Comparing Nonconvex Programs: Discrete and Continuous

JITAMITRA DESAI

Visiting Professor

Department of Industrial & Systems Engineering

October 3rd, 2007
COR@L SEMINAR SERIES
Lehigh University

Overview

Introduction to RLT-based techniques

- A lift-and-project tightening for linear 0-1 programs
- Can I get the convex hull?

Quadratic Programs: Discrete (0-1) Variables

- Constructing a higher-dimensional LP representation
- Generating RLT constraints: Bound-factor products
- A branch-and-bound algorithm

Quadratic Programs: Continuous Variables

- Constructing a higher-dimensional LP representation
- A branch-and-bound algorithm
- Comparing the discrete and continuous cases

Decision Tree Analysis

- Path-based formulation
- Discrete and Continuous Representations

Introduction to RLT: A Linear 0-1 Example

Solving MINLPs using LPs!

- 0-1 programs to continuous (nonconvex) factorable programs
- DC or DM optimization, branch-and-reduce, etc.
- BARON, OQNLP, LGO, etc.

Reformulation – Linearization Technique (RLT)

Basic idea:

Easiest optimization problems to solve are linear programs (LPs)

Take advantage to construct tight higher-dimensional LP representations

to a given nonconvex program

Derive other valid inequalities to strengthen the RLT relaxation

Embed the RLT relaxation into a (convergent) branch-and-bound process

Hmm...does RLT really help?

Consider the following linear 0-1 program:

Maximize
$$3x_1 + 4x_2$$

s.t: $4x_1 + 3x_2 \le 6$
 $(x_1, x_2) \in \{0, 1\}^2$

$$4x_1 + 3x_2 \le 6 \xrightarrow{\times (x_1 - 0)} \times (1 - x_1)$$

Hmm...does RLT really help? (contd.)

How about going one step further?

$$2x_1 + 3x_2 \le 3 \leftarrow \times (1 - x_1)$$

$$\Rightarrow 3x_2 - 3w_{12} \le 3 - 3x_1$$

$$\Rightarrow \left[x_1 + x_2 - w_{12} \le 1 \right]$$

We have generated the Convex Hull ©!

$$(1-x_1)(1-x_2) \ge 0$$

$$x_1 + x_2 - w_{12} \le 1$$

Quadratic Programs: Discrete (0-1) Variables

Pure 0-1 QPs

Minimize
$$\sum_{i=1}^{n} c_{i}x_{i} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} d_{ij}(x_{i}x_{j}) \longrightarrow \underbrace{y_{ij} = x_{i}x_{j}}_{\textbf{RLT VARIABLES}}$$
subject to
$$\sum_{i=1}^{n} a_{ki}x_{i} \leq b_{k}, \ \forall \ k \longleftarrow (1-x_{j})$$

$$x_{i} \in \{0,1\}$$

RLT
$$y_{ij} \le x_i, \quad \forall i$$
 $y_{ij} \le x_j, \quad \forall j$ $-y_{ij} + x_i + x_j \le 1, \quad \forall (i, j)$ $y \ge 0$

LP relaxation: (\bar{x}, \bar{y}) ; Branching Strategy: $\theta_{uv} = \underset{(i,j)}{\operatorname{arg max}} \{ |\bar{y}_{ij} - \bar{x}_i \bar{x}_j| \}$

Bound-Factor Products

$$(x_i - 0) \qquad (1 - x_i)$$

$$(x_j - 0) \qquad (1 - x_j)$$

e.g.
$$x_i (1-x_j) \ge 0$$

$$\Rightarrow x_i - x_i x_j \ge 0 \Rightarrow x_i - y_{ij} \ge 0.$$

$$e.g. \quad (1-x_i)(1-x_j) \ge 0$$

$$\Rightarrow 1-x_i-x_j+x_ix_j \ge 0$$

$$\Rightarrow -x_i-x_j+y_{ij} \ge -1.$$

Pure 0-1 QPs (contd.)

