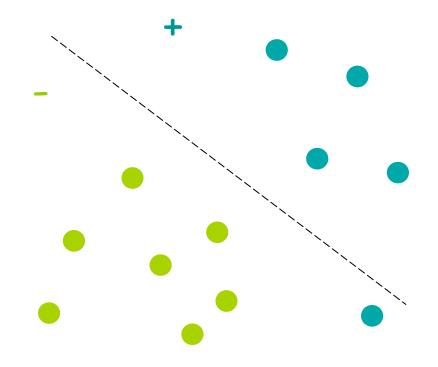
Optimization Methods in Machine Learning

> Lecture 12, IPMs for SVMs

An Interior Point Method for SVM

Support Vector Machines



Optimization Problem

Two sets of points: $X_+ \subset \mathbf{R}^p$ and $X_- \subset \mathbf{R}^p$ Total number of points: n

$$\min_{\xi,w,\beta} \qquad \frac{1}{2}w^{\top}w + c\sum_{i=1}^{n}\xi_{i}$$

s.t.
$$-y_{i}(w^{\top}x_{i} + \beta) \leq -1 + \xi_{i}, \quad i = 1, \dots, n$$
$$\xi \geq 0, \qquad i = 1, \dots, n.$$

T 7

$$y_i = 1$$
 if $x_i \in X_+$
 $y_i = -1$ if $x_i \in X_-$

Optimization Problem

At optimality $w^* = \sum_{i=1}^n \alpha_i y_i x_i, \quad 0 \le \alpha_i \le c$

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\xi}} \qquad \frac{1}{2} \boldsymbol{\alpha}^{\mathsf{T}} Q \boldsymbol{\alpha} + c \sum_{i=1}^{n} \xi_{i}$$

s.t.
$$-Q \boldsymbol{\alpha} + y \boldsymbol{\beta} + s_{i} - \xi_{i} = -1, \quad i = 1, \dots, n$$
$$s_{i} \ge 0, \xi \ge 0, \mathbf{0} \le \boldsymbol{\alpha}_{i} \le \mathbf{c}, \qquad i = 1, \dots, n,$$
$$\boldsymbol{\Omega} := D \ \boldsymbol{X} \boldsymbol{X}^{\mathsf{T}} D \quad \Leftrightarrow \quad \boldsymbol{\Omega} := u \cdot u \cdot \boldsymbol{x} \cdot^{\mathsf{T}} \boldsymbol{x} \cdot$$

$$Q := D_y X X^\top D_y \quad \Leftrightarrow \quad Q_{ij} = y_i y_j x_i^\top x_j$$

$$\begin{split} \min_{\alpha} & \quad \frac{1}{2} \alpha^{\top} Q \alpha - e^{\top} \alpha \\ \text{s.t.} & \quad y^{\top} \alpha = 0, \\ & \quad 0 \leq \alpha \leq c, \end{split}$$

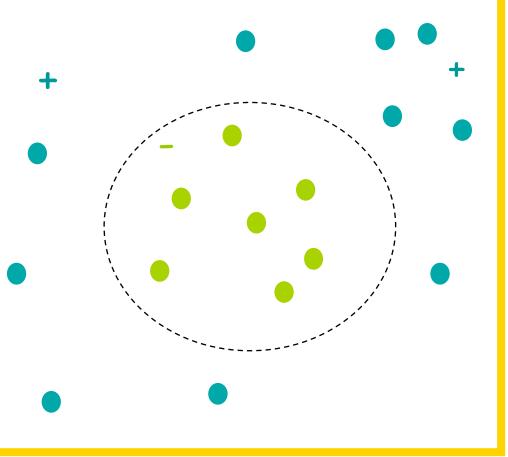
Kernel SVM

$$Q_{ij} = y_i y_j x_i^{\top} x_j \rightarrow Q_{ij} = y_i y_j \phi(x_i)^{\top} \phi(x_j) = y_i y_j K(x_i, x_j)$$

Kernel operation: $K(x_i, x_j) = \phi(x_i)^{\top} \phi(x_j)$

Examples:

- $K(x_i, x_j) = \exp^{-||x_i x_j||^2/2\sigma^2}$
- $K(x_i, x_j) = (x_i^{\top} x_j / a_1 + a_2)^d$



