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Overview

Introduction to RLT-based techniques

e A lift-and-project tightening for linear 0-1 programs
e Can | get the convex hull?

Quadratic Programs: Discrete (0-1) Variables

e Constructing a higher-dimensional LP representation
e Generating RLT constraints: Bound-factor products
e A branch-and-bound algorithm

Quadratic Programs: Continuous Variables

e Constructing a higher-dimensional LP representation
e A branch-and-bound algorithm
e Comparing the discrete and continuous cases

Decision Tree Analysis

e Path-based formulation
e Discrete and Continuous Representations
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Jitamitra Desai

INTRODUCTION TO RLT:
A LINEAR 0-1 EXAMPLE
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Solving MINLPs using LPs!

« 0-1 programs to continuous (nonconvex) factorable programs

« DC or DM optimization, branch-and-reduce, etc.
« BARON, OQNLP, LGO, etc.

Reformulation — Linearization Technigque (RLT)

Basic idea:

Easiest optimization problems to solve are linear programs (LPSs)

Take advantage to construct tight higher-dimensional LP representations
to a given nonconvex program

Derive other valid inequalities to strengthen the RLT relaxation

Embed the RLT relaxation into a (convergent) branch-and-bound process
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Hmm...does RLT really help?

Consider the following linear 0-1 program:

Maximize 3%, + 4X,

S.t:

RLT

constraints

4%, + 3X, < 6
(%, %) €10, 1}"

x (x, - 0)

4%, + 3X, £6< (x)
M
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(-2x,+ +3w, <0

2% + X, — W, < 2

3 —3X, + 4w, < 0

2%, + 3X, — 2w, <2
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Hmm...does RLT really help? (contd.)

How about going one step further?

A
2%, + 3%, <3 « x(1-x) &
= 3X,— 3w, <3 - 3X

= | X+ X =W, <1
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QUADRATIC PROGRAMS:
DiscRETE (0-1) VARIABLES
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Pure 0-1 QPs

Minimize Zcx +22d=> Vi = XX,
RLT VARIABLES

it
subject to Zak. X < b,V k< ?
o < (01] o
4 4 Yi <X, Vi A
RLT Yy S X, V]
CONSTRAINTS < —y X X <L V()
9 X y =0 /

LP relaxation: (X,y); Branching Strategy: 6, = argmax{‘yJ X )_(j‘}
(i, 1)
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Bound-Factor Products

4 )
eg. x{d-x)=0
= X—XX; 20 = x—y; =0.
. J
g eg. ([@L-x)1-x,)=0 h
= 1-X—X; + x;X; =0
S = —X—X;+Yy; = -1 y
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Pure 0-1 QPs (contd.)

W
Minimize f(x,X,) = X, + X —2X, —xz—@ o

subject to: 4%, + 2X, < 5}
—2X1—|— oX, < 4 <(1 X1) (1 Xz)
X,y X, € {O, 1}.
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RLT Relaxation

Minimize  f(x,X,,W,,) = 2X, —3X, —5w,,
subject to: ~ X+ 2w, <0 —
0
0

0o -

IA

—3X, + 4w.
2 12 — Type 1 constraints

IA

IA

IA

SX, + 2X, — 2W,,

A IA
N B O1 O1

4X, + OX, — 4w,

— Type 2 constraints
4X, + 95X, — dw,,

IA

—2X, + 4X, + 2w,
W, < X
W, < X, — Type 3 constraints

—W,+ X+ X, <1 _

X, X, €{0,1}; w,, > 0.
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Branch-and-Bound Tree

Remark:
The LP relaxation without

Type 1 and 2 constraints
is 27 =-5.25.

z', = — 2.154
X, =0.615; X, =0.615] ——= |W,, — X,X,| = 0.0702
W,, = 0.308

optimum
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Branch-and-Bound Algorithm

Initialization
(Input Data for NCP)
Set active node =1

Select an active node and
construct RLT Relaxation.
If no active node,
incumbent = optimum, done!