Minimize
$$f(x_1, x_2) = x_1 + x_1^2 - 2x_2 - x_2^2 - 5x_1x_2$$

subject to:
$$4x_1 + 2x_2 \le 5$$

$$-2x_1 + 5x_2 \le 4$$

$$x_1; x_2$$

$$(1-x_1); (1-x_2)$$

$$x_1, x_2 \in \{0, 1\}.$$

e.g.
$$(4x_1 + 2x_2 - 5)(1 - x_2) \le 0$$

 $\Rightarrow 4x_1 + 2x_2 - 5 - x_2(4x_1 + 2x_2 - 5) \le 0$
 $\Rightarrow 4x_1 + 2x_2 - 5 - 4w_{12} - 2x_2 + 5x_2 \le 0$
 $\Rightarrow 4x_1 + 5x_2 - 4w_{12} \le 5$

RLT Relaxation

Minimize
$$f(x_1, x_2, w_{12}) = 2x_1 - 3x_2 - 5w_{12}$$
 subject to:
$$-x_1 + 2w_{12} \le 0$$

$$-3x_2 + 4w_{12} \le 0$$

$$-6x_1 + 5w_{12} \le 0$$

$$x_2 - 2w_{12} \le 0$$
 Type 1 constraints
$$5x_1 + 2x_2 - 2w_{12} \le 5$$

$$4x_1 + 5x_2 - 4w_{12} \le 5$$

$$4x_1 + 5x_2 - 5w_{12} \le 4$$
 Type 2 constraints
$$4x_1 + 5x_2 - 5w_{12} \le 4$$

$$-2x_1 + 4x_2 + 2w_{12} \le 4$$
 Type 3 constraints
$$w_{12} \le x_1$$

$$w_{12} \le x_1$$

$$w_{12} \le x_2$$

$$-w_{12} + x_1 + x_2 \le 1$$
 Type 3 constraints
$$-x_1, x_2 \in \{0, 1\}; \ w_{12} \ge 0.$$

Branch-and-Bound Tree

Remark:

The LP relaxation without Type 1 and 2 constraints is $z^* = -5.25$.

 $x_1 = 1$

$$z^* = 2.0$$

$$x_1^* = 1.0; \ x_2^* = 0$$

$$w_{12}^* = 0$$

fathom

Branch-and-Bound Algorithm

QUADRATIC PROGRAMS: CONTINUOUS VARIABLES

Continuous Nonconvex Programs

Minimize
$$f(x_1, x_2) = x_1 + x_1^2 - 2x_2 - x_2^2 - 5x_1x_2$$

subject to: $4x_1 + 2x_2 \le 5$
 $-2x_1 + 5x_2 \le 4$
 $0 \le x_1, x_2 \le 1$.

e.g.
$$(1-x_1)(1-x_2) \ge 0$$

 $\Rightarrow -x_1 - x_2 + w_{12} \le 1$
e.g. $(4x_1 + 2x_2 - 5)(1-x_2) \le 0$
 $\Rightarrow 4x_1 + 2x_2 - 5 - 4x_1x_2 - 2x_2^2 + 5x_2 \le 0$
 $\Rightarrow 4x_1 + 7x_2 - 4w_{12} - 2w_{22} \le 5$

RLT Relaxation (Shortened)

Minimize
$$f(x_1, x_2) = x_1 + w_{11} - 2x_2 - w_{22} - 5w_{12}$$

subject to: $4x_1 + 2x_2 \le 5$

$$-2x_1 + 5x_2 \le 4$$

BOUND-FACTOR PRODUCTS

$$x_{1} \leq w_{11}$$

$$x_{1} \leq w_{12}$$

$$x_{2} \leq w_{12}$$

$$x_{2} \leq w_{22}$$

$$x_{1} - w_{11} \leq 1$$

$$x_{2} - w_{22} \leq 1$$

$$x_{1} + x_{2} - w_{12} \leq 1$$

CONSTRAINT-BOUND
FACTOR PRODUCTS
NOT INCLUDED IN THIS
RELAXATION!

