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Reading for This Lecture

e Nemhauser and Wolsey Sections 11.1.1-11.1.3, 11.1.6
e Wolsey Chapter 8

e Valid Inequalities for Mixed Integer Linear Programs, G. Cornuejols
(2006)
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Valid Inequalities from Disjunctions

e We continue to focus primarily on the case of a pure integer program

zip = max{cx |z € S},

S = {zez"|Ax <b}).

e Valid inequalities for conv(S) can also be generated based on disjunctions.
e Let P, ={x eR" | A% <V'}fori=1,...,k besuch that S C U¥_,P;.

e Then inequalities valid for U¥_,P; are also valid for conv(.S).
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The Union of Polyhedra

e Note that the convex hull of the union of polyhedra is not necessarily a
polyhedron.

e Under mild conditions, we can characterize it, however.

e Let Y be the polyhedron described by the following constraints:

Azt < by, Vi=1,....k

k
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e Furthermore, for polyhedron P;, let C; = {z : A% < 0 and let P; =
Q; + C; where QQ; is a polytope.
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The Convex Hull of the Union of Polyhedra

e Under the assumptions on the previous slide, we have the following result.

Proposition 1. If either UP; = () or C; C coneU;.p. 2o C; for all j such
that P; = (), then the following sets are identical:

— conv(UF_,P;}
— conv(UQ;) + cone(UC;)
— proj.Y.

e Note that the assumptions of the proposition are necessary, but are
automatically satisfied if

— (O = {0} whenever P* = (), or
— all the polyhedra have the same recession cone.
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The Convex Hull of the Union of Polyhedra (cont.)

e Note also that if all the polyhedra have the same recession cones, then

conv(UE_,P;) = conv(UF_,P;) and is the projection of

Azt < by Yi=1,...,k

k

Zﬂfi = X
1=1

k .
S =
1=1

y € {071}

e This is the case when the polyhedra only differ in their right-hand sides,
as is the case when branching on variables.
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Valid Inequalities from Disjunctions

Another viewpoint for constructing valid inequalities based on disjunctions
comes from the following result:

Proposition 2. If 7" | 7 < 7 is valid for Sy C R and Y ., 77 < 75

is valid for 53 C R}, then

mn
Z min(ﬂjl-, ﬂ?)x < max(mj, )
j=1

forx € S;1USs.

In fact, all valid inequalities for the union of two polyhedra can be obtained
in this way.

Proposition 3. If P' = {z € R | A’z < b'} for i = 1,2 are nonempty
polyhedra, then (m, ) is a valid inequality for conv(P U P?) if and only
if there exist u',u® € R™ such m < w'A" and my > u'b* fori =1, 2.
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Strengthening Gomory Cuts Using Disjunction

e Consider again the set of solutions to an IP with one equation.

e This time, we write S equivalently as

S=qzxcZy| Z fiz; + Z (f; —1)z; = fo + k for some integer k
J:fi<Jfo J:fi>fo

e Since k£ < —1 or k£ > 0, we have the disjunction

OR
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The Gomory Mixed Integer Cut

e Applying Proposition 2, we get
(1—f5)
+ T >
Z D T
] fj<f0 .]fj>f0

e This is called a Gomory mixed integer (GMI) cut.

e GMI cuts dominate the associated Gomory cut in general and can also
be obtained easily from the tableau.

e |n the case of the mixed integer set

D n
S = ZCEZZ_T_XR:L__p’ZajZCj‘i‘ Z gjr; = ag ¢,

j=1 j=p+1
the GMI cut is
(1—f5) 9j 9j
> et X gopnt X gne ¥ gl
e i:15> fo 0 ji9;>0 j1g;<0
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The GMI closure

A GMI cut with respect to a polyhedron P is any cut that can be derived
using the above procedure starting from any inequality valid for P.

The GMI closure is obtained by adding all GMI cuts to the description
of P.

The GMI closure is a polyhedron, but optimizing over it is an NP-hard
problem in general.

It follows that determining whether there is a GMI cut violated by an
arbitrary vector is an N'P-complete problem.

Nevertheless, we have just shown that separation of vectors that are
basic feasible solutions to a given LP relaxation from the GMI closure
can be accomplished in polynomial time.

