,p)}$ from (i) $i \in I_n$, and $(A^{\top}(A_p x_p + A_n x_n - b))_i = \lambda$, (ii) $i \in I_p$, and $(A^{\top}(A_p x_p + A_n x_n - b))_i = -\lambda$.

Least angle regression

$i \in I_z$, check $-\lambda \leq (A^{\top}(A_{(p,n)}x_{(p,n)}-b))_i \leq \lambda$

The largest $|A_i^{\top}r|$ is given by the column of A which makes the least angle with r or with -r - the largest positive or negative correlation.

If all angles are "big" (defined by λ) or r is small then we are done!

Lasso: $\hat{\beta}(\lambda) = \operatorname{argmin}_{\beta} \sum_{i=1}^{N} (y_i - \beta_0 - x_i^T \beta)^2 + \lambda ||\beta||_1$

Computing regularization path

Let us start with a very large λ and $I_z = \{1, \ldots, n\}, |(A^{\top}b)_i| \leq \lambda$

- Reduce λ until for some $i^* \in I_z$ $\lambda = |(A^{\top}b)|_{i^*}$ occurs.
- Move i^* into I_p or I_n according to the sign of $(A_z^{\top}(A_p x_p + A_n x_n b))_{i^*}$, update I_z .
- Keep reducing λ until either $\lambda = |(A^{\top}b)|_{i^*}$ for some $i^* \in I_z$ or for solution (x_p, x_n) which satisfies

$$(A_p^{\top}(A_p x_p + A_n x_n - b))_i = \lambda, \ i \in I_n$$
$$(A_n^{\top}(A_p x_p + A_n x_n - b))_i = -\lambda, \ I \in I_p$$

one of the components hits zero.

• Update I_z , I_p and I_n and proceed reducing λ .

Per iteration cost

Given a partition
$$(x_p, x_n, 0), |I_p \cup I_n| = k,$$

min $\frac{1}{2} ||A_{(p,n)} x_{(p,n)} - b||^2 + \lambda \sum_{i \in I_p} x_i - \lambda \sum_{i \in I_n} x_i$

Update factorization of $A_{(p,n)}^T A_{(p,n)}$ at each step - O(mk) Memory – O(k²)

Check
$$||A^{\top}(A_{(p,n)}x_{(p,n)}-b)||_{\infty} \leq \lambda$$

Compute $A^{T}(A_{(p,n)}x_{(p,n)})$: O(nm) (improved by "sifting")

Can be too costly to compute and to store.

Coordinate descent

Coordinate descent

Choose one variable x_i and column A_i . Let \bar{x} and \bar{A} correspond to the fixed part

$$\min_{x_i} \quad \frac{1}{2} ||A_i x_i + \bar{A}\bar{x} - b||^2 + \lambda |x_i|$$

Soft-thresholding operator

$$\min_{x_i} \frac{1}{2} (x_i - r)^2 + \lambda |x| \to x_i = \begin{cases} r - \lambda & \text{if } r > \lambda \\ 0 & \text{if } -\lambda \le r \le \lambda \\ r + \lambda & \text{if } r < -\lambda \end{cases}$$

$$r = -A_i^{\top} (\bar{A}\bar{x} - b) / ||A_i||^2, \ \lambda \to \lambda / ||A_i||^2$$

Given the scaled gradient

$$r: r_i = A_i^{\top} (\bar{A}\bar{x} - b) / ||A_i||,$$

Can choose coordinate to update by:

•Simply cycle through all coordinates

- •Update all at once
- •Choose the one with largest gradient component
- •Choose the one with largest obj. function improvement
- •Choose coordinate at random

- Solve the lasso problem by coordinate descent: optimize each parameter separately, holding all the others fixed. Updates are trivial. Cycle around till coefficients stabilize.
- Do this on a grid of λ values, from λ_{max} down to λ_{min} (uniform on log scale), using warms starts.
- Can do this with a variety of loss functions and additive penalties.