Optimality Conditions

Dual problem

$$\begin{split} \min_{\alpha} & \quad \frac{1}{2} \alpha^{\top} Q \alpha - e^{\top} \alpha \\ \text{s.t.} & \quad y^{\top} \alpha = 0, \\ & \quad 0 \leq \alpha \leq c, \end{split}$$

KKT conditions

$$\begin{aligned} \alpha_i s_i &= 0, \quad i = 1, \dots, n, \\ (c - \alpha_i)\xi_i &= 0, \quad i = 1, \dots, n, \\ y^\top \alpha &= 0, \\ -Q\alpha + y\beta + s - \xi &= -e, \\ 0 &\leq \alpha \leq c, \ s \geq 0, \ \xi \geq 0. \end{aligned}$$

Interior Point methods

Relaxed KKT conditions

$$\alpha_{i}s_{i} = \mu, \quad i = 1, ..., n,$$

 $(c - \alpha_{i})\xi_{i} = \mu \quad i = 1, ..., n,$
 $y^{\top}\alpha = 0,$
 $-Q\alpha + y\beta + s - \xi = -e,$
 $0 < \alpha < c, \ s > 0, \ \xi > 0.$

A Newton step of IPM

Linearize perturbed KKT conditions

$$\alpha_i \Delta s_i + s_i \Delta \alpha_i = \mu - s_i \alpha_i, \quad i = 1, \dots, n,$$

$$(c - \alpha_i) \Delta \xi_i - \xi \Delta \alpha_i = \mu - (c - \alpha_i) \xi_i \quad i = 1, \dots, n,$$

$$y^{\top} \Delta \alpha = -y^{\top} \alpha,$$

$$-Q \Delta \alpha + y \Delta \beta + \Delta s - \Delta \xi = -e + Q \alpha - y \beta - s + \xi,$$

Let $\mathcal{A} = diag(\alpha), S = diag(S)$ and $\Xi = diag(\xi)$

$$\begin{split} \Delta s &= \mathcal{A}^{-1} \mu e - s - \mathcal{A}^{-1} S \Delta \alpha, \\ \Delta \xi &= (C - \mathcal{A})^{-1} \mu e - \xi + (C - \mathcal{A})^{-1} \Xi \Delta \alpha, \\ y^{\top} \Delta \alpha &= -y^{\top} \alpha, \\ -Q \Delta \alpha + y \Delta \beta + \Delta s - \Delta \xi &= -e + Q \alpha - y \beta - s + \xi, \end{split}$$

Solving the linear system

$$y^{\top} \Delta \alpha = -y^{\top} \alpha,$$

-Q\Delta\alpha + y\Delta\beta + \mathcal{A}^{-1}\mu\epsilon - s - \mathcal{A}^{-1} S\Delta\alpha - (C - \mathcal{A})^{-1}\mu\epsilon - \xi - (C - \mathcal{A})^{-1} \epsilon \Delta\alpha
= -e + Q\alpha - y\beta - s + \xi,

$$y^{\top} \Delta \alpha = -y^{\top} \alpha,$$

-(Q + A⁻¹S + (C - A)⁻¹ \Empirical{\Delta}\Delta + y\Delta \beta
= -e + Q\alpha - y\beta - A^{-1}\mu e + (C - A)^{-1}\mu e,

Solving the linear system

$$\begin{bmatrix} y^{\top} & 0 \\ -(Q + \mathcal{A}^{-1}S + (C - \mathcal{A})^{-1}\Xi) & y \end{bmatrix} \begin{pmatrix} \Delta \alpha \\ \Delta \beta \end{pmatrix} = \begin{pmatrix} -y^{\top} \alpha \\ -e + Q\alpha - y\beta - \mathcal{A}^{-1}\mu e + (C - \mathcal{A})^{-1}\mu e \end{pmatrix}$$

 $[y^{\top}(Q + \mathcal{A}^{-1}S + (C - \mathcal{A})^{-1}\Xi)^{-1}y]\Delta\beta = -y^{\top}\alpha + y^{\top}(Q + \mathcal{A}^{-1}S + (C - \mathcal{A})^{-1}\Xi)^{-1}(-e + Q\alpha - y\beta - \mathcal{A}^{-1}\mu e - (C - \mathcal{A})^{-1}\mu e)$