16

 $0 \le x_1, x_2, x_3, w_{11}, w_{12}, w_{22} \le 1$

Branch-and-Bound Tree

$$z_{\text{LP}}^* = -6.0$$
 $\overline{x}_1 = 0.75; \overline{x}_2 = 1.0;$
 $\overline{w}_{11} = 0.5; \overline{w}_{12} = 0.75; \overline{w}_{22} = 1.0$

$$\left| \overline{w}_{11} - \overline{x}_{1}^{2} \right| = 0.0702$$

$$\overline{x}_{1} = 0.75; \, \overline{x}_{2} = 1.0$$

$$z^{\text{UB}} = -5.4375$$

 $x_1 \le 0.75$

$$(x_{1}-0) \quad (0.75-x_{1})$$

$$(x_{2}-0) \quad (1-x_{2})$$

$$e.g. \quad (0.75-x_{1})(1-x_{2}) \ge 0$$

$$\Rightarrow \quad x_{1} + 0.75x_{2} - w_{12} \le 0.75$$

 $x_1 \ge 0.75$

$$(x_{1}-0.75) (1-x_{1})$$

$$(x_{2}-0) (1-x_{2})$$

$$e.g. (x_{1}-0.75)(1-x_{2}) \ge 0$$

$$\Rightarrow x_{1} + 0.75x_{2} - w_{12} \ge 0.75$$

Branch-and-Bound Tree (contd.)

$$z_{\text{LP}}^* = -6.0$$
 $\overline{x}_1 = 0.75; \overline{x}_2 = 1.0;$
 $\overline{w}_{11} = 0.5; \overline{w}_{12} = 0.75; \overline{w}_{22} = 1.0$

$$\bar{x}_1 = 0.75; \, \bar{x}_2 = 1.0$$

$$z^{\text{UB}} = -5.4375$$

$$x_1 \le 0.75$$

$$z_{\text{LP}}^* = -5.4375$$
 $\overline{x}_1 = 0.75; \overline{x}_2 = 1.0;$
 $\overline{w}_{11} = 0.5625; \overline{w}_{12} = 0.75; \overline{w}_{22} = 1.0$

$x_1 \ge 0.75$

$$z_{\text{LP}}^* = -5.4375$$
 $\overline{x}_1 = 0.75; \overline{x}_2 = 1.0;$
 $\overline{w}_{11} = 0.5625; \overline{w}_{12} = 0.75; \overline{w}_{22} = 1.0$

optimum

Solving Discrete Quadratic Programs Using Continuous Variables

A Continuous Representation

Minimize
$$f(x_1, x_2) = x_1 + x_1^2 - 2x_2 - x_2^2 - 5x_1x_2$$

subject to: $4x_1 + 2x_2 \le 5$
 $-2x_1 + 5x_2 \le 4$
 $x_1, x_2 \in \{0, 1\}.$

$$f(x_1, x_2, w_{11}, w_{12}, w_{22}) = x_1 + w_{11} - 2x_2 - w_{22} - 5w_{12}$$

$$4x_1 + 2x_2 \le 5 \qquad w_{12} \le x_1$$

$$-2x_1 + 5x_2 \le 4 \qquad w_{12} \le x_2$$

$$x_1 - w_{11} = 0$$

$$x_2 - w_{22} = 0$$

$$-w_{12} + x_1 + x_2 \le 1$$

$$0 \le x_1, x_2, w_{11}, w_{12}, w_{22} \le 1.$$

A Continuous Representation (contd.)

$$z_{\text{LP}}^* = -5.25$$
 $\overline{x}_1 = 0.75; \overline{x}_2 = 1.0;$
 $\overline{w}_{11} = 0.75; \overline{w}_{12} = 0.75; \overline{w}_{22} = 1.0$

$$z_{\text{LP}}^* = -2.1538$$
 $\overline{x}_1 = 0.615; \overline{x}_2 = 0.615;$
 $\overline{w}_{11} = 0.615; \overline{w}_{12} = 0.308; \overline{w}_{22} = 0.615$

Summary

- Looked at constructing RLT relaxations for quadratic discrete (0-1) programs and quadratic programs defined in terms of continuous variables
- Branch-and-bound algorithms for both cases
- A continuous representation for quadratic 0-1 problems
- Comparison of relaxations
- Ideas for further talks include insights into developing relaxations for higher order polynomial programs, tightening the RLT relaxation using semidefinite cuts, and applications.

QUESTIONS?

THANKS...