Coordinate descent achieves dramatic speedups over all competitors, by factors of 10, 100 and more.

LARS and GLMNET

L1 Norm

First order methods

First-order proximal gradient methods

Consider:

$$\min_{x} f(x)$$

$$|\nabla f(x) - \nabla f(y)| \le L||x - y||$$

- Linear lower approximation $f(y) \ge f(x) + \nabla f(x)^{\top}(y-x)$
- Quadratic upper approximation $f(y) \le f(x) + \nabla f(x)^{\top}(y-x) + \frac{1}{2\mu}||y-x||^2 = Q_{f,\mu}(x,y)$

First-order proximal gradient method $\min_{x} f(x)$

Minimize quadratic upper approximation on each iteration

• If $\mu \leq 1/L$ then

$$f(x^{k+1}) \le f(x^k) + \frac{1}{2\mu} ||x^k - \mu \nabla f(x^k)^\top - x^{k+1}||^2 = Q_{f,\mu}(x^k, x^{k+1})$$

Accelerated first-order method

Nesterov, '83, '00s, Beck&Teboulle '09

$$\min_{x} f(x)$$

• Minimize upper approximation at an intermediate point.

$$x^{k+1} = y^k - \mu \nabla f(y^k)$$

$$y^{k+1} := x^k + \frac{k-1}{k+2} [x^k - x^{k-1}]$$

• If $\mu \leq$ 1/L then

$$f(x^k) - f(x^*) \le \frac{L \|x^0 - x^*\|}{2k^2}$$

Complexity of accelerated first-order method

Nesterov, '83, '00s, Beck&Teboulle '09

$$\min_x f(x)$$

• Minimize upper approximation at an intermediate point.

$$x^{k+1} = y^k - \mu \nabla f(y^k)$$

$$y^{k+1} := x^k + \frac{k-1}{k+2} [x^k - x^{k-1}]$$

• If $\mu \leq 1/L$ then in $O(\sqrt{\frac{L \|x^0 - x^*\|}{\epsilon}})$ iterations finds solution

$$\bar{x}: f(\bar{x}) \le f(x^*) + \epsilon$$

This method is optimal if only gradient information is used.

Prox method with nonsmooth term

Consider:
$$\min_{x} F(x) = f(x) + g(x)$$
$$|\nabla f(x) - \nabla f(y)| \le L||x - y|$$

Quadratic upper approximation

$$f(y) + g(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2\mu} ||y - x||^2 + g(y) = Q_{f,\mu}(x, y)$$

$$F(y) \le f(x) + \frac{1}{2\mu} ||x - \mu \nabla f(x)^{\top} - y||^2 + g(y) = Q_{f,\mu}(x, y)$$

Assume that g(y) is such that the above function is easy to optimize over y

First-order method for nonsmooth functions

$$\min_{x} F(x) = f(x) + g(x)$$

• Minimize quadratic upper relaxation on each iteration

$$x^{k+1} = \operatorname{argmin}_{y} Q_{f}(x^{k}, y) = f(x^{k}) + \frac{1}{2t} ||x^{k} - \mu \nabla f(x^{k})^{\top} - y||^{2} + g(y)$$

• If $\mu \leq 1/L$ then in $O(1/\epsilon)$ iterations finds solution

$$\bar{x}: F(\bar{x}) \le F(x^*) + \epsilon$$

Beck&Teboulle, Tseng, Auslender&Teboulle, 2008 Fast-first order methods

$$\min_{x} F(x) = f(x) + g(x)$$

• Minimize a upper approximation at an intermediate point.