The GMI rank of both valid inequalities and polyhedra can be defined in
a fashion similar to that of the C-G rank (more on this later).
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Lift and Project

e Let's now consider S = P N B" and assume that the inequalities x <1
are included among those in Az <b.

e Note that conv(S) C conv(P}UP;) where P = PN{x € R" | z; = 0}
and P; = PN {zx cR"|z; =1} for some j € {1,...,n}.
e Applying Proposition 3, we see that the inequality (7, 70) is valid for

Pj = conv(P;j UP;) if there exists u* € R, v* € R", and w" € R, for
t = 0,1 such that

r < WA+ + woej,
T < uA+4ol— wlej,
¥ > u,
¥ > uwlb— wy,

e Notice that this is a set of linear constraints, i.e., we could write a linear
program to generate constraints based on this disjunction.
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The Cut Generating LP

e This leads to the cut generating LP (CGLP), which generates the most
violated inequality valid for P;.

min 7% — 7"
subject to m < uAJrquj,
T < vA—UOej,
70 > ub,
7 > wb— vy,
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e The last constraint is just for normalization.

e This shows that the separation problem for P; is polynomially solvable.
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Gomory Cuts vs. Lift-and-Project Cuts

e Note that all Gomory cuts are lift-and-project cuts.

e In fact, there is a direct correspondence between basic feasible solutions
of the CGLP and basic (possibly infeasible) solutions of the usual LP
relaxation.

e By pivoting in the LP relaxation, we can implicitly solve the cut generating
LP (see Balas and Perregaard).

e Thus, the procedure for generating lift-and-project cuts is almost exactly
the same as that for generating Gomory cuts.
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Another Derivation

e Consider the following procedure:
1. Select j € {1,...,n}.
2. Generate the nonlinear system z;(Ax—0) > 0, (1—x,)(Ax—b) > 0.
3. Linearize the system by substituting y; for z;x;,7 # 7, and z; for a:?
Call this polyhedron M.
4. Project M; onto the z-space.

e In this case, the resulting polyhedron is again P;.

e This procedure can be strengthened in a number of different ways.
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The Lift-and-Project Closure

e The lift-and-project closure is

Pl =n"_,P;

e We have just shown that optimization over the lift-and-project closure
can be accomplished in polynomial time.

o Let P be the lift-and-project closure of P*~1 for k& > 1.

e The lift-and-project rank of P is the smallest number k such that
PF = conv(8S).

e Surprisingly, the lift-and-project rank is bounded by n.

e Note that these results apply only to binary and mixed binary integer
programs.
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Split Inequalities

o Let m € Z'} and my € Z be given and define

Pl = Pn{zeR"|7mz <7}
P2 = Pn{zeR" |7z >mny+1}

e Any inequality valid for conv(P; U Ps) is valid for S and is called a split
cut.

e The split closure is the set of points satisfying all possible split cuts and
is a polyhedron.

e In fact, the split closure and the GMI closure discussed earlier are
identical.

e We can define the split rank of an inequality and of a polyhedron as
before.

e In the pure integer case, the split rank (and GMI rank) of P is finite, but
it may not be in the mixed case.

e |In the mixed binary case, the split rank is bounded by n.
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Valid Inequalities for Mixed-Integer Sets

e So far, we have been dealing almost exclusively with polyhedra in which
all variables have to be integer.

e We want to develop a procedure analogous to C-G for mixed-integer sets.

Proposition 4. Let T = {z € Zﬁ X Ri_p | ?Zlajxj +
> 19y < b}, where a;j € Q for 0 < j < p, g; € Q for

p+1<75<n,andbe Q. Then the inequality

e In fact, if a; € Z, ged{ay,...,an} =1, and b € Z, then the above
inequality is facet-inducing for T'.
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Mixed-Integer Rounding Procedure

e Now consider the general mixed-integer set

T'={zxeZ},yeR | Az + Gy < b}

e Given two valid inequalities

> whap+ Y phyy < wh for i =1,2,
JEN 1€J

we can construct a third inequality

1
2 1 .
Z\-WJ 7TJJZIZ?_'_l_fO

JEN

N wbay + Y min(ub, p2)y; - wg | < |m2-mi),
JEN je€J

where 3 — 7} = |72 — 7} | + fo.