Solve
LP Relaxation

Fathom node
and update
incumbent. Is solution binary? Select branching

Update active variable, remove
node set current node, add

two children nodes
LP relaxation > incumbent? to active set
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QUADRATIC PROGRAMS:
CONTINUOUS VARIABLES
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Continuous Nonconvex Programs

Minimize f(X,X,) = X, + X —2X, — X5 —5X,X,

subject to: 4%, + 2X, < 5
—2X,+ 5%, £ 4
0<x,X <1
/ e.g. (1—X1)(1_X2) = 0 \
— _Xl_X2+W12S1

e.g. (4x +2x,-5)1-x,)<0
=  4X, +2X,— 5 — 4xX, — 2X; + 5%, <0

=  AX + X — 4w,— 2W,, < 5

o )
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RLT Relaxation (Shortened)

Minimize f(X,X,) = X + W;; —2X, — W,, — SW,

subject to: 4 + 2%, < 5
—2X% +5X, < 4
X < W,
X, < W, CONSTRAINT-BOUND
FACTOR PRODUCTS
BOUND-FACTOR Xy = Wi, NOT INCLUDED IN THIS
PRODUCTS X, = W,, RELAXATION !
X, —w, <1
X, — W,, <1
<1

0 <X, Xy, Xg, Wyq, W, W,, <1
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Branch-and-Bound Tree

p

=

-

e.g.

(% —0) (0.75-x,)
(Xz_o) (1_X2)

(0.75-x,)1-x,) = 0

X + 0.75X, —

Zp == 6.0 W, — X?| = 0.0702
% =0.75:% =10 %, =0.75; X, =1.0
8 T =075, X, =1.
. = 05w, =0.75; W, = 1ﬂ LUB _ £ 4n7E
/
0.75/ x > 0. 75{
N keom) k)
(X -0) (1-x,)
. (x,—0.75)(1-x,) >
w,, < 0.75 = X + 0.75x, — w,, = 0.75
4
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Branch-and-Bound Tree (contd.)

X, =0.75; X, =1.0

X, = 0.75; X, N

__ __ __ z-" =-5.4375

1, = 05;w, =0.75;w,, =1.0
. J

/ \
X, <075/ \ % = 0.75
4 . )
g z;, = —5.4375 A 2/, = —5.4375

X, = 0.75; X, =1.0;
w, = 0.5625;w,, = 0.75;w,, =1.0
\_ J

optimum
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X, =0.75; X, =1.0;
w, = 0.5625;w,, = 0.75;w,, =1.0
- J
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SoLVING DiscRETE QUADRATIC PROGRAMS
USING

CONTINUOUS VARIABLES
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A Continuous Representation

Minimize f(X,X,) = X, + X’ —2X, — X —5X,X,
subject to:

4%, + 2%, < 5

—2X + 95X, < 4

X,, X, €40, 1}.

o

4%, + 2X, < 5
—2X, + 5%, < 4
X Wll—O
X, — Wy, = 0

/ f (Xl’ Xy W1, Wio,s sz) = X+ W, — 2X2 — Wy, — 5W12

< Xpy Xoy Wig, Wyp, W,y < 1
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A Continuous Representation (contd.)
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.

4 )
Z,, = —9.25
X, = 0.75; X, = 1.0;
w, = 0.75;w,, = 0.75;w,, =1.0
. )
\
Z,, = — 2.1538

X, = 0.615; X, = 0.615;
W,, = 0.615;W,, = 0.308; W,, = 0.615

J
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Summary

« Looked at constructing RLT relaxations for quadratic discrete (0-1) programs
and quadratic programs defined in terms of continuous variables

« Branch-and-bound algorithms for both cases
« Acontinuous representation for quadratic 0-1 problems
« Comparison of relaxations

o ldeas for further talks include insights into developing relaxations for higher
order polynomial programs, tightening the RLT relaxation using semidefinite
cuts, and applications.

QUESTIONS?
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THANKS. ..
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