 $x^{k+1} = \operatorname{argmin}_{y} Q_f(\boldsymbol{y^k}, y)$

$$y^{k+1} = x^k + \frac{k-1}{k+2}(x^{k+1} - x^k)$$

• If $\mu \leq 1/L$ then in $O(1/\sqrt{\epsilon})$ iterations finds solution

$$\bar{x}: F(\bar{x}) \le F(x^*) + \epsilon$$

Beck&Teboulle, Tseng, 2008

g(y) in sparse regression

Minimize upper approximation function Q_f(x, y) on each iteration

Gradient method for Lasso

$$\nabla f(x) = A^{\top}(Ax - b)$$

$$x^{k+1} = \min_{y} (Ax^{k} - b)^{\top} A(x^{k} - y) + \frac{1}{2t} ||x^{k} - y||^{2} + \lambda ||y||_{1}$$

$$x^{k+1} = \min_{y} \frac{1}{2t} ||(x^k - tA^\top (Ax^k - b)) - y||^2 + \lambda ||y||_1$$

2 matrix/vector multiplications + shrinkage operator per iteration

 $O(1/\epsilon)$ iteration bound

Sparse logistic regression

$$f(w,\beta) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i(w^{\top} x_i + \beta)))$$

 $\min_{w,\beta} f(w,\beta) + \lambda \|w\|_1$

$$w^{k+1} = \min_{v} \frac{1}{2\mu} ||(w^k - \mu \nabla_w f(w^k, \beta) - v)||^2 + \lambda ||v||_1$$

A gradient computation + shrinkage operator per iteration O(1/ ϵ) iteration bound

Example 2 (Group Lasso)
$$\min_{x} f(x) + \sum_{i} ||x_{i}||, \ x_{i} \in \mathbb{R}^{n_{i}}$$

• Very similar to the previous case, but with ||.|| instead of |.|

$$\sum_{i} \min_{y_i \in \mathbb{R}^{n_i}} \left[\frac{1}{2t} (y_i - r_i)^2 + ||y_i|| \right]$$

$$\widehat{\downarrow}$$

$$y_i^* = \frac{r_i}{||r_i||} \max(0, ||r_i|| - \mu)$$
Closed form solution!
$$O(n) \text{ effort}$$

SIMPLIFIED ACTIVE SET (EXTRA SLIDES)

Optimality Conditions

(i)
$$x_i < 0$$
, and $(A^{\top}(Ax - b))_i = \lambda$,
(ii) $x_i > 0$, and $(A^{\top}(Ax - b))_i = -\lambda$,
(iii) $x_i = 0$, and $-\lambda \leq A^{\top}(Ax - b)_i \leq \lambda$ - relax.

Given any x we partition $I = \{1, ..., n\}$ into B and N:

- $\forall i \in B \ x_i \neq 0.$
- $\forall i \in N \ x_i = 0.$

Active set approach

Given a partition
$$(x_B, x_N), x_N = 0.$$

min $\frac{1}{2} ||A_B x_B - b||^2 + \lambda ||x_B||_1$

Check
$$||A^{\top}(A_B x_B - b)||_{\infty} \leq \lambda$$

Choose B and compute x_B from (i) $x_i < 0$, and $(A^{\top}(A_B x_B - b))_i = \lambda$, (ii) $x_i > 0$, and $(A^{\top}(A_B x_B - b))_i = -\lambda$.

(i) $x_i < 0$, and $(A^{\top}(A_B x_B - b))_i = \lambda$, (ii) $x_i > 0$, and $(A^{\top}(A_B x_B - b))_i = -\lambda$, (iii) $x_i = 0$, and $-\lambda \leq A^{\top}(A_B x_B - b)_i \leq \lambda$ - relax.

The largest $|A_i^{\top}r|$ is given by the column of A which makes the least angle with r or with -r - the largest positive or negative correlation.

Update factorization of $A_B^T A_B^R$: O(mk) if $A_B \in R^{m \times k}$

Check
$$||A^{\top}(A_B x_B - b)||_{\infty} \leq \lambda$$

Compute $A^{T}(A_{B}x_{B})$: O(nm) (can be improved in practice)

Can be too costly to compute and to store. We'll now see how to avoid any matrix factorizations