Forming storing inverting matrices

Need to compute Q+D and solve a system of lin equation with it (factorize)

$$Q_{\mathbf{i}\mathbf{j}} = y_{\mathbf{i}}y_{\mathbf{j}}K(x_{\mathbf{i}}, x_{\mathbf{j}})$$

Q is $n \times n$, typically dense matrix

•
$$K(x_i, x_j) = \exp^{-||x_i - x_j||^2/2\sigma^2}$$

•
$$K(x_i, x_j) = (x_i^{\top} x_j / a_1 + a_2)^d$$

Q+D has to be factorized at each iteration $-O(n^3)$ flops

Scherman-Morrison-Woodbury formula

 $(M + UV^{\top})^{-1} = M^{-1} - M^{-1}U(I + V^{\top}M^{-1}U)^{-1}V^{\top}M^{-1}$

Let
$$Q_{ij} = y_i y_j \phi(x_i)^\top \phi(x_j) \Rightarrow Q = V V^\top$$

k = the number of columns in V is the dimension of feature space - $\phi(x)$

$$\begin{split} (D + VV^{\top})^{-1} &= D^{-1} - D^{-1}V(I + V^{\top}D^{-1}V)^{-1}V^{\top}D^{-1}\\ & \text{O(n)} & \text{O(nk)} & \text{O(k^{2}n)} & \text{O(nk)} \end{split}$$

Per iteration complexity is O(nk²) and storage is O(nk)

Return to the linear formulation

$$\min_{\xi, w, \beta} \qquad \frac{1}{2} w^{\top} w + c \sum_{i=1}^{n} \xi_i$$
s.t.
$$-y_i (w^{\top} x_i + \beta) \leq -1 + \xi_i, \quad i = 1, \dots, n$$

$$\xi \geq 0, \qquad i = 1, \dots, n.$$

$$L(w, b, \alpha, \xi) = \frac{1}{2}w^{\top}w + c\sum_{i=1}^{n} \xi_{i} - \sum_{i} \alpha_{i}(y_{i}(w^{\top}x_{i} + \beta) - 1 + \xi_{i}) - \nu^{\top}\xi$$

$$\nabla_{w}L = w - \sum_{i=1}^{n} \alpha_{i}y_{i}x_{i} = 0$$
$$\nabla_{\xi}L = c - \alpha - \nu = 0$$
$$\nabla_{\beta}L = y^{\top}\alpha = 0$$
$$\alpha \ge 0, \quad \nu \ge 0$$

Optimality Conditions

Perturbed KKT conditions

$$\begin{aligned} &\alpha_{i}s_{i} = \mu, \quad i = 1, \dots, n, \\ &(c - \alpha_{i})\xi_{i} = \mu, \quad i = 1, \dots, n, \\ &y^{\top}\alpha = 0, \\ &w - \sum_{i=1}^{n} \alpha_{i}y_{i}x_{i} = 0, \\ &-y_{i}(w^{\top}x_{i} + \beta) + s_{i} - \xi_{i} = -1, \quad i = 1, \dots, n, \\ &0 < \alpha < c, \ s > 0, \ \xi < 0. \end{aligned}$$

Or in vector matrix terms...

Perturbed KKT conditions

$$\begin{aligned} \mathcal{A}s &= \mu e, \\ (C - \mathcal{A})\xi &= \mu e \\ y^{\top} \alpha &= 0, \\ w - (YX)^{\top} \alpha &= 0, \\ -YXw - y\beta + s - \xi &= -e \end{aligned}$$

$$\mathcal{A}\Delta s + S\Delta \alpha = \mu e - \mathcal{A}s$$

$$(C - \mathcal{A})\Delta \xi - \Xi \Delta \alpha = \mu e - (C - \mathcal{A})\xi$$

$$y^{\top}\Delta \alpha = -y^{\top}\alpha,$$

$$\Delta w - (YX)^{\top}\Delta \alpha = -w + (YX)^{\top}\alpha,$$

$$-YX\Delta w - y\Delta \beta + \Delta s - \Delta \xi = -e - YXw - y\beta - s + \xi$$

$$\downarrow$$

$$\psi^{\top}\Delta \alpha = -y^{\top}\alpha,$$

$$\Delta w - (YX)^{\top}\Delta \alpha = -w + (YX)^{\top}\alpha,$$

$$\Delta w - (YX)^{\top} \Delta \alpha = -w + (YX)^{\top} \alpha,$$

$$-YX \Delta w - y \Delta \beta - (\mathcal{A}^{-1}S + (C - \mathcal{A})^{-1}\Xi) \Delta \alpha =$$

$$-e + YXw + y\beta - s + \xi - \mathcal{A}^{-1}\mu e + s + (C - \mathcal{A})^{-1}\mu e - \xi$$

$$\begin{bmatrix} (\mathcal{A}^{-1}S + (C - \mathcal{A})^{-1}\Xi) & YX & y \\ (YX)^{\top} & -I & 0 \\ y^{\top} & 0 & 0 \end{bmatrix} \begin{pmatrix} \Delta \alpha \\ \Delta w \\ \Delta \beta \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix}$$

$$\begin{bmatrix} -(\mathcal{A}^{-1}S + (C - \mathcal{A})^{-1}\Xi) & YX & y \\ (YX)^{\top} & -I & 0 \\ y^{\top} & 0 & 0 \end{bmatrix} \begin{pmatrix} \Delta \alpha \\ \Delta w \\ \Delta \beta \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix}$$

 $I + (YX)^{\top} (\mathcal{A}^{-1}S + (C - \mathcal{A})^{-1}\Xi)^{-1} YX \Delta w - y\Delta \beta = r$

or

 $(YX(YX)^{\top} + (\mathcal{A}^{-1}S + (C - \mathcal{A})^{-1}\Xi)^{-1})\Delta\alpha - (YX)y\Delta\beta = r$

$$\begin{bmatrix} (\mathcal{A}^{-1}S + (C - \mathcal{A})^{-1}\Xi) & YX & y \\ (YX)^{\top} & -I & 0 \\ y^{\top} & 0 & 0 \end{bmatrix} \begin{pmatrix} \Delta \alpha \\ \Delta w \\ \Delta \beta \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix}$$

 $O(nk^2)$ $I + (YX)^{\top} (\mathcal{A}^{-1}S + (C - \mathcal{A})^{-1}\Xi)^{-1} YX \Delta w - y\Delta \beta = r$

or

 $O(n^3)$ $(YX(YX)^{\top} + (\mathcal{A}^{-1}S + (C - \mathcal{A})^{-1}\Xi)^{-1})\Delta\alpha - (YX)y\Delta\beta = r$

Complexity

Interior point method for nonlinear SVMs:

- Need to solve (Q + D)p = r. Q is completely dense, with rank k_d .
- If $k_d \sim n$, then each IPM iteration is $O(n^3)$ operations and $O(n^2)$ memory.
- If $k_d \ll n$, then each IPM iteration is $O(nk_d^2)$ operations and $O(nk_d)$ memory.

Interior point method for linear SVMs:

- Can solve $(VV^{\top} + D)p = r$ or $(I + VD^{-1}V^{\top})p = r$.
- V = XY and is as sparse as the data. In large scale cases V can be sparse and the complexity per step is similar to linear programming.

Optimization methods for convex problems

- Interior Point methods
 - Best iteration complexity O(log($1/\epsilon$)), in practice <50.
 - Worst per-iteration complexity (sometimes prohibitive)
- Active set methods
 - Exponential complexity in theory, often linear in practice.
 - Better per iteration complexity.
- Gradient based methods
 - $O(1/\sqrt{\epsilon})$ or $O(1/\epsilon)$ iterations
 - Matrix/vector multiplication per iteration
- Nonsmooth gradient based methods
 - O(1/ ϵ) or O(1/ ϵ^2) iterations
 - Matrix/vector multiplication per iteration
- Block coordinate descent
 - Iteration complexity ranges from unknown to similar to FOMs.
 - Per iteration complexity can be constant.